=

e

N

nding the Apple I

_by Jim Sather

* ' Foreword by Steve Wozniak

. ==K
2
|

$22.95

Understanding the Apple 11

A Learning Guide and Hardware Manual
for the Apple II Computer

Quality Software is pleased to present the definitive source of information about how the Apple works.
Jim Sather has conducted an exhaustive analysis of the inner workings of the Apple II computer. Now he
has documented his findings in a way that will benefit everyone interested in microcomputer technology.

Understanding the Apple 11—

e Documents all motherboard circuits, including
some discussed nowhere else.

» Describes disk controller operation, including
previously undocumented details of the logic state
sequencer.

¢ Explains RAM and ROM card operation.

« Reveals previously unnoticed features of Apple
graphics.

¢ Contains 23 software and hardware Application
Notes including shift key mod, disk write protect
mod, and EPROM mods.

« Includes a chapter on maintenance that provides
simple troubleshooting steps.

If you are at all curious about how the Apple Il works,
you are sure to find Understanding the Apple Il very
valuable. It is an ideal book for a microcomputer
fundamentals course based on the Apple.

About the Author

James Fielding Sather, a former electronics field technical
representative for ITT Gilfillan, is an independent author,
programmer, and designer of circuits for microcomputers,
specializing in the Apple I1.

QUALITY
SOFTWARE

Understanding the Apple 11 describes the Apple 11 and Apple 11 Plus.
However, some information, including that on disk controller
operation, also applies to the Apple Ile.

ISBN 0-912985-01-1 Printed in USA

Understanding the Apple 11

by James Fielding Sather

QUALITY SOFTWARE
21601 Marilla Street
Chatsworth, California 91311

by OY 4S

Univ.

Bihliothek
Bielefeld

Production Editor: Kathryn M. Schmidt

Original Schematics and Diagrams: James Fielding Sather
Art Director and Cover Design: Vie Grenrock

Cover Art: George Garcia

Schematic Art: Ron Widman

Photography: Gainsforth Studios

Compositor: American Typesetting, Inc.

Printed By: California Offset Printers

Copyright © 1983 by Quality Software. All rights reserved. No part of this book may be reprinted, or
reproduced, or utilized in any form or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any information storage and retrieval
system, without permission in writing from the Publisher. No patent liability is assumed with respect to
the use of the information contained herein. While every precaution has been taken in the preparation of
this book, the publisher assumes no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained herein.

International Standard Book Number: 0-912985-01-1
Printed in the United States of America

BI 100-384105+01

W

Exhausted after addressing an A pplefest audience
in Anaheim, I was offered a ride to the airport by a
stranger who was writing a book on something Apple
related and who wanted to talk to me. The traffic
congestion, missed exits, and airport confusion have
deeper meaning to a computer designer, but I shall
never forget the conversation we had for the next cou-
ple of hours. Jim Sather proceeded to explain details,
anomalies, oversights, and paradoxes of the Apple I1
hardware as we drove the LA freeways. Designers
like myself find it very rewarding to encounter others
who understand and appreciate what we feel are the
tricks and magic of our eirewits. I was able to add to
the magic by explaining the unusual framework in
which the computer was designed.

The Apple I was designed as an interesting hobby
project to “show off” at the local computer club. Only
one or two were intended to be built, and then for a
market of one (myself). Component selection was
biased by what was easy to obtain and affordable.
Features such as game 1/, color, and graphics were
added to impress friends with specific applications.
The driving motivation was to accomplish a lot with
very few components. In this framework the system
features were largely influenced by the technical
environment—which ICs occupying how much board
space, the bandwidth of normal home TV, ete. It is
more common today to specify features based on
market considerations.

foreword

Since the hardware and software tasks were not
partitioned in advance for separate groups to work
on, a tremendous synergy evolved, Understanding
the Apple II respects this close interdependence. It
contains discussion and examples throughout. Hard-
ware and software developers alike (and enthusiasts
and students too) will gain greatly from this manual.
This is especially true for Chapter 9 on the floppy
disk and controller, one of the last individual com-
puter projects and certainly my personal favorite.

Design considerations must be resolved in new,
creative ways when they are not commonplace.
Appreciate the challenge of striving for low compo-
nent count yet including many features of today’s
personal computers for the first time ever on a low cost
computer. These features include dynamic RAMS,
video terminal appearance, plastic case, BASIC in
ROM, color, hi-res graphics, paddles, speaker,
switching power supply, and more. Normally, large
successful companies generate good products. This
time it happened the other way around. The Apple 11
is a product which generated one of the greatest com-
panies ever! It's about time the story of its innards
was presented so well.

e /W
%4

Dedication

On behalf of my father, Fredrick, and my brothers and sisters, Lee, Jenny, Tim, Mary, Mike,
and Joe,
to my beloved mother,
Frances Janet Nalder Sather.

Acknowledgements

Deborah A. Sather entered the original manuseript to word processor and offered numerous
suggestions that made descriptions more clear. She also tolerated the disruption of a wageless
author cluttering up the household with his presence and demands.

ITT Gilfillan carried me on leave of absence for seven months before we mutually agreed to
terminate my employment.

Jim Aalto provided suggestions and corrections which improved Chapters4 and 9. Don Worth
did the same for Chapters 2 and 9.

The Apple II computer is an adult toy of wonder-
ful depth which brings forth the pride and creativ-
ity that resides in all of us. It is a gymnasium for the
mind which tests and develops our mental agility. It
teaches us about itself, and there is much to learn.
Learning about the Apple through creative usage is
an exciting and fulfilling, if sometimes frustrating,
experience. The frustration comes from the diffi-
culty of the puzzles with which the Apple confronts
us. The fulfillment comes from learning to manipu-
late the powerful machine.

The front line source of information about the
Apple is the documentation provided with the com-
puter: the Apple II Reference Manual, the Applesoft
II BASIC Programming Reference Manual, The
Applesoft Tutorial, and The DOS Manual. Maga-
zines and other books provide a wealth of informa-
tion for the inquiring user. The great self-teaching
experience is programming, and persons who choose
to program the Apple in any of the various lan-
guages quickly increase their familiarity with the
features of their computer. Another important
source of knowledge is the study of professionally
written programs such as the system monitor, listed
in the Apple II Reference Manual. Gradually, the
student acquires a working knowledge of the var-
ious hardware features of the Apple. This is impor-
tant, because it is the hardware features which
ultimately define the capabilities and limitations of
the machine.

The purpose of Understanding the Apple II is to
assist the student of the Apple in accelerating the
process of assimilating knowledge about his or her
computer. This book is hardware oriented, and,
therefore, fills a longstanding information gap in
Apple literature. Emphasis is placed on achieving

preface

an operational knowledge of the Apple, based on an
understanding of how the hardware works. Opera-
tional knowledge consists of knowing what the
Apple can do, knowing how to make it do it, and
knowing what a controlling program is making the
Apple do. By way of assisting the reader in achiev-
ing his goals, the goals of this book are:

1. To provide clear descriptions of microcomputer
fundamentals and of the operational features of
the Apple.

2. To provide examples of how a knowledge of the
operational features of the Apple can be applied.

3. To provide the most thorough hardware refer-
ence material available for the benefit of tech-
nically oriented readers and for those readers
who wish to delve very deeply into the secrets of
the Apple.

4. To serve as a text book for Apple based high
school or university courses teaching computer
fundamentals.

5. To fill information gaps in Apple literature by
describing previously undocumented opera-
tional features.

Because of the great differences in hardware
between the Apple Ile and previous Apple IIs, no
attempt is made in this book to document the opera-
tion of the Apple Ile. The hardware differences
between the two computers are of such consequence
that the Apple Ile would itself be the subject of a
book similar in scope to this one.* All mention of the
Apple or Apple II in this book is meant to refer to
Apple IIs prior to the Ile. Yet it is only prudent to

*The book Understanding the Apple ITe by Jim Sather is sched-
uled for release by Quality Software in 1984.

acknowledge here that the Apple Ile is a consider-
able improvement over the older Apple IIs. In par-
ticular some Apple weaknesses mentioned in this
book do not pertain to the Ile. This includes most
keyboard and text display deficiencies and incom-
patibility between motherboard ROM and equiva-
lent EPROM.

Persons who will benefit from reading Under-
standingthe Apple Il are inquiring people who want
to spend some time learning about this machine.
Generally speaking, this refers to those persons who
program the Apple in any language. Itisrecognized
that different people will carry their investigation
to different depths. For those who have not the time
or desire to reach the greater depths, the Overview,
Bus Structure, and Address Decoding chapters
(Chapters 1, 2, and 7), as well as the Application
Notes at the end of every chapter, are recommended
as providing a good foundation for understanding
the Apple. As a textbook for students or a learning
guide to hard core enthusiasts, cover to cover read-
ing is recommended.

While an inquiring mind is the only qualification
required of a reader of this book, certain sections
will be difficult for those readers without some
background knowledge. In order of descending
importance, helpful background knowledge in-
cludes understanding of BASIC programming lan-
guage, hexadecimal and binary number systems,
6502 assembly language, and technical illustrative
aids such as timing diagrams, truth tables, and
schematic diagrams. It should be noted by all read-
ers that except for the technical aids, they will even-
tually have to acquire the listed background knowl-
edge if they are to achieve a real understanding of
the Apple computer. It is hoped that the nontechni-
cal aids and language in Understanding the Apple IT
are sufficiently descriptive, and that a technical
background, although helpful, is not necessary. In
general, the later chapters contain more detailed
and technical information than the earlier chapters,
and the earlier sections in each chapter are less
technically oriented. Appendices E and F contain
some basic information on number systems and cir-
cuit symbols for those readers who come to this book
with no previous knowledge of those subjects.

Even though Understanding the Apple II is not a
programming instruction manual, many program-
ming examples are given in the body of the text
which illustrate applications of principles being
discussed. Where possible, these examples are writ-
ten in BASIC so that the clearest possible level of
illustration results. In addition, a number of Soft-
ware Application Notes are included at the end of
various chapters which further demonstrate the

application of principles. These programming notes
are included because understanding the Apple
ineludes a combination of programming knowledge
and hardware knowledge. Unless noted otherwise,
all software examples are creations of the author
and are hereby placed in the public domain. The
author requests that he be given credit as the pro-
grammer in all reproductions of these programs.

A number of Hardware Application Notes are
also included at the ends of chapters. Some of these
Notes are hardware projects which demonstrate
relevant principles. Other Notes are simple descrip-
tions of modifications to the Apple which enhance
operation in some way, such as the SHIFT key modi-
fication. Figures 3.11, 3.12, 3.13, 3.15, 4.8, and 4.10
are all original designs of the author. Readers are
encouraged to study or build them or integrate them
into their own designs. The author requests that he
be given credit as the designer in any reproductions
or other use of these schematics. D MAnual Con-
troller (Figure 4.8) is being manufactured by the
Southern California Research Group, and is avail-
able for purchase as noted in Chapter 4.

Several Hardware Application Notes detail mod-
ifications to part of the Apple or Apple peripherals.
Please read the NOTE OF CAUTION following the
Table of Contents before performing any modifica-
tions to your equipment. It is recommended that
readers unskilled in electronics workmanship who
desire a modification have the work performed ata
computer dealership or by a skilled friend. Persons
who modify their Apples should be able, or know
someone who is willing and able, to repair the modi-
fied assembly if it should fail.

Understanding the Apple II is the result of an
intensive investigation of the Apple II computer by
the author. There is no other source of much of the
information covered here, and the possibility of
error exists on the part of the author. For those
errors which do exist, the author is truly sorry.

The Apple II is not a perfect computer, and, in this
book, less than perfect features are reported along
with the more admirable features. There are many
opinions of the author in the body of the text and the
reader must rely on his own judgment to evaluate
these opinions. Lest the reader get a mistaken
impression from harsh comments about certain
Apple features, let the record be set straight here.
The author highly admires the Apple design and
considers this computer to be in a class by itself.
Furthermore, he respects the newer products being
designed by Apple. To Steve Jobs, Mike Markkula,
Rod Holt, and Mike Scott: “Thanks fellas.” To Steve
Wozniak: "How about an encore, Woz?"

Table of Contents

Chapter 1
Chapter 2
Chapter 3

Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10

Glossary
Appendices

Re==moa"Egoaws

Schematic Diagrams
Index
Foldouts

THE APPLE II—AN OVERVIEW

BUS STRUCTURE OF THE APPLE II
TIMING GENERATION AND THE VIDEO
SCANNER

THE 6502 MICROPROCESSOR

RAM IN THE APPLE II

ROM IN THE APPLE II

ADDRESS DECODING AND INPUT/OUTPUT
VIDEO GENERATION

THE DISK CONTROLLER
MAINTENANCE AND CARE OF THE
APPLE II

References

Trademarks

6502 data

BASIC program listings

A logic circuits primer

A number systems primer

Apple II revisional information
Historical notes

A technical conversation with Steve Wozniak
Baseplate and motherboard removal
List of Figures and Tables

Note of Caution

Several of the Application Notes in Understanding the Apple II contain
procedures for modifying the Apple II computer and peripheral cards. Modi-
fication of your Apple or peripherals may void your warranty if the warranty
period has not yet lapsed. It may also increase your out of warranty repair
costs should the modified unit fail in the future. The decision to perform any of
the modifications described in Understandingthe Apple Il rests solely with the
owner of the hardware concerned. Neither Quality Software nor the author
bears responsibility for any negative consequence of the owner’s decision to
perform such modifications.

Understanding of any subject is a relative thing.
You may, for instance, say that you understand rain
and mean that you know to go inside when it is
raining. When a meteorologist says he understands
rain, however, he speaks of a more significant level
of understanding. Understanding of the Apple 1I
can likewise mean various things. You may under-
stand how to use it. More significantly, you may
understand how to program it and recognize what
programs are making it do. More significantly yet,
vou may understand how it works. Inquiring reader,
you hold in your hands a book which tells you how
the Apple IT computer works.

Understanding the Apple I is a book of explana-
tions and applications. It contains explanations of
how the hardware works and how to make the
hardware work. It contains applications which show
the advantages of understanding Apple II funda-
mentals. [t contains answers for those who come to it
with a less significant level of understanding, be-
cause they surely have many unanswered questions.

It is natural to begin a book of explanations with
an overview, and so it is done here. But before all
else, the author wishes to discuss the first step he

chapter 4

The Apple lI—
An Overview

had to take in reaching a significant understanding
of the Apple II. That step was distinguishing the
functions of the BASIC language from the functions
of the Apple II hardware.

THE FIRST STEP

The Apple II is a programmable computer. With
a program in memory it is an amazing tool, but
without a program it is lifeless hardware. The
Apple, however, is never without a program, be-
cause it has programs built into non-erasable mem-
ory (ROM). The most significant program in ROM is
a BASIC interpreter through which most people
learn to communicate with the Apple. Communica-
tion is accomplished very naturally via the keyboard
and screen in the easily grasped BASIC language.
Persons who choose to can quickly learn to write
fairly sophisticated BASIC programs just by read-
ing the BASIC tutorial that comes with the Apple
and doing what it says. Good for BASIC. It is a
human oriented program which opens computing
doors, but...

1-2 Understanding the Apple |I

BASIC is not the computer. BASIC controls the
computer. BASIC is a program written in the fun-
damental language of the Apple computer, 6502
machine code. This concept of one language written
in another is one of the most important in the field of
computers. BASIC is a "high level” language writ-
ten in "low level” 6502 machine code. The Apple can
execute programs in any language written in 6502
code, but in fact, during every moment it is turned
on, the Apple is executing 6502 code.* These points
are made to help the reader take the first step of
escaping from BASIC and realizing that the Apple
is capable of doing so much more than executing
BASIC. BASIC issoeasy tousethat the Apple owner
is held at arm’s length from his machine. When an
application cannot be performed in BASIC, the
owner needs to understand the real features of the
Apple.

Familiarity only with BASIC can create miscon-
ceptions, because the BASIC language does have
similarities and ties to the hardware structure of the
Apple. BASIC programs are stored sequential pro-
grams which the computer executes. BASIC pro-
grams do manipulate the hardware features of the
Apple. BASIC in ROM is, in itself, a hardware fea-
ture of the Apple. Yet there is an architecture to the
Apple which is of a different nature from that of
BASIC. This is the architecture of fixed address
locations, accessed sequentially by a central pro-
cessing unit. The BASIC concepts of line numbers
for sequential control and variable names for stor-
age of data are very powerful, but they are features
of BASIC, not the Apple.

Not just BASIC, butother sophisticated operating
systems like the DOS, Pascal, and the system moni-
tor become so much a part of the Apple that it is
difficult to distinguish software or firmware from
hardware features. These operating systems repre-
sent major engineering efforts and they are very
much a part of the Apple’s power, but no program
can make the Apple gobeyond its hardware capabil-
ities, If you understand the hardware, you will have
crossed a very important threshold for a computer-
ist, awareness of what you can or cannot do with
your computer.

*There are actually three instances when 6502 code is not being
executed: when a peripheral card performs DMA, when a pe-
ripheral card deactivates the READY signal. and when the
RESET key is held down or the RESET' line is otherwise held
low. These special cases are explained in detail in later chapters.

APPLE Il OVERVIEW

The following overview is a brief statement of the
hardware features of the Apple Il computer. It is not
meant to be a description of everything programs
can make the Apple do. Rather, it is a description of
the basic capabilities with which computer pro-
grammers and peripheral designers work. An at-
tempt is made to explain the technical terms that
are used, but newcomers to mierocomputers should
not be discouraged if some points are not absolutely
clear to them. The following chapters expand on all
topics covered here, and Chapter 2 in particular
contains information which will elarify much of
Chapter 1.

The Apple II is made up of five physical units:
the baseplate and case, the keyboard, the power
supply, the speaker, and the motherboard. The
speaker, power supply and keyboard are all utility
units which plug into the motherboard. It is the
motherboard which contains all the uniqueness of
the Apple. The motherboard is the Apple, and the
Apple is consequently referred to as a single board
computer. It has, on one board, a microprocessor,
memory, video text and graphies output circuitry,
eight peripheral expansion slots, and circuitry for
communications with a variety external devices.
These features are part of an organized structure
centered around the microprocessor.

The Microprocessor and Bus Structure

The brains of the Apple is a 6502 mieroprocessor.
A microprocessor, or MPU (MicroProcessing Unit),
is a single chip logic device capable of executing
stored sequential programs.* A microcomputer is a
computer which uses an MPU as its fundamental
logic processor.

Digital computers operate to a synchronizing beat
known as a clockpulse, similar to the beat of musie,
but over ten thousand times as fast. The 6502 oper-
ates to a beat which occurs approximately 1,020,500
times a second. We say that the clockpulse frequency
is 1.0205 MegaHertz (MHz) meaning 1.0205 million
cycles per second. Actually there is a clock pulse
jitter, which is deseribed in the timing section of

*A chip is another name for an integrated circuit, or IC. [t is a
unit with asmall body and a number of metal pinsor leads, and it
contains complex electronie circuitry inside. If you look inside
the Apple. vou will see many little black chips plugged into
sockets on the motherboard. The biggest of these chips is the 6502
MPU.

The Apple II—An Overview 4-3

Chapter 3. Until we get to that point, just say that
the 6502 operates at about 1 MHz. This, inciden-
tally, is slow by modern microprocessor standards.
There are 3 MHz 6502 MPUs available now, and
other MPUs have faster clock pulse rates than that.
With a given MPU, the faster the clock, the faster
the execution speed.

The structure of the Apple is that of multiple
devices which can communicate with the MPU.
Once every clockpulse, the MPU outputs the address
of the location which is being communicated with,
and it transmits data to or receives data from that
location. The address which the MPU is putting out
is distributed to all addressable devices in the Apple
viathe address busand data is transferred between
the MPU and the addressed location via the data
bus. Associated and distributed with the address bus
is the read/write control output of the MPU. Read/
write control tells the addressed location whether
data will be read from it or written to it.

The 6502 has 16 address outputs, each connected
toone line (electrical conductor) of the address bus.*
It controls the 16 address lines and the read/write
line together by placing a high or a low voltage on
each line. The simultaneous condition of the 16
address lines is the 6502 address. The 6502 address
isa number between $0 and $FFFF (65535), and the
6502 can access any one of the $10000 (65536)
addressed locations in that range.

The 6502 has eight data input/output lines, each
connected to one line of the data bus. It controls the
eight lines when writing and monitors the eight
lines when reading, and the simultaneous condition
of the eight lines is the 6502 data word. Like the
address lines, each of the data lines is brought to a
high or a low voltage when information is passed.
Each line can be one of two states (high or low), so the
information is said to be two state, or binary. Other
common ways of referring to the two states of binary
information are true/false, one/zero, and on/off.

A unit of binary information is a bit. Whether a
line is high or low at a given instant is a bit of
information. The 6502 reads or writes and manipu-
lates information eight bits at a time and is there-
fore classified as an 8-bit MPU. A groupof eight bits
is a byte. The 6502 manipulates and transfers data,
one byte at a time, to an addressed location in the
Apple bus system.

*As described in Chapters 2 and 4, the 6502 is not connected
directly to the address bus and data bus. It is connected to the
buses through isolating devices which give the Apple I1a DMA
{Direct Memory Access) capability and allow the 6502 to com-
municate with the large number of electronic devices connected
to the address bus and data bus of the Apple I1.

Most locations which the MPU addresses are
memory locations. Memory contains the stored
program which the MPU is executing and about
half of the MPU’s time is spent fetching that pro-
gram. The program is stored sequentially, so fetch-
ing the program by the MPU simply involves
incrementing the address output while reading the
data input and interpreting it as a sequential pro-
gram. While not fetching the program, the MPU is
executing it. This execution involves logical manip-
ulation of data, storage of data at or loading of data
from addressed locations determined by the pro-
gram, changing the program fetching location to
somewhere other than the next sequential address,
or any combination of these and other functions.

Not all locations addressed by the MPU are
memory locations. Program instructions fetched
from memory may cause the MPU to address non-
memory locations such as the speaker or keyboard.
A memory lécation responds to a read at its address
by placing data on the data bus. The speaker
responds to a read or a write at its address with
sound. The MPU thus controls the speaker via the
address bus in an address decoding process. Ad-
dress decoding is the only way a 6502 can control
other devices, so all programmed control of Apple
devices is via address decoding.

Memory

General purpose microcomputers require two
types of memory—memory you can change (RAM)
and memory you can’t change (ROM).* RAM is
necessary so you can store general programs and
data. ROM is necessary so the computer has a pro-
gram to run when it is first turned on.

Both ROM and RAM are random address memo-
ries meaning any specific memory location can be
accessed at its specific address. Computer memory
is like thousands of light bulbs, each of which may or
may not be glowing. If the memory is random
access, the microprocessor can communicate with
any light bulb it chooses by calling its number. It
can, for example, check if light bulb number 25,765
is glowing or not. This is analogous to reading
memory. Telling light bulb number 7,682 to not
glow is analogous to writing to memory; the MPU is
altering the state of light bulb 7,682. RAM and ROM
are functionally identical except that ROM is fixed

*ROM stands for Read Only Memory, which is accurate, and
RAM stands for Random Access Memory, which is the most
famous misnomer in all of computer jargon. Both read only
memory and read/write memory in the Apple are random access
memory, and this book refers to them by their conventional
labels, ROM and RAM.

1-4 Understanding the Apple lI

as if it was etched in stone. You can’t turn the light
bulbs on or off. You ean only check to see if they are
on or off.

The MPU can not really tell whether a light bulb
is glowing or not, but it can tell whether the voltage
onalineis highor low. RAM is capable of storing the
high/low state of its data input when the MPU
writes datatoa RAM address. Both RAM and ROM
are capable of bringing their data outputs high or
low in accordance with stored data when the MPU
reads data from a RAM or ROM address. In a posi-
tive logic system like that of the Apple, storing or
reading a high voltage is thought of as storing or
saving a "1”. Storing or reading a low voltage is
thought of as storing or saving a "0".

Since the 6502 is an 8-bit MPU, memory must be
organized so that it is accessed eight bits, or one
byte, at a time. The Apple motherboard has sockets
for 49,152 bytes (393,216 bits) of RAM. This is nor-
mally referred to as 48K of RAM meaning 48 Kilo-
bytes. The Apple uses dynamie RAM which must
be refreshed. Memory refresh must occur on a
periodic basis or dynamic RAM will not work. It's
like a fire that goes out unless someone is constantly
pumping the bellows. Dynamic RAM is nice because
it's inexpensive, but it requires a lot of external
circuitry to support the refresh requirement. The
Apple motherboard fully addresses and supports
48K of RAM in every way including refresh.

The Apple motherboard has sockets for 12,288
bytes (98,304 bits) of ROM, commonly referred to as
12K. Each ROM chip contains 2K of information so
there are six sockets. 2K are taken up by the moni-
tor ROM. This chip tells the Apple what to do when
it turns on and contains valuable utilities which
make the Apple hardware accessible to its user. The
rest of ROM is taken up by either Applesoft or
Integer BASIC. Applesoft is the newer BASIC
written by Microsoft Corporation for the Apple.
Integer BASIC is the original BASIC written for
the Apple. Integer BASIC is a smaller program
than Applesoft so there are twoempty ROM sockets
permitting a total of 4K of user ROM on the Integer
machine. The Apple with Applesoft on the mother-
board ROM is referred to as the Apple II Plus to
distinguish it from the Integer Apple. This book
refers to both machines as the Apple or Apple II.

Peripheral Slots

The Apple peripheral slots are similar to a card
cage. What is a card cage? A card cage is a very
versatile physical package for microcomputers and
other electronic circuits. It is a row of slots mounted
close together into which printed circuit cards are

plugged. Behind the slots are hundreds of wires con-
necting the slots together in accordance with the de-
sign purpose. Card cage architecture is like a house
with an intercom system. Just as communication is
possible between various rooms of the house, com-
munication is possible between the various cards
plugged into the card cage. Each slot in the card
cage is a different station in the intercom system.

In a card cage microcomputer, part of the wiring
which interconnects the slots is a multiline address
bus and data bus, similar to the buses on the Apple
IT motherboard. A microprocessor board can be
plugged into any slot, from where it can control
communication in the card cage via the address bus.
A very nice modern card cage micro would have a
multifunction single board microcomputer in one
slot and a variety of devices in the other slots. The
Apple is exactly that computer, turned inside out.
Instead of mounting the main logic board in the card
cage, they mounted the card cage on the main board.

The Apple "card cage” consists of eight periph-
eral slots mounted on the back of the motherboard.
The address bus and data bus are connected to all
the slots, making them addressable extensions of the
Apple’s basic communication system. Each slot has
a part of the 6502 address range assigned exclu-
sively to it, so the programs can make the 6502
access a peripheral slot just as if it were a group of
memory locations.

Some important 6502 input control signals are tied
to pins on the peripheral slots. They are RESET’,
READY, NMI'(Non-Maskable Interrupt), and IRQ’
(Interrupt ReQuest). These signals are all described
in greater detail in the 6502 section of Chapter 4.
Their connection to the peripheral slots means that
the processor can be interrupted, stopped, started,
and reset from any peripheral card. It also means
that any peripheral card can be designed to respond
to these control signals. For example, pressing
RESET at the keyboard resets the 6502 and addi-
tionally turns off the floppy disk drive. The disk
drive controller is designed to respond to the RE-
SET' signal which occurs when RESET is pressed.
RESET’, incidentally, is read "reset prime.” In this
book, the prime behind the name of a logic term is
used to signify that a signal is active or true when a
low voltage is present.* It is an aid to understanding

*Most published computer literature will overscore a logie term,
rather that placing a prime symbol behind it. to signify that it is
active when low. In using the prime notation, Understanding the
Apple I1is following the convention used by Apple in their A pple
He Refevenee Manual. In addition to signifyving that a term is
active when low, the prime symbol following a logic term can
mean that the inversion of that logic term is being referred to.
Please see Appendix E for further discussion of this subject.

The Apple Il—An Overview 1-5

the logic functions of a given signal. Knowing this,
you could guess from the second sentence of this
paragraph that the 6502 is interrupted and reset by
low voltages on the NMI’, IRQ’, and RESET' line
and enabled by a high voltage on the READY line.

Another peripheral slot signal which affects the
6502 but isn’t connected direetly to it is the DMA’
signal. DMA stands for Direct Memory Access
and refers to direct memory access from the periph-
eral slots. The DM A’ line does a bit more than giving
the slots access to memory, however. It allows a card
in aslot to isolate the 6502 from the address bus and
data bus and take control of communication in the
bus system. This means that a peripheral card can
control all hardware features of the Apple. It isas if
you could plug a Suzy brain into Johnny and have
the Suzy brain control Johnny’s body, a concept
much in vogue in some circles.

There are signals connected to the peripheral slots
other than those that have been mentioned. They
provide various capabilities so peripherals can be
designed to be fully integrated into the Apple struc-
ture. These signals include timing and control
inputs, power supply voltages, and control signals
decoded from address ranges on the address bus.
The purposes of these signals will be fully explained
in later chapters.

Video Output

The primary output of the Apple II is video.
The video is compatible with the video in an Amer-
ican TV set. Motherboard “Eurapple” jumpers can
change the video for black and white compatibil-
ity with European TV systems, but a "Eurocolor”
card in slot seven is necessary for European color
compatibility.

The problem with videooutput is that the input to
a television is not video but RF (Radio Frequency)
modulated by video. This means that you can use the
Apple with a television set, but the input to the
television must be an RF signal modulated by Apple
video. Generation of the RF signal and modulation is
accomplished in a user supplied modulator. Another
name for the user supplied modulator is a pain in the
neck.

There are three basic Apple video modes: TEXT,
LORES graphics (LOw RESolution colored blocks)
and HIRES graphics (HIgh RESolution colored
points). The displays are stored (mapped) in memory
so that video is generated by processing data from
memory.

All video modes use memory scanning to generate
video. This means that certain areas of RAM are
designated as display memory. The designated areas
are:

TEXT/LORES Page 1 - 400-7FF
TEXT/LORES Page 2 - 800-BFF
HIRES
HIRES

(1K memory)
(1K memory)
Page 1 - 2000-3FFF (8K memory)
Page 2 - 4000-5FFF (8K memory)

As an example, assume that the computer is in
TEXT mode, PAGE 1. Then memory in the range
$400-$7FF will be scanned approximately 60 times
a second and the data in that memory area will be
processed for video output. Part of display memory
is always being scanned while the computer is on.
The Apple is designed so that this constant scanning
satisfies the refresh requirement of the dynamic
RAM.

An important consequence of the Apple’s display
implementation is that the video display steals
memory from the user. The programmer must pro-
gram around the display areas if he intends to use
the associated displays.

Scanning for video output is not performed by the
MPU. It is performed by the video scanner, also
referred to as the video scan counter or video syn-
chronizer. Signals from the video scanner are used
to develop television sync which means that the
memory scan in the Apple and the electron beam
scan in the television tube are in sync. Memory
is scanned one time for every time the picture is
scanned.

The scanner accesses RAM in a way that is com-
pletely transparent to the MPU. During the first
half of every 6502 cycle period, the video scanner
addresses RAM. During the second half, the 6502
addresses RAM. The scanner access to RAM is
always aread access and the data which comes from
RAM during the scanner access is processed by the
video generator to make video. The 6502 access can
be either read or write and, on some cycles, the 6502
may not access RAM at all. When the 6502 does
access RAM, RAM is accessed twice every 6502
eycle and is therefore accessed at 2 MHz.

The programming method for controlling the
Appledisplay is to compute or look up the address of
the desired screen location in the appropriate mem-
ory display area and modify that address to the

1-6 Understanding the Apple lI

Figure 1.4 TEXT and LORES Graphics.

programmer’s purpose. The videoscanner scans the
display area determined by the display mode and
the resulting memory data is processed as text or
graphics as determined by the display mode.

Text is stored in ASCII eode (American Standard
Code for Information Interchange). In addition to
ASCII, code for normal display (black on white),
inverse display (white on black), or flashing display
(alternating normal and inverse) are stored for each
text character. One character is stored per byte of
display memory. As text is scanned, the coded data
from memory is translated to 5x7 dot matrix video
in normal, flashing, or inverse format. There are 64
displayable text characters (one is the space).

The TEXT display is 40 columns by 24 lines. Only
uppercase is available on older Apple IIs but new
ones have upper/lower case screen capabilities.* A
variety of 80 column upper/lower case display
boards are available for the peripheral slots.

LORES graphics is a programmable display of 40
columns and 48 rows of colored blocks. Each block
can be any one of 15 colors including black and
white. Apple claims 16 colors but the two grays are
identical in color and luminance. LORES ismapped
in the same display area as TEXT so memory scan-
ning is identical in the two modes. In LORES,
rather than converting ASCII to video, the video
generator processes the bit pattern directly into
video. The code for each LORES block requires four
bits, thus there is code for two blocks in every byte of
display memory. Also, there is a direct correspon-
dence between the screen location of a pair of

-

*In Revision 7 and later Apples, an upper/lower case screen
display capability can be realized by replacing the A3 TEXT
ROM. Please refer to the related Application Note at the end of
Chapter 8.

LORES blocks and one text character as shown in
Figure 1.1. i

HIRES graphics is a programmable array of 280
columns and 192 rows of dots. Because of the way
video is generated in the Apple, the color of any dot
is dependent on its horizontal position. To draw a
violet horizontal line, for instance, every other dot in
one row is turned on. To draw a violet figure, only
half of the columns of dots can be turned on. This is
also true of the other HIRES colors; green, orange,
and blue. There is only 140 x 192 resolution when
drawing these four colors. White (the absence of
color) and black (the absence of luminance) can also
be displayed. The 280 dots in any row are divided
into 40 groups of seven dots. Each group of seven
dots may be shifted together horizontally one half of
a dot position, changing the colors of anv colored
dots in that group of seven. Thus, there are 560
horizontal dot positions in each row but only 280 dots
are independently programmable. This brief state-
ment of HIRES graphics capabilities is probably
just enough information to let the reader know that
the subject of HIRES is complex. Full understand-
ing is possible in the light of more detailed analysis
and HIRES is covered in greater detail in Chapter
8. For now, let us summarize the graphic resolution
of the Apple II screen as follows. There is 140 x 192
dot resolution in six colors. There is 280 x 192 dot
resolution if color is ignored. There is 560 x 192 dot
resolution for some applications.

The HIRES memory display area is much larger
than the TEXT/LORES area: 8192 bytes for asingle
display screen. This is the hardware cost of high
resolution. Each byte of display memory contains
the on/off conditions of seven dots plus the shift
control bit which determines whether that group of

The Apple ll—An Overview 1-7

seven dots is shifted half a dot or not. During the
HIRES memory scan, the data from memory is
essentially shifted straight to the monitor or televi-
sion modulator via the VIDEO output line.

Apple programs select the video mode via four
programmable toggle switches, or soft switches.
The four video mode soft switches are:

GRAPHICS /
LORES/
PAGE 1/
NOMIX/

TEXT
HIRES
PAGE 2
MIX

The first two switches select TEXT, LORES
graphics, or HIRES graphics. PAGE 1/PAGE 2
simply selects between a primary memory display
area and a secondary memory display area for each
mode. PAGE 1 is normally used in all modes, but use
of PAGE 2 may suit the programmer’s purpose. The
most common use of alternate page displays is to
eliminate flicker in graphic animation. The pro-
grammer updates an animated picture on the page
that isn't being displayed, then changes the display
by switching pages so that the updated picture is
displayed. PAGE 2 of TEXT is rarely used because
it serves little purpose, is not supported by firm-
ware, and interferes with BASIC. PAGE 2 of
LORES graphics is rarely used for the same reasons.

The fourth programmable switch is MIX/NO
MIX. MIX refers to mixed text and graphics. If
MIX is selected and GRAPHICS is selected, there
are four lines of text at the bottom of the screen and
LORES or HIRES graphics on the rest of the
sereen. This is very useful, as far as it goes, because
there are many times when the graphies program-
mer needs to enhance a display with text. Four lines
at the bottom turn out to be inadequate for many
purposes, though. The HIRES screen has good
enough resolution to draw text, and several pro-
grams are available that make it relatively easy to
place upper/lower case text on the HIRES screen
via graphics. This type of text can be drawn along-
side graphics to enhance graphic displays.

The Keyboard

The keyboard is the primary human input to the
Apple I (as opposed to storage media input such as
disk or cassette). Virtually all human alphanumerie
input is via the keyboard, and the MPU of the Apple

I1 spends the majority of its life cycling through a
little firmware routine called KEYIN. This routine
samples the keyboard to see if a key has been pressed
and increments a random number counter. It checks
the keyboard at a rate of about a quarter of a billion
times an hour. If anyone asks you what an Apple
does, you can answer “mainly, it checks to see if a
key has been pressed.”

Enough silliness. The keyboard input is upper-
case only and there are a total of 52 keys on it.
SHIFT keys shift between numerals and symbols.
While SHIFT-M, SHIFT-N, and SHIFT-P produce
codes which are interpreted as special characters,
other alphabetic characters produce the same code
whether SHIFT is pressed or not. The layout of the
keys is like it is on a teletype. This means that the
alphabetic and numeric characters are arranged
like those on a typewriter, but some of the symbols
are in rather strange places. Keyboard input to the
computer is ASCII. Since the keyboard input and
text output are both ASCII, it is fairly easy to dis-
play characters on the video as they are entered
from the keyboard. This is done by keyboard input
routines inthe Apple firmware. There are, however,
three screen displayable text characters which can-
not be input from the keyboard. They are left
bracket, backslash, and underscore.

Special function keys on the keyboard are ESC,
CTRL, SHIFT, RESET, REPT, RETURN, left
arrow, and right arrow. CTRL and SHIFT mod-
ify the ASCII produced by other simultaneously
pressed keys. RESET is tied to the 6502 RESET" in-
put. REPT causes any simultaneously held key to be
repeated about 10 times a second. ESC, RETURN,
left arrow, and right arrow produce ASCII which
must be interpreted by the controlling program. The
code for ESC is unique, but RETURN, left arrow,
and right arrow are identical to CONTROL-M,
CONTROL-H, AND CONTROL-U respectively.

In summary, the Apple II keyboard is notable
only for its limitations. These are: upper case only
alphabet, lack of dedicated cursor move keys, lack of
user programmable function keys, and lack of a
numeric entry keypad. It is a little league keyboard
on a big league computer.*

*The keyboard of the Apple Ile is greatly improved over the
earlier Apples. The author's negative overall opinion of the Apple
I1 keyboard applies only to Apple II computers that predate the
Apple Ile.

1-8 Understanding the Apple I

Other I/O

I/0 is Input/Output. Our point of reference for
this discussion is the motherboard, meaning that we
speak of input to the motherboard and output from
the motherboard. The peripheral slots give the
Apple an extremely versatile 1/0 capability, but
there is a good deal of additional I/O circuitry built
into the Apple. The keyboard input and video output
are the most significant motherboard 1/0. Addi-
tionally, there are some useful serial I/O ports.

Serial data is data on one line. This is opposed to
parallel data on more than one line (eight lines for
instance). To transfer eight bits serially, each bit of
information is placed on the same line one after the
other. This takes eight times as long as an 8-bit par-
allel transfer but requires only one connecting wire.
The keyboard is a parallel input. The video is not a
simple digital output but a mildly complex signal
output with a serial data component. In addition to
these I/O capabilities there are eleven serial 1/0
ports and four resistance sensitive timer inputs.

The speaker output is a serial output port con-
nected to aspeaker through an audio amplifier. The
cassette input and output are serial data transmit-
ted via audio phone jacks on the motherboard
accessible from the back of the case. They are
designed to connect directly to the earphone output
and microphone input of a common audio tape
recorder. Firmware routines in the Monitor ROM
read and write cassettes in Apple’s storage format.

Usage of 5 1/4 inch floppy disks is so prevalent
that cassette storage is rarely used by most Apple
owners. Floppy disk I/0 is not a built-in capability
of the motherboard, so the disk electronics are con-
tained in the drive and on a peripheral card called
the disk controller. Disk data is transferred in
parallel between the MPU and the controller and
serially between the controller and the drive. Con-
trol of the disk I/O requires an extensive program,
and the most commonly used program of this nature
is the DOS (Disk Operating System) supplied by
Apple Computer, Inc.

The other serial I/0 signals are TTL (Transistor
Transistor Logic) compatible. TTL is a very common
logic family of integrated circuits used for digital
logic. The logic devices on the Apple motherboard
are either TTL or interfacedirectly to TTL.* A TTL
output port will communicate directly with TTL
compatible devices. The cassette and speaker ports

*Most of the TTL chips in the Apple are LSTTL (Low Powered.
Schottky-Barrier diode clamped TTL). ROM. RAM, and the 6502
are TTL compatible MOS (Metal Oxide Silicon) chips.

are not TTL ports and really are not very useful for
transfering general digital information to anything
but a tape recorder or other audio device. TTL de-
vices operate with two voltages corresponding to the
two states of digital logic. The TTL low voltage is 0
to 0.8 volts. The TTL high voltage is 2.4 to 5 volts.
These are the two voltage levels which represent
digital information throughout the Apple.

There is a 16-pin DIP (Dual In line Package)
socket on the Apple motherboard which is generally
called the game I/O connector. A set of two paddles
or a joystick is normally connected here but there is
a capability for multiple uses. Four of the pins are
annunciator outputs. These are independently pro-
grammable TTL levels. The programmer can make
each level go high or low at will. A fifth TTL output
is called a strobe. This output is high unless a pro-
gram triggers it. It then goes low for just 0.5
microseconds (half a 6502 cyele) then returns to its
normal high state.

There are three TTL input ports on the game 1/0
connector which can be read by a program. Two of
these are normally connected to pushbuttons on the
Jjoystick or game paddles.

The paddles themselves are just potentiometers
(variable resistors). The joysticks are two potenti-
ometers inaspecial mechanical arrangement. These
potentiometers are connected through the game I/0
connector to two of the four resistance sensitive
timers. The way this works is that a program resets
the four timers all at the same time. Under program
control, the CPU can time and check when any or all
of the timers have timed out. The time for any timer
depends on its resistance input from the game I/0
connector which is varied by the person massaging
the joystick.

The game I/0 connector can be used for a lot more
than games, but not easily. The multiple I/O on one
socket implies that any device which plugs into the
socket should have a built-in extension socket so
other devices can use the remaining I/0 lines.
Unfortunately, no one designs them this way (see
Figure 1.2). Originally, Apples weresupplied with a
paddle set which was two paddles, each with a
pushbutton, connected to a single 16-pin DIP plug.
With these paddles plugged in, the remaining [/0—
four annunciators, two timers, one TTL in, and one
strobe out—becomes inaccessible. This seems to
have set a "no extension” design precedent which
has stifled the development of hardware for the
game I/O connector. Such products as programs for
four paddles or two joysticks don’t exist. If you want
to measure temperature at a timer input, you must

The Apple IlI—An Overview 1-9

JIITT 7777 4%,

Figure 12 How the Game |/O Plug Should Be Designed.

disconnect your joystick and plug in your tempera-
ture sensitive resistor, or buy a game I/0O extender.
Thus, in most installations, the game I/O connector
is merely a socket for two paddles or a joystick with
two buttons.

The Power Supply

Household power in the United States is 115 Volts
AC (Alternating Current). Most of the circuits in the
Apple require +5 Volts DC (Direct Current). A
power supply isadevice which converts AC power to
DC power. Televisions, stereos, computers and such
all have power supplies built in.

The power supply in the Apple generates +5VDC,
-5VDC, +12VDC, and -12VDC. These voltages are
distributed throughout the motherboard to any
device that needs them. Additionally, all four volt-
ages are available at the peripheral slots to supply
power to peripheral cards. Seme Apple IIs were
supplied with a 110VAC/220VAC switch for com-
patibility with foreign household power.

SUMMARY

The Apple II is a single board, 6502 based micro-
computer with built-in memory and video genera-
tion circuitry. The board contains eight peripheral
card slots which give the Apple II expansion capa-
bilities comparable to more expensive card cage
microcomputer designs.

The 6502 operates at 1.0205 MHz. IRQ’, NMI',
RESET’, and READY signals to the 6502 are con-
nected to the peripheral bus. The DMA’ signal
enables peripheral cards to isolate the MPU from
the rest of the motherboard. This enables control of
the Apple II from secondary MPUs or other DMA
devices in the peripheral slots. MPU control of the
various hardware features is via address decode.

The motherboard contains sockets and address-
ing for 49152 bytes of dynamic RAM. 12288 bytes of
firmware include Applesoft or Integer BASIC and a
system monitor containing a number of important
utilities.

140 Understanding the Apple li

The video output is compatible with a video
monochrome or color monitor. It can be used with a
home TV when connected through an inexpensive
modulator. Text is upper case only, 40 characters by
24 lines, 5 x 7 dot matrix representation. Graphics
modes include 40 by 48 LORES block mode in 15
colors, 140 by 192 HIRES point mode in six colors,
and 280 by 192 HIRES point mode in black and
white. Some capabilities exist for mixing text and
graphics. The video display in all modes is mapped
in certain areas of RAM. Video display circuitry
continuously scans one of four possible memory
areas while memory output is processed to generate
video. RAM addressing is time shared between the
system address bus and the video scanner. 6502
access to RAM alternates with video scanner access

so, while the 6502 operates at 1 MHz, RAM is
addressed at 2 MHz. In the process of scanning
memory for video output, the memory is refreshed.

In addition to I/O capabilities inherent with the
peripheral slots there are: a cassette input port, a
cassette output port, an on board speaker, four TTL
control outputs, one .5 microsecond TTL output
strobe, four resistance sensitive timer inputs, three
TTL inputs and a keyboard. The keyboard contains
52 key switches with uppercase only on alphabetic
characters.

The built-in Apple power supply provides +12V,
-12V, 45V, and -5V. These voltages are distributed
throughout the motherboard and to the eight periph-
eral card slots.

There are many signals distributed throughout
the Apple II, but the most fundamental data trans-
fer takes place on the data bus, and the most basic
eontrol information is distributed via the address
bus. To understand how the Apple and other micro-
computers really work, it is very important to
understand the bus structure. Fortunately, it's not
that hard to understand. The basic concepts of the
bus structure are within the grasp of nearly every-
one who uses a microcomputer.

The bus structure is a natural starting point for
learning what really goes on inside the Apple com-
puter. Discussing the bus structure will lead natu-
rally to the discussion of the other microcomputer
elements that the bus is connected to. First, though,
we need to find out what a bus is and how it is used.

COMPUTER BUSES AND THREE STATE
LOGIC

Logic signals in the Apple are distributed electri-
ecally via conductive paths on the motherboard.
When a number of signals are grouped functionally
and distributed throughout a microcomputer, they

chapter 2

The Bus Structure
of the Apple Il

are collectively referred to as a bus. Physically,
then, a bus is an electrical distribution of multiline
information. In the Apple, the address bus is a
sixteen line electrically distributed information
group, and the data bus is an eight line electrically
distributed information group.

Some devices connected to a bus are strictly
receivers of information. ROM is like this in its con-
nection to the address bus. Receivers respond to the
high/low information on the lines of the bus without
appreciably affecting the bus information. Electri-
cally speaking, the receiver input presents a high
impedance to the bus which enables other devices to
bring the bus lines high or low. If impedance is a
new word to you, it may help to think of high impe-
dance as high isolation.

Some devices on a bus must be information
transmitters capable of bringing the bus lines high
or low. If more than one information transmitter is
connected to a bus, each transmitter must be able to
disconnect itself from control of the bus by present-
ing a high impedance to the bus. Only one device can
control the bus at a time. Instead of two state, the
outputs of these devices are said to be three state or

2-2 Understanding the Apple I

OUTPUT
ENABLE

—

LINE DRIVER

Information is transmitted

7_

to the bus by a device
with tri-state outputs.

VAVAVA

LINE RECEIVER
An information receiver {14 =
presents a high
impedance to the bus. 1
p u <}
A
~
1
~
DIRECTION
CONTROL

LINE TRANSCEIVER
A bidirectional
connection to the bus
must present a high
impedance to the bus
when in receive mode.

3
—{

Figure 21 A Hypothetical Four-Line Bus.

Bus Structure of the Apple Il 2-3

ADDRESS BUS DATA BUS
AND R/W' e
Ry
MPU
ROM
——r W R
i e |
RAM !
R/W’

Figure 22 Basic Microcomputer Building Blocks.

24 Undefs‘rcnding the Apple I

tri-state. The three states are high voltage, low volt-
age, and high impedance. All information transmit-
ters to the data bus of the Apple are capable of
presenting these states to their bus connections. The
ROM output to the data bus is a typical three state
output.

A third type of device, capable of transmitting to
or receiving from a bus, is called a transceiver
(transmitter / receiver). The MPU, for instance,
receives (reads) data from and transmits (writes)
data to the data bus via an eight bit transceiver.
While the MPU is reading, the transceiver presents
a high impedance to the data bus so the addressed
device can place data on the data bus. While the
MPU is writing, the transceiver controls the data
bus.

Figure 2.1shows a hypothetical four line bus. The
symbols shown are schematic representations of a
tri-state linedriver, aline receiver, and a line trans-
ceiver. A triangle represents a single line driver.
Triangles with a control line coming in from the side
are tri-state line drivers. A little circle at a control
input to a triangle means that the input is active

MPU
ADDRESS j
BUS BUS
ADDRESSED
DEVICE

A READ CYCLE

when its voltage is low. Here is a truth table for the
tri-state line driver shown in Figure 2.1:

OouTPUT

INPUT ENABLE OUTPUT
Any Low High Impedance
High High High
Low High Low

The control line either enables the high/low output
or forces the output to high impedance. The high/-
low output, when enabled, follows the input.

It can be seen that the output enable controls of
the various information transmitters are the key to
cohesive control of the bus. For a bus with many
possible information transmitters, like the data bus
of the Apple, there has to be some intelligent man-
agement of the various tri-state output enables. We
will see shortly how this is accomplished. In the
following discussions, remember that when adevice
like a ROM chip responds to an address prompt by
placing data on the data bus, this is accomplished
via an output enable to the tri-state outputs of the
ROM chip.

MPU
(DATA
BUS BUS
ADDRESSED
DEVICE
A WRITE CYCLE

Figure 23 Communication on the Bus System.

Bus Structure of the Apple Il 2-5

Figure 2.2 shows a highly simplified diagram of
the bus structure of the Apple II. There are two
distinct multiline signal paths: the address bus and
the data bus. The R/W' line (Read/Write control) is
shown separate but in the same color as the address
bus. R/W’ can be thought of as an extension of the
address bus controlling the direction of data flow on
the data bus. Communication takes place on every
6502 cycle between the MPU and an addressed
device. Data flows between the MPU and the device
in a direction determined by the R/W’ line. The
MPU controls the R/W’ line and the address bus.

Figure 2.3showsthe two types of bus access which
occur in the Apple II. In a read access, the MPU
places an address on the address bus and reads the
data bus. In a write access, the MPU places an
address on the address bus and places data on the
data bus. This establishes a system of data bus con-
trol that had to be implemented in the design of the
Apple. The control system works like this:

1. When the R/W’ line is low (write access), all
inputs to the data bus are disabled except the
MPU.

2. When the R/W’ line is high (read access), all
inputs to the data bus are disabled except the
device which is addressed.

This system concept keeps traffic flow orderly and is
2 basic feature of microcomputer design.

The only remaining points to be made about buses
involve semantics. The peripheral slots are some-
times referred to as the peripheral bus or the
Apple bus. In fact, the wiring of the slots fits our
deseription of a bus as a functional group of distrib-
uted signals. The slots are a bus whose distributed
signals include the address bus, the data bus, and
other signals. Up to this point, the discussions have
avoided calling the slots a bus only to avoid confu-
sion between the card cage bus and the more basic
address bus and data bus. The connections to the
RAM and ROM chips form two more distributed
signal groups that can accurately be referred to as
the RAM bus and the ROM bus. This book will
eontinue to use the word "bus” to refer to the address
bus, the data bus, and the extensions of these two
basic communications paths. The peripheral bus,
RAM bus, ROM bus, and other distributed signals
will be referred to using other terminology.

By this time the reader should understand the
concept of the bus as a communication path. We will
now move on to how microcomputersin general and

Apples in particular perform their functions in a
bus environment.

THE PIGEONHOLE COMPUTER

There is an old analogy for understanding digital
computer operation which you don’t see often enough
in personal computer instruction literature. It pos-
sibly is not that helpful for understanding BASIC
programming, but it is very much like the way a
microcomputer works.

The analogy goes like this. A computer is like a
gigantic row of pigeonholes with pieces of paper in
them. Each piece of paper has an instruction on it.
There is a2 man who goes to each pigeonhole, one
after the other, reading the instructions and doing
what they say. The man always gets the next
instruction from the next pigeonhole in the row
unless an instruction tells him to go to some other
pigeonhole. .

That's the pigeonhole computer. The man is exe-
cuting a stored sequential program. The man is the
microprocessor. The row of pigeonholes is computer
memory. The instructions are the program. The
microprocessor is smart enough to sequence through
memory and dowhat it’s told, but it has to be told. It
has to have a program.

THE MPU, RAM, AND ROM

The microprocessor is the engineering marvel
which made all the home computers possible. The
6502 MPU is what executes the programs in the
Apple. Viewed from the outside, its capabilities
include manipulation of the address bus and R/W’
(Read/Write’) control, writing data to the data bus,
reading data from the data bus, logical and arith-
metic manipulation of data, and response to various
control inputs. These all add up to execution of a
sequential program that comes from the data bus.

You see, the man from the pigeonhole computer
resides inside the MPU. The little guy has got this
control line called R/W’ and he can put any address
from 0 to 65535 on the address bus. He uses the R/W’
line to tell the outside world whether he's reading
from or writing to the data bus. He uses the address
bus to tell the world where he wants the read data to
come from and the write data to go to. There are
plenty of things this man can do, but his most favor-
ite thing in the whole world is to inecrement the
address bus and read the results on the data bus.
While he’s reading, this little workaholic interprets

2-6 Understanding the Apple Il

the data he reads as instructions. If there is an out-
sidedevice that is responding to his address prompts
with a valid sequential program, he will flat out
execute the program. This means that you ecan
exploit his insatiable reading appetite and get him
to do what you want if you're smart enough. That’s
all any microcomputer designer ever really expects
from an MPU.

The key requirement above was an outside device
responding to the address prompts. This device is
memory: ROM or RAM. All of the addressing on the
Apple address bus is parceled out to various devices.
RAM gets addresses $0-$BFFF. ROM gets $D000-
$FFFF. The peripheral slots are controlled by
$C080-§CFFF. $C000-$COTF is divided up among
the keyboard and cassette and all the other built-in
devices, If the 6502 happens to be executing a pro-
gram in the $D000-$FFFF range, then ROM is
responding to the addressing with a series of data
which the 6502 is interpreting as a program. If the
ROM program tells the MPU to store a byte of data
at $400, the MPU takes a microsecond to bring R/W’
low, set the address bus to $400, and place the perti-
nent data on the data bus. The data is accepted by
address location $400 which is in RAM. That
pigeonhole of RAM owns address $400 just as sure
as your mailbox has a unique mailing address.
Inside RAM, inside ROM, all along the address bus,
address decoding takes place every 6502 cycle to
enable only one of 65536 possible addresses.

The 6502 is continually executing a program
while power is applied. If it gets lost and tries to
execute a program where no program exists, it
interprets whatever jibberish is appearing on the
data bus as a program and executes it anyway. An
unstoppable program-executing machine like this
has to have a starting point when you turn the com-
puter on. It also needs a way to start from scratch
when it gets lost. This starting point is the RESET”
input to the 6502.

The RESET' input to the 6502 goes low when the
RESET key is pressed, when a peripheral card
makes it go low, or when the computer is turned on.
Any one of these occurrences makes the 6502 stop
what it’s doing, load the address of the next program
step from locations $FFFC and $FFFD in ROM,
and start executing at its special address. The con-
tents of $FFFC and $FFFD are the low and high
bytes of the reset vector.* The reset vector in the
Autostart ROM is $FA62, the address of the reset

*Two 8-bit RAM locations are required to store a 16-bit 6502
address. The 6502 fetches a 16-bit address from an adjacent pair
of memory locations. The less significant byte of the address is
fetched from the lower memory location, and the more signifi-
cant byte is fetched from the higher memory location.

routine. This is an essential feature of microcompu-
ter design—the power-up routine in ROM. You
might say it guarantees that the 6502 always gets
out of bed on the right side.

The other routine which a mierocomputer always
has in ROM is a routine to load data from a storage
device into RAM so that execution of saved pro-
grams is possible. The Apple, however, has much
more than the bare necessities in its 12K of ROM
space. The naked Apple is a cassette based system
in which BASIC in ROM and a system monitor
in ROM prevent unnecessary user aging while
waiting for the computer to become operational
at turn on. BASIC in ROM was an important
development in the popularizing of cassette based
personal computers.

ADDRESS DECODING

Inside RAM and ROM, some pretty sophisticated
address decoding goes on so that data communica-
tion is with the correct memory location. Each RAM
chip in the Apple II has a capacity of 16384 individ-
ually accessible bits of information. Needless to say,
much of the eircuitry in the memory chips is devoted
to decoding the address input.

Like memory, but on a much smaller scale, the
Apple motherboard must decode addresses to con-
trol its various functions. As has been stated pre-
viously, the addressbusand R/W’ line are the way in
which the 6502 commands the Apple devices to do
things. There is a group of logie circuits on the
motherboard which detects certain addresses or
address ranges, then outputs control signals to var-
ious functional areas of the Apple. The following
types of control are performed by address decode:

1. Gating(enabling)of information to the data bus,
including data from serial inputs.* :

2. Direct control of serial output lines.

3. Control of peripheral slots.

4. Video mode control.

Control by address decode gives cohesion to the bus
structure.

The address and control funetions of the address
bus are not separate entities but different ways of
looking at the same thing. Addressing memory loca-
tion $95FF can be thought of as controlling that
memory location. Similarly, control of the cassette
output line may be thought of as addressing it. The
address bus could be called the control bus.

*When a digital signal controls the passage of information in a
logic device. it is said to gate that information. Gating of infor-
mation is like opening or closing the gate of a fence to control
passage through the gateway.

Bus Structure of the Apple |l 2-7

LOADING AND SAVING MEMORY DATA

Temporary programs and working data in a
microcomputer reside in RAM while being used. An
external storage device is required to keep this dig-
ital information while not in use. The two storage
media in common use with the Apple Il are 5 1/4”
floppy disks and audio cassettes.

Comparing the two, floppy disks are faster, more
versatile, easier to use, and more expensive. There
are a few applications for which cassette may be
better suited, but generally, the disk system is far
more usable. The cassette interface is built into the
motherboard, but disk drives plug into a peripheral
slot (usually two drives per slot maximum).

Figure 2.4 is the partial diagram of the Apple’s
bus structure, expanded from Figure 2.2 to show
egassette and disk input/output operations. The thick
red and green lines represent the multiple lines of
theaddress bus and the data bus. R/W' is considered
to bedistributed with the address bus. The MPU, as
before, is in control of the address bus.

Data transfer between RAM and the cassette and
disk devices is through the MPU. Data is loaded
from the transfer source into the MPU, then stored
a1t the transfer destination from the MPU. Disk I/0O
data and cassette input data are transferred via the
data bus, but cassette output data is not.

Cassette /O
Asshown by Figure 2.4, the cassette input is con-
mected to D7 of the data bus* via the serial input
multiplexor. Multiplexing isthesharing of one line
by more than onesignal. All the motherboard serial
inputs will soon be seen to be switched on toone data
line, D7, by the serial input multiplexor. For now,
suffice it to say that $C06X on the address bus is
decoded to gate any of the serial inputs to D7, and
SC060 in particular is used to select the cassette
mmput.** This allows the MPU to read the cassette
input like memory. The cassette input mechaniza-
“tion is similar to ROM. A device responds to its
address on the address bus by placing data on the
data bus. In this case, however, data is placed on
only one line of the data bus. The MPU receives data
from the data bus as it does when reading data from

*In ["'nderstanding the Apple II the lines of the data bus are
referred to as DO through D7, and the lines of the addressbus are
referred to as A0 through A15. D7 is the line which earries the
mos=t significant bit of data on the data bus. A15 is the line which
earries the most significant bitof the address on the address bus.

**The 2C06X notation is used to indicate the $C060-$CO6F
address range.

memory, and the controlling program ignores every-
thing but D7. The program processes the D7 infor-
mation, extracts the transfer data, and stores it in
RAM.

The fact that the cassette output data is not trans-
ferred via the data bus is a surprise to many people.
Most of us would expect a serial output to be written
out on one of the lines of the data bus as if we were
writing to memory. But addressing the cassette
output port merely toggles the output line, meaning
it changes the high/low state of the output line to the
opposite state. In other words, the programmer does
not write data to the cassette by telling the output
line to go high or low. Rather, he either tells the line
to change states or refrains from telling the line to
change states at a timed interval. Any address bus
state in the $C02X range can be used by programs to
toggle the cassette output line, but the program-
ming convention is to use $C020. A point to
remember: a serial output can be controlled by the
address bus, and the data bus doesn’t have to be
involved.

Reading or writing to the cassette output port isa
control access as opposed to a data access. The MPU
reads from the data busor writes to iton every 6502
cycle, even in a control access. The programmer
performs a control access with a normal read or
write instruction, but the data that is read and
written is irrelevant and ignored. This is why state-
ments like "SPEAKER=PEEK(-16336)" are made
in BASIC to control the speaker and the data is
ignored. The programmer is making a control
access to -16336 ($C030, the speaker port), and the
data is irrelevant.

Disk I/O

The disk controller, which resides in a peripheral
slot, responds to the address bus/data bus environ-
ment much like RAM. During disk input the con-
troller responds to a read access from the MPU by
placing a byte of data on the data bus. During disk
output the controller responds to a write access by
accepting a byte of data from the data bus. The
addresses of the input port and output port depend
on which slot the disk controller is in. If, as is nor-
mally the case, the disk controller is in slot 6, the
input port address is $SCOEC and the output port
address is $SCOED. Besides $COEC and $COED,
other address commands perform the functions of
motor control, drive selection, read/write configu-
ration, and head positioning. These commands are
decoded on the motherboard and controller. The
motherboard circuits detect the $SCOEX range on
the address bus and activate asignal that tells Slot 6

2-8 Understanding the Apple Il

it is being accessed. The controller decodes A0
through A8 of the address bus to determine which of
16 possible commands it is being given.

The actual programming of disk I/0 is very com-
plex, requiring timed intervals, data encoding, and
extensive software housekeeping. Regardless of
this, all MPU control of the disk is via 16 address
commands on the address bus, and all data transfer
is over the data bus.

There is no motherboard ROM routine to load
programs from a disk drive when the Apple is first
turned on. A 256 byte program does exist on the
controller card, accessible at addresses $C600-
$C6FF (assuming slot 6), which loads the extensive
Disk Operating System (DOS) from disk to RAM.
After power up, the motherboard firmware turns
control over to this controller firmware to get the
DOS up and running.

THE SECONDARY BUSES

Up to this point only the address bus and data bus
have been discussed, and the bus diagrams have
shown functional areas connected to these two buses.
In actuality, both the RAM chips and the MPU are
connected to the address bus and data bus through
isolating devices. This creates secondary buses
which carry address (control) information and data,
but which are not connected directly to the two
primary buses. RAM circuitry, in particular, is
much more complex than has been represented. The
addressing and data flow shown in Figures 2.2 and
2.4 is accurate, but substantial processing details of
the address input and data output of RAM were left
out so that the essential points of MPU access to
RAM could beclearly made. We are now ata pointin
our discussion where these complexities should no
longer be ignored.

Figure 2.5 is the Apple’s bus structure, expanded
from Figure 2.4 to show the video scanner, video
generator, and full I/O capability. It can beseen that
the secondary buses are not major distribution net-
works like the address bus and data bus. They are
relatively minor connecting paths for address and
data information that must be distinguished from
the address bus and data bus. Connections to MPU
address and data, keyboard data, RAM output data,
and latched RAM output data are basically exten-
sions of the address bus and data bus. The video
scanner output and multiplexed RAM address bus
are more their own entities. The scanner output is
addressing information unrelated to the address

bus, and the multiplexed RAM address bus alter-
nately contains information from the address bus
and scanner output.

DMA and the MPU

The MPU address, R/W’, and data connections
are connected to the address and data busviaa 17 bit
tri-state linedriver and an eight bit line transceiver.
The main purpose for these devices is to enable the
CPU todrive (supply required signal voltages to) all
the circuits on two buses, including a possible variety
of peripheral cards. A second purpose of the address
driver is to give the MPU a tri-state connection to
the address bus. This is necessary to isolate the MPU
from the address bus during DMA operation, be-
cause the 6502 address and R/W’ outputs are not
tri-state. DMA (Direct Memory Access) is achieved
from a peripheral card when the card pulls the
DMA’ line low. This DMA capability is actually a
direct bus access which gives the peripheral card
command of the entire Apple. Pulling the DMA’ line
low forces the 17 bit line driver to high impedance,
stops the clock to the MPU, forces the MPU data
terminals to input mode, and forces the eight bit
transceiver to input from the data bus. Unless it is
stated otherwise, our following discussions assume
that no peripheral card is performing DMA. This
means that the normal situation exists in which the
MPU controls the data bus during write cycles and
always controls the address bus.

RAM Address Multiplexing and
Data Distribution

Besides the MPU address and data connections,
the other secondary buses shown in Figure 2.5
are concentrated around RAM. This complexity
surrounding RAM is a result of two factors: the
transparent video scan of memory and the natural
complexity of addressing 16K dynamic RAM.

We don’t want to get too steeped in RAM address-
ing right now, but the basic situation is that there
are not enough pins on a 16K dynamic RAM chip to
address 16K memory cells simultaneously.* The
RAM is addressed with a one-two punch. First, half
of the address information is input to RAM where it
is saved. Then the second half of the address infor-
mation is input and the data access takes place. Both

*Throughout this book the word "cell” will be used to refer to a
unit of memory that stores one bit of data. The word "location”
will be used to refer to eight associated memory cells that hold
one byte of data in the Apple I1.

Bus Structure of the Apple Il 2-9

ADDRESS BUS PLUS R/W' DATA BUS

DISK
stot| [stot| [sLoT| ([sLOT sLoT| |sLoT l:‘l;‘E SLOT
0 1 2 3 4 5 SLOT 7
6
' W R
—-—
-
ROM
T
RAM
AD-AZ2
. CONTROL TO ALL BLOCKS
popRess| ™ COEX ENABLE TO SLOT 6 CASSETTE INPUT —{ seriaL] o7 —
DECODE [, CBXX ENABLE TO SLOT 6 INPUT |
X CASSETTE OTHER SERIAL —={ MUX
TOGGLE— o, TpuT INPUTS

CO6X SERIAL INPUT ENABLE

Figure 24 The Apple Il Bus Structure Showing Disk, Cassette, and Serial 1/O.

2-10 Understanding the Apple ||

ADDRESS BUS PLUS R/W’ DATA BUS
= — - -
MPU

SLO Lo SLOT| |SLO SLo LO L0 L0

0 1 2 3 4 5 6 7
e
ROM
RAM | —o ™ j—
— |aooRess RAM KEY
ity BOARD
VIDEO RAM/
SCAN- KYBRD o
NER DATA
Ty RAM | __ MUX
DATA
LATCH
VIDEO VIDED
— L~ OUTPUT
GEN SIGNAL
ROM ENABLES' —
= 1/0 STROBE’ =1 auAap =
> |/0 SELECTS' S:Egté; —{ TIMER SERIAL
> DEVICE SELECTS' PIRPLER. =of ono— IN |l
= KEYBOARD ENABLE' BUTTON 1 —~f MUX
L ooress— KEYBOARD STROBE RESET’ CASSETTE IN —o
pecope [~ SCREEN CONTROL
— SERIAL INPUT CONTROL
—= CASSETTE OUTPUT B AooressBUS [ADDRESS BUS EXTENSION
= SPEAKER OUTPUT
— AnNUNCIATOR ouTPuTs (BB DATA BUS [pATA BUS EXTENSION
= (040 STROBE'
— TIMER TRIGGER B vioeo scan

Figure 25 Secondary Address and Data Connections Extend the Address Bus and Data Bus.

Bus Structure of the Apple |l 241

the first half and the second half of the address are
input on the same seven pins of RAM, so fourteen
bits of information from the address bus must be
multiplexed onto seven lines to effect the one-two
‘punch. This multiplexing is accomplished in the
RAM address multiplexor and the seven line out-
Ft of the multlplexor is the multiplexed RAM
s bus, shown in pink in Figure 2.5. Inciden-
tally. the other two bits of information from the 16
- it address bus are used to select one of three possi-
Bble rows of RAM chips.
‘.I"he two halves of dynamic RAM addressing are
ed to as the ROW address and the COLUMN
3 5. This refers to conceptual rows and columns
‘of memory cells inside the RAM chips, not the rows
“and columns of RAM chips on the motherboard.

- The RAM addressing would be complex enough,
But in the Apple, the RAM address lines are doubly
maltiplexed. Both the video seanner and the MPU

mst access RAM, so during every 6502 cycle, first
the video scanner output, then the address bus must
itched on to the multiplexed RAM address bus.
th access is accomplished in two halves (the one-
g=opunch). The RAM address multiplexing is cycli-

gl. resulting in the following repeating pattern of
to the multiplexed address bus:

I =10

T1 - Video ROW address
T2 - Video COLUMN address
T3 - MPU ROW address
T4 - MPU COLUMN address

The data bus is connected to the RAM data inputs
ing to RAM, but the RAM output is routed
gh an eight bit latch and a tri-state data multi-
to the data bus for reading by the MPU. The
data is latched (locked—held constant) twice
mery 6502 cycle, once from the scanner access and

pe from the MPU access. Latched data is routed
‘the video generator for video processing and to

hf.l bus through the RAM/keyboard data

Mexor.

pard Input
g a 6502 write cycle, the RAM data latch
be isolated from the data bus so the MPU can
the lines of the data bus high or low without
The keyboard input, like the RAM
eh. is not tri-state and must be isolated from the
fat2 bus when it is not being accessed. The dual
of multiplexing and isolation is performed
RAM/keyboard data multiplexor which isa

s serence.

tri-state device. This multiplexor is switched off
during 6502 write cycles and when neither RAM
nor the keyboard is being accessed. The rest of the
devices on the data bus—ROM, the serial input
multiplexor, and the MPU transceiver—all have
three state outputs.

The keyboard input, like the latched data from
RAM, is eight bit parallel latched information. The
keyboard responds to its address like ROM, by plac-
ing data on the data bus, so the latched input can be
read any time just like memory. The MSB (Most
Significant Bit—K7 of K0-K7) is the state of the
keyboard strobe flip-flop that tells the MPU when
any key has been pressed. The keyboard read
address is $C00X, and the strobe flip-flop reset
address is $C01X.

Video Scanning

The video scanner is not connected to the address
bus and is therefore not controllable by the MPU.
The scanner is completely isolated from program
control and shares RAM on an equal footing with the
6502. The scanner is like a second MPU, but much
simpler than an actual MPU. In microcomputer
jargon, it is a built-in DMA device performing
simultaneous direct memory access with the MPU.

Even though it is a read access as opposed to a
write access, video scanner access to RAM is of a
different nature than MPU read access. The MPU
reads data from RAM, meaning that the MPU
addresses RAM, and data from RAM comes back to
the MPU. In contrast, when the video scanner
addresses RAM, the data from RAM does not come
back to the scanner. The data goes out, instead, to
the video generator for video processing and to the
data bus, when R/W’ is high, for processing by
peripheral cards. As a result, this book does not
refer to the video scanner as reading data from
RAM . Instead, the video scanner is said to drive
data out of RAM to the video generator and thedata
bus.

Other than the fact that the video secanner and
MPU both address RAM, their only operational tie
is timing. Just as the 6502 executes a machine cycle
once every microsecond, the video scanner changes
its memory address and accesses RAM once every
microsecond. Logically enough, the timing for the
video scanner and MPU originate from the same
source. In faet, all timing on the motherboard origi-
nates at thesamesource. The timing involved in the
sharing of RAM is quite elaborate and is covered in
the chapters on timing generation and RAM (Chap-
ter 3 and Chapter 5).

212 Understanding the Apple |

The output of the video scanner is routed to the
video generator, as well as the RAM address multi-
plexor. In the video generator, scanner data is used
to make up television sync signals and to locate
which part of a text letter or LORES block is being
scanned.

Serial I/O and Address Decode

Figure 2.5 shows a full summary of the control
functions decoded from the address bus of the Apple
I1. Most of the control functions are concerned
directly or indirectly with I/O features.

It can be seen that the other serial I/0 is imple-
mented very much like the cassette I/0. Speaker,
annunciator, and C040 STROBE' output lines are
controlled directly by address decode in a process
which ignores the data bus. The speaker is a toggle
output like the cassette output. The programmer
can toggle the high/low state, but he never knows
whether the state is high or low. The annunciators
areon/off outputs which can be brought high or low.
For example, $C058 makes ANNUNCIATOR 0 go
low, and $C059 makes ANNUNCIATOR 0 go high.
The C040 STROBE' simply goes low for .5 micro-
seconds any time $C040 is on the address bus, then
returns high.

The serial inputs are all input through the serial
input multiplexor to line D7 of the data bus. Any
address in the $C06X range gates the serial input
multiplexor to the data bus. A0, A1, and A2 from the
address bus are connected directly to the serial
input multiplexor and select from four timer inputs
(paddles), three TTL inputs (pushbuttons) and the
cassette input.

Other address decoded signals gate the keyboard
and ROM to the data bus and control the peripheral
slots and screen modes. Sereen mode control is
implemented by translating the video scanner out-
put to appropriate RAM addressing in the RAM
address multiplexor and by processing RAM data
output as text, LORES, or HIRES in the video
generator.

Some readers may have noticed that there is no
RAM enable signal coming from the addressdecode
block of Figure 2.5. There has to be a RAM enable
signal which tells the RAM/keyboard data multi-
plexor when to enable RAM data to the data bus.
There isa RAM enable signal, all right, called RAM
SELECT". It is not decoded directly from the
address bus, however. RAM SELECT" is decoded in
the RAM address multiplexor from the state of the
address bus and R/W' during MPU access to RAM,
and it is always active during scanner access to
RAM when R/W'is high. As a result, data resulting

from the secanner access to RAM is sometimes pres-
ent on the data bus. This interesting feature is
further discussed in Chapter 5, but for now, it is
much more important to note that when the MPU
performsaread accessto RAM,the RAM SELECT’
signal is activated to gate the output of the RAM/
keyboard data multiplexor to the data bus. Thus,
regardless of direct memory access by the video
scanner, the basic response of memory to a read at
its address range is intact. The MPU puts the
address on the address bus, and memory responds
with data on the data bus.

THE COMPLETED BUS STRUCTURE

This chapter has presented a series of diagrams of
the bus structure, building in complexity and com-
pleteness as we progressed from basic ideas to
detailed structure. The final diagram in this series
isa foldout at the back of the book entitled "The Bus
Structure of the Apple I1.” This diagram adds little
to Figure 2.5 by way of explaining Apple operation,
but it does show some final details about the address
bus and data bus connections to ROM and RAM.

ROM is seen to be implemented in six chips, each
storing 2048 bytes of firmware. Externally, ROM is
much simpler than RAM with straightforward
addressing from the address bus and tri-state out-
puts to the data bus. The 2048 bytes of each chip are
addressed by the low order eleven bits (A0-A10) of
the address bus. The eight bit output of each chip is
gated to the data bus by a signal from address
decode which signifies that an address in that ROM
chip’s address range was detected on the address
bus. The six ROM chips are normally referred to by
their base address, thus we have the D0 (for $D000),
D8, E0, E8, F0, and F8 ROMs.

Each RAM chip is organized 16Kx1. This means
that each RAM chip has 16,384 1-bit memory cells,
one data input line, and one data output line. 6502
microprocessor structure requires that memory be
organized for eight bit parallel data transfer, so
eight chips provide 16,384 8-bit memory locationsin
a 6502 system.

To make up the 49,152 bytes of Apple Il RAM, 24
chips are laid out on the motherboard in three rows
of eight chips. Each row is the equivalent of a 16
kilobyte RAM device with eight input lines and
eight output lines, and only one row is enabled dur-
ing a RAM access depending on the address range of
the access. Row C is $0000-$3FFF, row D is $4000-
$7FFF, and row F is $8000-$BFFF.

Within each row, each chip is associated with a
separate line of the data bus. For example, inrow C,
chip C10 is associated with line 7 of the data bus.

Bus Structure of the Apple Il 2-43

Chips D10 and E10 are also associated with line 7.
Line 7 of the data bus is connected directly to the
data input of chips C10, D10, and E10. The tri-state
outputs of C10, D10, and E10 are tied together and
‘routed to the bit 7 input of the RAM data latch. The
latched bit 7 is routed to line 7 of the data bus when
‘the MPU reads RAM and at other times detailed in
‘the chapter on RAM. Distribution of the other lines
RAM data is identical to that of line 7.

This completes the discussion of the bus structure
f the Apple. The author feels that study of the bus
cture diagram at the back of the book is very

important in the effort to understand the Apple 11
computer. It is hoped that the reader can become
comfortable with the concepts of information flow
within the bus structure, because this chapter is the
foundation upon which all that follows is built. The
remaining chapters are devoted to a more detailed
discussion of the various functional areas of the
Apple II, beginning with the important subject of
timing. Understanding these detailed discussions
will be much easier if the reader attempts to visual-
ize how each area performs its functions within the
bus structure.

o
HOHO0HOL

Most operational aspects of the Apple IT have now
enm discussed within the context of the bus struc-
. However, this discussion has left out one of the
de II's most important operational aspects—
sing. Timing synchronizes everything that goes
m the Apple. To discuss it, we must get into real
ts and bolts detail about computer operation.

Up to this point, the subject matter of Under-
' ing the Apple IT has been of a general nature.
attempt was made in Chapters 1 and 2 to explain
finer points of Apple II operation. Having
ped understanding of the Apple’s bus structure,
are largely aware of the methods of communica-
2 and control that take place in this computer.
s following chapters will build on this foundation
snderstanding, examining and discussing the
giled features of all functional areas of the Apple

e perceptive reader is probably getting the mes-
= that the going is about to become stickier. This
£ attempts to explain as much as possible about
wperation of the Apple in understandable En-
& There comes a point, however, beyond which
o illustration is achieved only with such techni-
Sools as timing diagrams, truth tables, logic dia-

s and schematice diagrams. One of the goals of

chapter 3

Timing Generation

- and the Video Scanner

Understandingthe Apple 111s to assist those readers
who desire to do so to analyze the operation of the
Apple Il in depth. For this reason, some technically
oriented analysis aids are presented in this chapter
and succeeding chapters. These technical aids will
be accompanied by technical language. Every per-
son reading these words is capable of understanding
the technical sections, but some readers may not
wish to, and others will find it a struggle. Every
effort has been made to assist all readers in achiev-
ing fullest possible understanding from the least
possible effort.

By way of warning, the details of some functional
areas are just plain difficult, but most of the areas
are pretty painless.* In particular, most of the com-
plexity of the Apple is concentrated in the RAM and
RAM address multiplexor circuitry. Some other
complicated circuitry, like the internal workings of
the MPU, will not be discussed at all. Besides the
RAM circuitry, the most difficult topics probably

*Even though it is not part of the motherboard circuitry, disk I/0
is the subject of a chapter of Understandingthe Apple I1. Readers
intrepid enough to tackle this chapter will find disk [/O tobe a
complex but interesting area of study.

3-2 Understanding the Apple |l

s
"
—— V3
_'_D' 0
TIMING VIDEO [:;
GENERATOR SCANNER| e
=
A
—_—
T
> —— H3
S
F—H1
—— HO

Figure 3.4 Functional Flow: The Timing

are the details of timing and video generation. Tim-
ing comes next, so put on your overshoes—we're
going wading.

TIMING OVERVIEW

The important timing signals in the Apple II all
originate at a small group of circuits called the tim-
ing generator. You should appreciate this when
studying the Apple, because it makes a difficult job
easier. Interrelated digital timing originating from
multiple sources can scramble your brains. With a
single timing source we can assimilate the timing
sequences and then apply them to the various fune-
tional areas in the following chapters.

Timing signals are distributed to all areas of the
Apple, but the Apple’s timing requirements are
determined primarily by RAM usage. RAM is
accessed alternately by the 6502 processor and the
video scanner. Executing a stored sequential pro-
gram and generating a color television video signal
are two entirely different tasks, but the two tasks
are synchronized in the Apple. As we shall see, exe-
cution of this double task dictates certain facts of life
about Apple timing.

Generator and the Video Scanner.

The timing generator controls the timing and
affects all areas of the Apple. By contrast only one
external area affects the timing generator. That
area is the video scanner. The timing feedback
from the video scanner elongates one system clock
period at the end of each horizontal television scan.
This elongation is necessary to keep colors consis-
tent from scan toscan. It also means the clock period
of the 6502 is not constant but is elongated on every
65th cycle. This book will refer to this elongated
machine cycle as the long cycle. Because of the
feedback from the video scanner to the timing gen-
erator, the two areas are covered in this single
chapter.

Apple timing originates with a 14.31818 MHz
erystal oscillator. The output of the oscillator, re-
ferred to as 14M, is a voltage which switches from
low to high and back very close to 14,318,180 times
every second. The reason for using 14.31818 MHz
instead of 14 MHz is that 14,318,180 Hz divided by
four is 3,579,545 Hz, the exact frequency at which
color information is passed in a television set. All of
the distributed timing signals are clocked by low to
high transitions of the 14M clock, so the exact fre-
quencies at which events occur in the Apple are
determined by a television signal specification. The

Timing Generation and the Video Scanner 3-3

spproximate frequencies at which some functions
BoCur are:

APPROXIMATE
FUNCTION FREQUENCY

8502 Cycle 1 MHz
Nideo Scanner Increment 1 MHz
‘Address Bus Access 1 MHz

RAM Access 2 MHz
COLOR REFERENCE 3.5 MHz
Video Output 3.50r 7 MHz

il of these frequencies are determined by outputs
the timing generator.

HE TIMING SIGNALS

This section is a very brief description of the tim-
rsignals which are the outputs of the timing gen-
or. All these signals aredescribed in detail later
 this chapter.

PHASE 0 is the 1 MHz clock input to the 6502. It
0 is used to define when an MPU address is valid,
i whether the MPU or the video scanner is
fdressing RAM.

PHASE 1 is PHASE 0 inverted or PHASE 0'.
COLOR REFERENCE is a 3.5 MHz clockpulse
®ich is used to make up the color burst portion of
e video output. The color of any Apple video is de-
mined by its phase relationship with the COLOR
EFERENCE signal.

3M is a 7T MHz clock used in the shifting of text
g HIRES video. It is also available at the periph-
al slots.

14M is the output of the Apple’s 14 MHz clock-
se oscillator. It is used in timing generation and
the shifting of LORES video. As mentioned in the
IMING OVERVIEW, 14M is the ultimate source
f Apple timing.

RAS'(Row Address Strobe) clocks ROW address
farmation to RAM and clocks RAM data output to
% data latch. It occurs twice every 6502 cycle, once
r MPU access and once for video scanner access.
L AS' (Column Address Strobe) clocks COLUMN
fdress information to RAM. CAS’ is used in the
to select one of three rows of RAM chips with
A3 being routed to only one row per access. CAS’
gurs twice every 6502 cycle.

{Address Multiplex) is used in the address
saitiplexor to select ROW or COLUMN informa-
at the RAM address multiplexor. AX occurs
se every 6502 cycle.

Q3 is a 2 MHz clock used only in timing genera-
tion. It is available at the peripheral slots.

LDPS’ (LoaD Parallel in/Serial out register) is a

video timing term that increments the video secanner
and loads text patterns into a register for the pur-
pose of shifting the information serially to the video
output. LDPS’ occurs once every 6502 cycle.
LD194 (LoaD LS194) is a video timing term which
loads graphics data from RAM to two 74L.S194 uni-
versal shift registers for video processing. LD194
ocecurs once every normal 6502 cycle and twice dur-
ing the long cycle.

APPLE FREQUENCIES

It is very hard to make precise statements about
the frequencies of some signals in the Apple. This
is because of the clockpulse elongation which oc-
curs every 65th 6502 cycle. 14M, TM, and COLOR
REFERENCE are not affected by this elongation.
PHASE 0, PHASE 1, Q3, RAS’, CAS’, and AX are
affected.

If not for the long eycle, the frequencies of all tim-
ing signals could be computed by dividing 14,318,180
by 14, 7, 4, 2, or 1. In actuality, this works for com-
puting the fixed frequencies. 14M occurs at 14.31818
MHz; TM occurs at 7.15909 MHz; COLOR REF-
ERENCE occurs at 3.579545 MHz. The 1 MHz and
2 MHz signals are less straightforward.

The period of time required for a 14.31818 MHz
signal to go through a complete high/low cycle is
1/14318180 seconds or about 69.8 nanoseconds (69.8
billionths of a second). All synchronized durationsin
the timing generator are multiples of this time
period which we will call the PERIOD for this
discussion.

The normal 65602 machine cycle lasts 14 PERIODS
or about .978 microseconds. The long cycle lasts 16
PERIODS or about 1.12 microseconds. There are
three frequencies involved here: the primary fre-
quency at which the 6502 is operated for 64 out of 65
cyeles, 1.0227 MHz; the secondary frequency at
which the 6502 operates for 1 out of 65 cycles, .8949
MHz; and the composite frequency which actually is
the number of machine cycles per second, 1.0205
MHz.

The 2 MHzsignals aresimilar to PHASE 0 except
that only one of every 130 eyeles is elongated. Their
normal duration is seven PERIODS or about .489
microseconds. Their long duration is nine PERI-
ODS or about .629 microseconds.

34 Understanding the Apple |l

Thedurations and frequencies of the signals of the
timing generator are shown in Table 3.1 below. The
values are arithmetic derivations of 14.31818, car-
ried to ten place accuracy. Actual frequencies will
vary as the 14M oscillator varies from 14,318,180 Hz
due to thermal environment and crystal tolerance.

It is reasonable to wonder why the exact frequen-
cies in the Apple should be of any concern. In fact,
for most purposes, the exact frequencies are not
important. They are important when discussing tel-
evision compatibility, because television signals re-
quire some specific frequencies which are not exact
multiples of 1 MHz. Frequenecy is also important in
so far as it affects MPU execution speeds. Knowl-
edge of 6502 clock speed is very important for Apple
programs with precision timing loops. For the most
part, we will continue to refer to frequencies in very
rough estimates such as 1 MHz or 3.5 MHz.

TIMING DIAGRAMS

Timing is usually summarized in timing dia-
grams. Figure 3.2 is a timing diagram showing the
outputs of the timing generator and some related
signals. The timing diagram is a series of line
graphs of voltage as a function of time. Voltage
changes vertically in the diagram as time passes
from left to right.

In the following discussions of timing signals, the
reader is encouraged to refer to Figure 3.2 as neces-
sary to clarify relationships in his own mind. Time
periods will be measured in millionths of a sec-
ond (microseconds) and billionths of a second
(nanoseconds).

Figure 3.2 is an idealized timing diagram in
which voltages switch instantly and there is nodelay
between input change and output response (propa-
gation delay). In an idealized timing diagram, cause
and effect timing relationships are clearly illus-
trated instead of being obscured by the details of
propagation delay. This is often desirable when
studying theory of operation.

Figure 3.2 shows three 6502 machine cycles, two
normal cyeles, and one long eyele. For each normal
machine cycle, there are one PHASE 0 cycle, two
RAS’, AX, CAS’, and Q3 cycles, three and a half
COLORREFERENCE cycles, seven TM cycles and
fourteen 14M cycles. For reference, the period of
14M is about 70 nanoseconds and the period of a
normal PHASE 0 cycle is about 978 nanoseconds.

For 64 PHASE 0 cycles, a repeating pattern of
timing signals is generated. There is an alternating
phase relationship between COLORREFERENCE
and PHASE 0. The HO signal (see Figure 3.2) is the
least significant bit of the videoscanner. When HO0 is
low, COLOR REFERENCE is low when PHASE 0
makes its high to low transition. When HO is high,
COLOR REFERENCE is high when PHASE 0
makes its high to low transition. Other than COLOR
REFERENCE the timing signals have identical
relation to each other on every normal cycle, and the
other HO’/HO normal eycle pairs are identical to the
one pictured in Figure 3.2.

Every 65th cycle, while HPE' is low, generation of
the 1 MHz and 2 MHz timing signals is delayed for
one half of a COLOR REFERENCE period. This
keeps the phase relationship between COLOR REF-
ERENCE and the slower signals correct. This rela-
tionship is required in the overall Apple scheme of

Table 3.4 Durations and Frequencies of Timing Signals.

NORMAL LONG PRIMARY SECONDARY COMPOSITE
DURATION DURATION FREQUENCY FREQUENCY FREQUENCY
SIGNAL (nsec) (nsec) (MHz) (MHz) (MHz)
PHASE 0 9777779019 1117.460459 1.022727143 .89488625 1.02048432
RAS' AX.CAS',Q3 488.888951 628.5715084 2.045454286 1.590908889 2.04096864
COLOR REFERENCE 279.3651148 3.579545
™ 139.6825574 7.15909
14M 69.84127871 14.31818

Timing Generation and the Video Scanner 3-5

e JTULUUTUUUUUUUUUULLUUUUUUUuurrd iy oy
ce1s I |1 1 1 1 1 1 o g
c214 J | J | e b] iy k] | 1
c213 _|) I [1 I LT Pl 1 s
e __| N) 1 I | - | =
i] R S . [S RN 1] [|8 —
e T e—eF . LI —
oy 1 e SR S NN | =a
01312 1 s
gt LI

et | HSCAN =1111110 | HSCAN = 1111111 1 HSCAN = 0000000 | HSCAN = 1000000
e LT T LT L L L L
oo v 0 i O i O 1 i U i 8 5 o 0 O 5 O 8
m2 | L .| |

B128 | M M M

L

cats |1 F ok 11 = M1 1 g i
24 J | . I | T 1) I o Rs |
czi3 _| S sl | . I— P i
2 ___| SN e | VS| B S = | (T
e 1L = I T s
s (R e | i | (SR e
o | e EENSNITS S S I |l | '

- D13-12] M=

COLOR DELAY' D26 : |1
o1e1a 1| Hscan=1i11110 [Hscan=1111111 1 | HSCAN = 0000000 | HSCAN = 1000000
7% I I o IO s O e (O I s OO iy O o U It N o N s (N e W U
e gkl igi gy SptpSgRpNe i plipdpiphnigphndpSipdns)
onz L O i
B128 1 _TI1 M EmEE

8502 CYCLE t t t

Figure 3.3 Timing Diagram for the Timing Generator, Showing Propagation Delay.

36 Understanding the Apple I

generating color video. The delay extends the high
duration of PHASE 0 and extends the low duration
of RAS', AX, CAS’, Q3, and LDPS’. It also causes a
double LD194 pulse and the extension of the current
6502 machine cycle. The logic signal which delays
timing generation is labeled COLOR DELAY' in
Figure 3.2.

The B1-Q2 signal in Figure 3.2 is a timing sig-
nal used in generating PHASE 0. B1-Q2isnotatim-
ing generator output, but is used only internally.
PHASE 0 lags B1-Q2 by one 14M period.

Figure 3.3 is an alternate timing diagram show-
ing the same signals as Figure 3.2 but with typical
propagation delay illustrated. The cause and effect
relationships in Figure 3.3 are not as easily dis-
cerned as they are in Figure 3.2, but Figure 3.3
more accurately details the actual timing.*

It is very difficult to illustrate minute propaga-
tion delay in a diagram with the time scaleof Figure
3.3. Figure 3.4 more accurately depicts the delay
hierarchy that exists. The rising edge of 14M is the
master reference of Apple timing, and the basic
features of propagation delay are:

1. RAS', AX,CAS',Q3, PHASE 0, PHASE 1, 7TM,
7M’,and COLOR REFERENCE areall clocked
by the rising edge of 14M, and their propagation
delay from the rising edge of 14M is typically
nine nanoseconds.

2. LD194and COLOR DELAY"' are logic functions
of other timing signals propagated through a
logic device. Their delay from the rising edge of
14M is typically 18 nanoseconds.

3. LDPS’isa logic function of AX and CAS' prop-
agated through two logic devices. [tsdelay from
the rising edge of 14M is typically 27
nanoseconds.

4. The video scanner is clocked by the rising edge
of LDPS’. The delay between the rising edge of
14M and HPE' or HO is typically 42 nanoseconds.

5. PHASE 0 is routed to the 6502 through one logic
device. Internal 6502 actions cause a further
delay before the 6502 data clock (the falling
edge of the 6502 PHASE 2 clock). The typical
6502 internal delay is not specified in data
sheets. The delay between PHASE 0 falling at
the peripheral slots and PHASE 2 falling at the
6502** was measured by the author at 32
nanoseconds,

*Figures 3.2 and 3.3 show the timing signalsswitching instantly,
and both figures are idealized in this sense. In reality, it takes the
timing generator signals about six nanoseconds to rise or fall.

*Synertek SYB502 (marking T8360) in an Apple IT computer.

DETAILED DESCRIPTION OF THE TIMING
SIGNALS

The following sections describe in detail how the
signals of the Apple II are used. The distribution of
these signals among the various functional areas of
the Apple is shown in Figure 3.5. Please refer to
Figures 3.2 and 3.3 as needed while reading these
discussions.

PHASE 0 and PHASE 1

PHASE 0 is the 1 MHz clockpulse input to the
6502. As such, its frequency determines the execu-
tion time of instructions in the Apple computer. The
duration of a PHASE 0 eycle is equal to the duration
of a 6502 eycle. This duration is .98 microseconds in
a normal cycle and 1.12 microseconds in a long
cycle.

PHASE 1issimply PHASE 0 inverted. It is high
when PHASE 0islow and vice versa. The PHASE 0
cycle period is almost coincident with a 6502 ma-
chine cycle but slightly leads it. Speaking of PHASE
1 and PHASE 0 as positive gating signals, PHASE
1 occurs approximately during the first half of the
6502 machine eycle and PHASE 0 occurs approxi-
mately during the second half. The time relation-
shipsof PHASE 1, PHASE 0, and the 6502 machine
cycle are shown in Figure 3.6.

Clockpulse action takes place when the PHASE 0
line switches from high to low or low to high. These
transitions trigger actions inside the 6502 which
will be discussed in greater detail in the next chap-
ter. A high to low transition of PHASE 0 causes the
6502 to begin a new machine cycle after a short
delay.

In addition to triggering 6502 events, PHASE 0 is
used as a time reference on the motherboard. Dur-
ing PHASE 0 the 6502 address is valid, so address
decoding from the address bus takes place during
PHASE 0. RAM is addressed by the MPU during
PHASE 0 and by the video seanner during PHASE
1. Also, since secanner access isduring PHASE 1, the
RAM read/write control is set to "read” during
PHASE 1even if the 6502 R/W'line is set to "write”.

14M, 7M, and COLOR REFERENCE

14M, 7M, and COLOR REFERENCE (3.5M) are
utility elocks which are used in the generation of
video. The frequency of Apple video can be as high
as 7 MHz, so generating the video signal requires
fast elocks.

14M, 7M, and COLOR REFERENCE are unaf-
fected by the long cyele and have fixed frequencies

Timing Generation and the Video Scanner 3-7

Time in
nanoseconds
14M
0 .
9 RAS' AX CAS' Q3 PHASE1 PHASEO B1-02 7M' 7M COLOR-REF
18 AX' « CAS PHASE 0 « DMA'’ LD194 COLOR DELAY’
27 LDPS'
. / \ 6502 PHASE 2
a2 HPE' HO

Figure 34 Propagation Delay Hierarchy.

38 Understanding the Apple I

RIW
> -q >)_
ADDRESS @1 j %Tg&
BUS
<} MPU
T
03 40 +1
DMA’
PERIPHERAL
SLOTS
+ +(30L{11'r§ REF
7M (SLOT 7 ONLY)
ROM
w0 @1 CAS AX
L RAM J -
ADD- .
RESS RAM |BOARD
: MUX = RAM/
LDPS ks
1 BOARD
DATA
MUX
VIDEO RAM
SCAN DATA
NER RAS' _|LATCH
aggol——* ViDED
GEN. ~—I
s i
COLOR 7M 14M LDPS'
REF
|
i SERIAL
ADDRESS MUX
DECODE

Figure 35 Distribution of Timing Generator Outputs.

Timing Generation and the Video Scanner 3-9

PHASE 1 /

PHASE 0 \

6502 MACHINE CYCLE |

Figure 36 The 6502 Machine Cycle Slightly Lags the PHASE 0 Clockpulse.

of 14.318180 MHz, 7.15909 MHz and 3.579545 MHz
respectively. 14M and 7M are used strictly as clock-
pulses in the video generator, but COLOR REF-
ERENCE is used differently. Short bursts of the
COLOR REFERENCE signal are placed on the
video output line once every horizontal scan. A tele-
vision set is capable of reproducing the continuous
COLOR REFERENCE signal from these short
bursts, allowing the COLOR REFERENCE input
to the television to become the phase reference for
color generation. The Apple produces color on a
television by shifting the PICTURE signal in rela-
tion to the COLOR REFERENCE.*

There is some confusion over the labeling of
COLOR REFERENCE because changes were made
to the color burst killing circuitry in the RFI revi-
sion. The changes were such that COLOR REFER-
ENCE’, rather than COLOR REFERENCE, is
required in the video generator. Because of this,
COLOR REFERENCE' (B1, pin 2) is routed to the
video generator on RFI Revision boards, while
COLOR REFERENCE (B1, pin 3) is routed to the
video generator on older boards. The confusion
results from the fact that A pple changed the label of
COLOR REFERENCE' to COLOR REFERENCE
in the schematic published in an addendum to the
Apple II Reference Manual. This schematic also

*This book refers to the signal which controls the intensity of the
Apple display as the PICTURE signal. When the PICTURE
signal is at the white level, the electron beam in the television
picture tube strikes the picture screen with enough intensity to
cause light emission. The PICTURE signal, SYNC, and COLOR
BURST are the three components of the Apple VIDEO signal.
More information on this subject is contained in Chapter 8.

shows B1, pin 3 open, but this pin is actually con-
nected to Slot 7, pin 35. In the face of this inconsis-
tency in Apple’s documentation, this book sticks to
the old labels for COLOR REFERENCE. When
COLOR REFERENCE is referred to, it means the
Q1’outputat B1, pin 3. The Q1 output at B1, pin2is
referred to as COLOR REFERENCE'.

7M is available at pin 36 of the peripheral slots.
COLOR REFERENCE isavailable at pin 35 of Slot
7 only. 14M is not available at the peripheral slots.

RAS’, AX, CAS’,and Q3

RAS’, AX, CAS’, and Q3 are 2 MHz signals. Q3 is
used in the Apple strictly for the generation of other
timing signals. It has status as a timing generator
output only because it is distributed to pin 37 of the
peripheralslots. RAS’, AX,and CAS'are RAM tim-
ing signals.

[t can be seen from Figure 3.2 that a RAS’, AX,
CAS' sequence occurs twice every 6502 cycle. The
PHASE 1sequence controls the video scanner access
to RAM, and the PHASE 0 sequence controls the
MPU access to RAM. The falling edges of RAS' and
CAS' strobe the ROW address and COLUMN ad-
dress to RAM, while AX selects ROW or COLUMN
address lines at the RAM address multiplexor.
There is a continuing cycle of RAM access:

1. Select ROW address via AX high.

2. Strobe ROW address via RAS' falling.

3. Select COLUMN address via AX low.

4. Strobe COLUMN address via CAS’ falling.

310 Understanding the Apple I

RAS' is wired directly to the RAM chips, but
CAS' is distributed to RAM through RAM select
logic in the RAM address multiplexor. When RAM
is not being accessed, such as during PHASE 0
when the MPU is addressing ROM, CAS’ is not
gated to RAM. When RAM is being accessed, CAS’
is gated to RAM row C or D or E on the motherboard
depending on the RAM address.

The rising edge of RAS’ latches the data output of
RAM on the Apple. This means that whatever is on
the output lines of RAM when RAS’ goes high will
besaved at the RAM data output latch until the next
time RAS’ goes high. The latched output is used by
the video generator to make up the video display,
and it is gated to the data bus when the MPU is
reading RAM. More detail on the timing of MPU
access to RAM is given in the chapters on the MPU
and RAM.

LDPS’ and LD194

LDPS’ and LD194 are timing signals used in the
generation of video. The signalsoccur at 1 MHz and
provide the time reference for video output.

The rising edge of LDPS’ causes the video scanner
to increment. Since the video scanner addresses
RAM, a different memory location is processed for
video output every LDPS’.

The generation of the PICTURE signal is a load/
shift process. Data is loaded from RAM or from a dot
matrix text ROM addressed by RAM data. Then it is
shifted out as the PICTURE signal. LD194 and
LDPS’ are the load/shift reference for the PIC-
TURE signal generation. While LDPS’ is low, dot
matrix text patterns are loaded in the video genera-
tor. While LDPS’ is high, they are shifted out. While
LD194 is high, graphics dot patterns are loaded in
the video generator. While LD194 is low, they are
shifted out.

LD194 is the load/shift control for graphics.
LD194 occurs when COLOR REFERENCE is low
and HO is low, or it occurs when COLOR REFER-
ENCE is high and HO is high. It is to keep this
relationship between video timing and the COLOR
REFERENCE that the long cycle exists. The elon-
gation of the 6502 machine eycle is an incidental side
effect.

TELEVISION SCANNING

To understand the operation of the video scanner,
it is necessary to understand a little bit about televi-
sion operation.* The television display is achieved

by scanning an electron beam across the screen. The
PICTURE signal level controls the beam intensity
and the resulting light intensity as the viewer sees it.

The electron beam scans much faster horizontally
than it does vertically, so the scan or raster is made
up of many nearly horizontal lines as shown in Fig-
ure 3.7. The scanning circuitry is internal to the
television, but the signal input synchronizes the
scanning with horizontal and vertical syne. The
horizontal sync causes the beam to return very
quickly tothe left side of the sereen, and the vertical
sync causes the beam to return very quickly to the
top of the screen. The horizontal and vertical sync
must occur approximately at television horizontal
and vertical frequencies for the television to become
synced. In American television, the horizontal scan-
ning frequency is 15,734 Hz and the vertical sean-
ning frequency is 59.94 Hz.

Horizontal and vertical syne occur while the PIC-
TURE signal isata black, or blanking, level. After
the horizontal sync causes the beam to go to the left
side, the beam traces left to right while the PIC-
TURE signal controls beam intensity.

The Apple must generate the television signal
which is a combination of horizontal syne, vertical
sync, picture level, and a color burst. It does this by
scanning memory for video output with a counter
which has recurring periods approximately equal to
the horizontal and vertical periods of a television.
This counter is the video scanner.

THE VIDEO SCANNER

The video scanner is a counter that counts like a
television scans. The low order bits (H0-H5 plus
HPE'’) form the horizontal section which sequences
through its counts one time for every horizontal
scan. The entire scanner (H0-H5, HPE’, VA-VB,
and V0-V5) sequences through its counts once every
vertical scan. In the video generator, outputs of the
video scanner are used to develop horizontal and
vertical sync for the video signal.

Since states of the video scanner synchronize the
television scan, the video scanner can be thought of
as scanning the TV screen as it scans memory. The
electron beam is always in the same spot on the
screen when a given memory location is accessed by
the scanner.

*Chapter 8 contains a more detailed description of television
operation. The important concepts here are television scanning
and synchronization.

Timing Generation and the Video Scanner 3-11

{ RERRRRRRERRRARE

Figure 3.7
. Scan.

The video scanner increments on the positive
going edge of LDPS’, which occurs toward the end
of PHASE 0. Just like the MPU, the scanner oper-
atesat 1 MHz. There is a one microsecond period for
which every state of the scanner is held until the
scanner increments to the next state. During one
microsecond, the electron beam travels the width of
one text character, one LORES block, or seven
HIRES dots.

Horizontal Scanning

The video scanner is divided into the horizontal
section and the vertical section. The horizontal sec-
tion is made up of HO-H5 plus HPE' (Horizontal
Preset Enable). These seven bits are mechanized as
a 65 state counter which counts LDPS'. The 65 states
of the horizontal counter are 0000000 and 1000000
through 1111111. HPE' is low only during one of the
65 states (0000000) and the fact that it is low does
two things. First, it presets the horizontal section to
1000000. Second, it is fed back to the timing genera-
tor to cause the long cycle.

Exaggerated View of aTelevision Scan.The Apple Scans 262 Times Horizontally for Each Vertical

One horizontal SYNC pulse is output from the
video generator for every time the horizontal section
of the video scanner goes through its 65 state
sequence, so the 65 state sequence represents one
horizontal scan. During 40 of the states, picture
information is output on the video line. During 25 of
the states no information is sent to the screen. This
blanking period includes the left margin, right
margin, and retrace (quick movement of the beam
from right to left).

The duration of the horizontal sequence is equal to
64 normal 6502 eycles and one long eycle. This takes
63.695 microseconds, which gives a horizontal fre-
quency of 15,700 Hz. This is very close to the stan-
dard television horizontal frequency of 15,734 Hz.

Vertical Scanning

The vertical section of the video scanner is made up
of VA-VC and V0-V5. The vertical section incre-
ments every time there is an overflow from the
horizontal section, meaning it inecrements when the
horizontal count is 1111111 just before HPE' goes
low. The vertical section counts horizontal scans.

342 Understanding the Apple I

The nine bits of the vertical section are mecha-
nized as a 262 state counter. The 262 states are
011111010-111111111. Itis astraightforward binary
counter which presets on overflow to 011111010.
Once each vertical sequence, the video generator
sends vertical syne, so the 262 state sequence repre-
sents a vertical scan. During 192 of the scanner
states, picture information is output on the video
line. The 70 blanked horizontal lines represent the
top margin, the bottom margin, and the retrace to
the top of the screen.

There are exactly 17030 (65 x 262) 65602 cycles in
every television scan of an American Apple. The
duration of the television scan is equal to 262 hori-
zontal scans. This is 16,688 microseconds which
gives a vertical frequency of 59.92 Hz. This is very
close to the standard American television vertical
frequency of 59.94 Hz.

In a standard television picture, alternating ver-
tical scans are interlaced. This means that every
other sean is displaced vertically half of the vertical
distance between two horizontal scans. Interlacing
gives an effective vertical resolution of 525 lines.
There is no vertical interlace in the Apple display.
This accounts for a disparity in vertical/horizontal
frequency relationships between Apple video and
broadcast television video. In the Apple, the hori-
zontal frequency is 262 times the vertical frequency.
In American broadcast television, the horizontal
frequency is 262.5 times the vertical frequency.

Eurapple and the Video Scanner

It is possible to make the Apple II television scan-
ning compatible with European televisions by re-
configuring the Eurapple jumpers. These jumpers
do not affect the horizontal scanning rate, but they
do affect the vertical scanning rate. With Eurapple
jumpers, the vertical section presets on overflow to
011001000 instead of 011111010. There are 312
states represented by 011001000-111111111. This
gives a vertical frequency of 50.32 Hz. Even though
there are 50 extra horizontal scans in the Eurapple,
there is no extra vertical resolution. In either Apple
system there are 192 horizontal scans in which pie-
ture information is displayed.

THE LONG CYCLE

The discussions have alluded to thelong eyele in a
limited way, but we are now in a better position to
understand the reasons for it.

Video output begins each horizontal scan when
the horizontal count reaches 1011000. For color
coherency the video output needs to begin at the

same point in relation to COLOR REFERENCE on
every scan. Since there are 3.5 COLOR REFER-
ENCE cycles in a video scanner cycle, the phase of
COLOR REFERENCE at the start of a video shift
alternates 180 degrees each scanner cycle. Because
of the 180 degree phase alternation each cycle, a
seven dot HIRES pattern represents different colors
when it is stored in an even RAM address than when
it is stored in an odd RAM address.

There are 65 video scanner cycles per horizontal
screen line. This is an odd number so there would be
an odd number of 180 degree phase alternations per
horizontal line. This would cause the starting phase
relationship to alternate every horizontal line. By
delaying video shift timing half a color reference
period once every horizontal line, the same begin-
ning phase relationship occursevery horizontal line.
As a side effect all 1 MHz and 2 MHz signals are
elongated once every horizontal line.

TIMING GENERATOR HARDWARE

Timing generation in the Apple consists of mak-
ing a lot out of a little. The 14M clock is divided and
processed to make the slower, more complex sig-
nals. Figure 3.8 is an annotated schematic of the
timing generator and the primary analysis aid for
studying timing generator hardware.

14M,7M,and COLOR REFERENCE generation
is straightforward frequency division. 14M comes
from a erystal controlled 14.31818 MHz oscillator
via one fourth of a 74S86 quad exclusive-OR gate.
14M is pretty symmetrical but symmetry is not
important since only the rising edge of 14M is used.
7M is 14M divided by two. COLOR REFERENCE
is 7TM divided by two. The exclusive-OR gate at the
input of B1-Q1 forces COLOR REFERENCE to
toggle at the falling edge of 7M.

RAS’, AX, CAS’, and Q3 are generated in shift
register C2(745195). C2 is configured toshift "0"s to
RAS’, AX,CAS’, and Q3 when Q3 is set, then to shift
"1"s to AX, RAS'/CAS’, and Q3 when Q3 is reset.
The continuous four clock/three clock shift makes
up a seven clock cycle for each of the 2 MHz signals.

The shift “1” input to AX is the COLOR DELAY"’
signal. The long cycle is created when COLOR
DELAY goes low at:

HPE « PHASE 0 e AX'e CAS « COLOR REF".
This causes the shift ”1” phase of C2 to be delayed by
one half a COLOR REFERENCE period.

PHASE 0 is generated in sync with the 2 MHz
signals. Generating PHASE 0 from the available 2
MHz signals would not seem complex, but hard-
ware expedience and engineering resourcefulness

Timing Generation and the Video Scanner 3-13

“10jpIeusS Bujwiy ey) :dyPwWeyds g€ enbly

&
--+— ,S¥]
€0 9NHNG |
BT
BN BBER
1t VO "
< B0 | Sy : A (AP
\.
£0 ONIHNO =
:u.._m*T €0 59 | Xv o fee T

SI00N 14HS 23

JAVTR0 00D

m e
851 8
5 i _I LI ™ @ m‘w
T 20 Tn i I s ot
& L b ° L
3 2a _ ! _ma mn_ @ LEroe+epodbo+ o GJBZ 1D QL 4_.— =_~8 "
Al (00 44 QYD . 0h Gl s
m__mz] W) 9i 5 8 (o) aen l
s (5]
e
B4)= 10 00 i) 7 D
[e o
- 010 - . ”
(s o |! e RS 2 J = vl 14[3
Z ol '
00SThL b 20A -
25T i
mg J.n. Covy y= _.,48 : o
(530} " Ca|
... Y T e i
ol TR [+
h ISk ypfoe—F S0
7S 2 L (&€

3414 Understanding the Apple I

74L504
VPE 8.9 .
3.8 . ﬂ
L‘DP%’
15 _T
! r 2T veole
E >EJK 031’14._1;5
_J:—’- P3
5 = 7415161 12
1 ™ S I
RAQ2 4 PRESETTABLE 3
1K - Pl COUNTER Qif—»V3
2
PO
50z ain® 9 1oe bt v2
3 8
I CET_CEP_CLR__GNOF™—
1 0 47 :Ln =
50Hz) . [
\I]#EEP‘EBI l\Is S0 5-11 5V \
A V—T AL VERTICAL
AND LATER 9 IQG vee . v 0 PRESET"
6 Q3 ——V1
=|P3 s V4 1
5
= P2 7415161 22— v
4p4 4-BIT V3 1
P! PRESETTABLE 13
= COUNTER ~ Q1—=VC v -
3o w
2|_ck 1| L T -
= s [1
T [Cer cE GND [
CET CEP CLR Il
t 0 k7 Q1 = VO 1
I A SOFT 5-11 Ve 0
15 5V
; B[voohed v o I
. - 1|
' SOFT 5-11—J P2 013 a3 AR VA 0
Pt 74LS161 12 - HPE'
! [l s - HPE 1
| +—P0 PRESETTABLE 13
i — COUNTER Q1 > H5 .
= CK 5 0
t LA 14 Y
[9 00 —»H4 HORIZONTAL
: ~ PR 8 H4 0 PRESET'
. CET CEP CLR GND—_]_
Fo f7 *1 = H3 0
B | SOFT 5-11 H2 0
_hs A5V
g TC VCC L H'| 0
—=PR 11
E P3 03F—>H3 HO 0
Slep M4 gl 2D REPL ACES
BEE—
: 7§‘|:EI1T61 H2 PRESET A2-11 AND A2-8
Pl PRESETTABLE ah3 VALUES T0 MAKE SOFT 5
3o COUNTER ——=Hi PRl bl
= 14 v
21.CK Q0f———=H0
L~ 8
I [LCET_CEP CLR GNDf*— R28
0 &7 Lf1 = 1K
SOFT 5
1 11 SOFT 5-11T0 3 8 SOFT 5-8 TO g%ﬁg-,};ms
-1170 ALL 5-8 70 ALL
F w2 ot —— SIS e llﬂD* —* SCHEMATICS
74LS00 741500

Figure 39 Schemadtic: The Video Scanner.

Timing Generation and the Video Scanner 3-48

made the Apple inventor do it in a complex way.
PHASE 0 is generated by two flip-flops in B1 and
one half of a4 to 1 multiplexor, C1. All of this gener-
ates a PHASE 0 signal which simply toggles every
time CAS'is high and Q3 islow. The way itisdone in
the Apple, C1 develops the logic equation

AX’'e Q2 + AX(PHASE 0+ Q3 +Q3"« PHASE 0'),
where Q2 is B1-Q2 and Q3 is the Q3 output of the
timing generator. This signal is the D-input to B1-
Q2. PHASE 0 follows B1-Q2 by one 14M clock
period. Analysis shows that this generates PHASE
0 as pictured in Figures 3.2 and 3.3.

A point worth noticing in the timing generator is
that 74S devices are used to generate signals which
are widely distributed. Most Apple TTL is mecha-
nized with 74LS devices. 74S devices have more
drive capability than T4LS devices, and by the use of
748 devices in the timing generator, the number of
74LS devices which can bedriven by timing genera-
tor signals is doubled.

VIDEO SCANNER HARDWARE

The video scanner is a television synchronous 16-
bit counter implemented on four 74LS161 4-bit
counters. Thescanner incrementson the rising edge
of LDPS’. The four chips (see Figure 3.9) are cas-
caded into a single counter by connecting the carry
output of each chip to the count enable inputs of the
next chip in the string.

The counter is divided into two separately preset
sections. The horizontal section (H0-H5 plus HPE')
is a 7-bit modulo 65 counter. The 65 states are
0000000 and 1000000 through 1111111. The low
state of bit 7(HPE’) presets the horizontal section to
1000000.

The vertical section (VA-VC and V0-V5) is a 9-bit
modulo 262 counter which counts every time the hor-
izontal section equals 1111111. The vertical section
presets on scanner overflow to 011111010. Its 262
statesare(011111010-111111111. Eurapple jumpers
change the vertical preset to 011001000 and change
the number of vertical count states to 312.

The vertical section increments on the LDPS’
before HPE'. A typical count sequence is
111100000/1111111; 111100001/0000000; 111100001/1000000.
The vertical preset sequence is
111111111/1111111; 011111010/0000000; 011111010/1000000.

VA is located on the same LS161 as H4, H5, and
HPE', and it is not controlled by the vertical preset,
but by HPE'. However, it always resets at vertical
preset time because of its count logic. During HPE',
it holds its value. Thus, VA is effectively preset to
"0" at vertical preset time.

The videa scanner implementation is one of a
number of examples of design resourcefulnessin the
Apple I1. The design of a 65 state counter cascaded
into a 262 state counter is a fairly simple task, but
doing it with four and a quarter TTL chips involves
less obvious methods. This makes the circuit harder
to understand, but increases the educational value
of studying such a circuit.

The SOFT-5 signals shown in Figure 3.9 are not
just part of the video scanner. They are constantly
high logic levels distributed throughout the moth-
erboard to those logie devices which require them.
In earlier Apples, SOFT-5 was developed by two
74L.S00 NAND gates with their inputs grounded. In
RFI Revision Apples, SOFT-5 is a connection to the
+5 volt line through a 1000 ohm resistor.

316 Understanding the Apple I

SOFTWARE APPLICATION

SWITCHING SCREEN MODES IN TIMED LOOPS

A horizontal scan in the Apple takes exactly 65
machine cycles of the 6502. A vertical scan takes
exactly 17030 machine eyeles. This information can
be used to switch sereen modes in timed loops to give
apparent combination screen modes.

For example, the screen can be split so that half of
each horizontal line is LORES and the other half of
each horizontal line is HIRES by switching between
modes in alternating 33 and 32 cycle loops. Sim-
ilarly, the sereen can be split so that half of all the
horizontal lines are LORES and the other half are
HIRES by switching back and forth every 8515
cycles. The latter can be accomplished using the
sample programs listed in Figures 3.10a and 3.10b.

SOURCE FILE: FIGURE 3,18A

The assembly language program of Figure 3.10a,
when assembled, is a subroutine that performs the
sereen splitting. The BASIC program of Figure
3.10b sets up a color display and calls the machine
language subroutine.

The example program causes the Apple to be in
LORES for 131 TV lines and in HIRES for 131 TV
lines. The display is aligned vertically by pressing
any key on the keyboard while simultaneously hold-
ing REPT. The result of running this program is the
split sereen display pictured in Figure 8.9. A more
sophisticated method of combining Apple II screen
modes is discussed in an application note at the end
of Chapter 5.

G“Bﬂ: 1 A R R R R R R
aoea: * "
aean: 3 * HIRES/LORES SPLIT &
egaa: 4 * 8515/8515 .
oaee: 5 # BY JIM SATHER ol
eaea: 6 * 2/15/1983 =
vade: 7 * bd
ﬁ““ﬂ: a R R R R R e R e e P R R R R R P R R R R R R R
cooa: 9 KBD EQU ScCo@e

col0: 1@ KBDSTRB EQU SC@l@

cas54: 11 PAGE] EQU SC@A54

CA56: 12 LORES EQU SC@56

heo0: 13 *

2000;: 14 * THIS PROGRAM TOGGLES THE HIRES/LORES SWITCH

gopa: 15 * EVERY 8515 CYCLES.

poea: 16 *

===~= NEXT OBJECT FILE NAME IS FIGURE 3.10A.0RJO

1F@8: 17 ORG §lF@e

lF@@:AC 54 C@ 18 SPLIT LOY PAGE1l

1FO3:a0 27 19 SLEW LDY #39 ; SLEW SCREEN IF KEY PRESSED.
1F@5:28 27 1F 20 JSR WAITX1Q

1LF@8:AC 10 CB 21 LDY KBDSTRB

LFOB:AC 00 CO 22 KEYCHK LDY KBD

1F@E: 30 F3 z3 BMI SLEW

1F10:62 @1 24 ADC §1 ; TOGGLE HIRES/LORES SWITCH
1F12:29 01 25 AND #5081

LF14:AR 26 TAX

LF15:BC 56 C@ 27 LDY LORES,X

1F1B:A2 @8 28 LDX #8

1F1A:28 31 1F 29 JSR WAITXLK ;WAIT BE@@@ CYCLES

LE1D:AQ 31 3o LDY #49

LF1F:20 27 1F 31 JSR WAITX10 ;WAIT 490 CYCLES

1F22:18 i2 CLC

1F23:98 E6 13 BCC KEYCHK

1F25; 33 *

1F25: 35 * TIMING ROUTINES:

1F25: 36 * WAITX1? WAITS Y-REG TIMES 10 CYCLES.

1F25: 37 * (MINIMUM WALIT 2@ CYCLES

1F25: 38 * WAITXIK WAITS X-REG TIMES 1000 CYCLES.

1F25: 3y =

lF25:08 01 40 LOOPl? BNE SVCYCLES

lF27:88 41 WAITX1@ DEY ;WALT Y-REG TIMES 1@

1F28:88 42 SVCYCLES DEY

1F29:EA 43 NOP

1F2A:D@ F9 44 BNE LOOP1RQ

1F2C: 60 45 RTS

LF2D:48 46 LOOPILK PHA

LF2E: 68 47 PLA

1F2F: EA 48 NOP

1F30:EA 49 NOP

1F31:AQ 62 5@ WAITX1K LDY LD sWAIT X-REG TIMES 1009

1F33:2@ 27 1F 51 JSR WAITX10

1F36:EA 52 NOP

1F37:CA 53 DEX

LF38:D0 F3 54 BNE LOOPLK

1F3IA:60 55 RTS

k%% SUCCESSFUL ASSEMBLY: NO ERRORS

Figure 3.10a Assembler Listing: A Screen Splifting Program.

Timing Generation and the Video Scanner 347

18 REM
11 REM
12 REM SET UP LORES AND HIRES AND CALL SPLIT SCREEN.
13 REM
14 REM

20 PRINT CHRS (4);"BLOAD SPLIT SCREEN.OBJ@"

3¢ HGR : HOME : VTAB 21: PRINT "1 7 D 2 8 E B 4 5 A36C9FS8"
4@ DIM COLR(39),X(21)

168 FOR A = @ TO 39: READ COLR(A): COLOR= COLR(A): VLIN 0,39 AT A: NEXT A
26@ FOR A = @ TO 21: READ COLR(A): READ X(A): HCOLOR= COLR(A)

218 HPLOT X(A),@ TO X(A),159: NEXT A

220 FOR A = 8319 TO 16383 STEP 128: POKE A,64: NEXT A

368 CALL 7936

400 REM LORES DATA

41¢ opATA 1,0,7,7,9,13,13,6,2,2,90,8,8,0,14,14,0,11,11,0

42¢ DATA 4,4,0,06,5,0,0,190,0,3,0,6,06,12,0,9,0,15,0,8

5¢@ REM HIRES DATA

519 DATA 4,6,3,20,4,21,3,41,4,42,7,62,7,83,7,104,3,105,7,125,3,126,7,159,3,161
B DATA 7,189,3,182,3,206,7,220,3,233,7,247,3,262,3,263,7,279

Figure 3.10b BASIC Listing: A Split Screen Example.

348 Understanding the Apple I

SOFTWARE APPLICATION

APPLE TIMING LOOPS

It is not generally known that the 6502 clock of the
Apple is not fixed frequency. The frequency and
stability of the MPU clock are important factors in
precision timed loop assembly language programs.
The Apple II Reference Manual gives the 6502 fre-
quency as 1.023 MHz, but it also gives a hint that
there is more involved. In the WAIT routine of the
old Monitor ROM listing, there is an interesting
comment. It reads simply “1.0204 USEC.” This is
1.02048432 rounded off incorrectly.

The composite frequency of the Apple is 1.0205
MHz. (The program comment in the reference man-
ual confuses frequency with time periods.) 1.0205 is
the result of 14.31818x(65/(65x14+2)). The average
period of duration of an Apple 6502 machine cycle is
9799268644 microseconds. This is the value which

should be used for computing exact time durations
of Apple programs.

When very precise time measurement is neces-
sary, the programmer has to consider the impact of
clockpulse jitter, which is caused by the long cycle.
Since the Apple II has no real time clock, timed
output must be done with program loops which take
a specific number of clock pulses to execute. When
possible, these loops should be written in multiples
of 65 cycles. This will eliminate loop output jitter.
Otherwise the application must be able to tolerate a
140 nanosecond jitter. 140 nanoseconds is the differ-
ence between a normal cycle and a long cycle. The
programmer should be aware of Apple clockpulse
jitter and determine its affect on his particular
application.

Timing Generation and the Video Scanner 349

HARDWARE APPLICATION

DETECTING TELEVISION SYNC

There is no signal or interrupt in the Apple II to
tell the 6502 where the television scan is at any
moment. Reading television sync is of interest in
several applications: screen mode splitting, video
camera interfacing, flickerless animation, and light
pen interfacing, to name four. This application note
has some suggested methods for gaining the capa-
bility to detect television sync through peripheral
card design. Since nosignals from the video scanner
are connected to the peripheral slots, some less
obvious methods must be used to read the television
scan.

A simple but powerful form of television scan
interruption is shown in Figure 3.11. This circuit
generates an interrupt when the video scanner over-
flows, 416 eycles before the start of the sereen dis-
play. A jumper is connected between this peripheral
card and D11, pin 15 on the motherboard to give
the card its scan reference. The interrupt can be
acknowledged, enabled, or disabled under program
control via references to its DEVICE SELECT’
addresses.* $C080,X (slot number times $10 in X)
acknowledges the interrupt and inhibits further
interrupting. $C081,X acknowledges the interrupt
and enables further interrupting. System RESETs
also disable interrupts.

*Acknowledging the interrupt allows the IRQ’ line to return to
the high state after the interrupt.

As an example of what this circuit will do when
installed, the short 6502 assembly language pro-
gram listed below will create a mixed mode with
four lines of text at the top of the sereen and a
graphics display for the rest of the screen. The pro-
gram assumes that the interrupter is installed in
Slot 0. Load this program and call 24576 ($6000) in
the middle of any BASIC program. The BASIC
program will continue to execute but the screen will
be split with text on the top four lines. Also, the
BASIC program will run about 15% slower because
time is wasted between the interrupt and the period
just before the fifth line of text.

This circuit has several strengths and weaknesses.
It is interrupt based, so it allows programs to exe-
cute normally, leaving the interrupt handler to pro-
cess tasks related to the video scan. Also, it is very
simple, requiring only one and a quarter integrated
circuits. Its primary weakness is that it is capable of
interrupting at only one spot on the scan. Another
problem is that an interrupt does not stop program
flow until the current instruction is executed. This
means the point in relation to the video scan at which
the interrupt handler is entered will vary plus or
minus three cycles, depending on the length of the
interrupted 6502 instruction. Another weakness is
the required jumper to the motherboard. It is pref-
erable to keep this sort of extraneous clutter to a
minimum.

;:NMI Vector Fixed
;Enable Video Interrupter

:This is the IRQ handler

;Apple stored accumulator here

;Acknowledge the interrupt and
;enable further interrupts

6000: LDA #S00

6002: STA S3FE

600d5: LDA #S61

6007: STA S3FF

600A: CLI

600B: LDA SC@81

60FE: RTS

61¢00: LDA SC@51

6103: LDA #S1C

6165: JSR FCA8 ;Wait 2351
6108: LDA #S@3

610A: JSR FCA8 ;Wait 76
619D: LDA $45

6110: BIT $C@50

6112: BIT SC@81

6115: RTI

3-20 Understanding the Apple I

5V
é 10K

ra

1
LS03)"——@® IRQ’
1 oc

$C080.X: IRQ" DISABLED, IRQ" ACKNOWLEDGE
$C081,X: IRQ" ENABLED, IRQ" ACKNOWLEDGE

14 DETECT
2 5 PR " 5
Jumper to VPE
at D11-15 on the = I 3f_LS74
motherboard. tK
Q|6
CLR
1
DEVICE T
SELECT @ |
l o ENABLE
A0 D— 7] PR [
I 1 LS74
K
QF 8
CLR

jw
RESET" (1) |

Figure 341 Circuit to Generate a 6502 Interrupt 416 Cycles Before the Start of the Screen Display.

One way to make a jumper unnecessary is to
solder the wire between D11-15 and pin 35 or 19 on
any slot between 0 and 6. Pins 35 on Slots 0-6 are
connected together and the same is true of pin 19. No
signal is connected to these pins, so they are gener-
ally available for some user defined purpose. You
can solder the long wire on the underside of the
motherboard, then tack it to the motherboard with
several spots of glue. This entails removing the
motherboard from the case, but it has the advantage
of making the Figure 3.11 interrupter a cleaner
installation.

Itisnot actually necessary to jumper video scanner
signals to peripheral cards to allow them to sync to
the television scan. Any slot can be synced with the
video scanner, but it is a little easier in Slot 7, since
the television SYNC signal is available there on pin
19. This signal is a composite of the horizontal and
vertical sync signals which cause horizontal and
vertical retrace on the television. The horizontal sig-
nal is easily detected by clocking a flip-flop or other
synchronous device on the falling edge of the televi-
sion SYNC signal. The vertical signal is slightly

more difficult to detect. As described in Chapter 8,
vertical sync is made up of four long duration nega-
tive pulses. Figure 3.12 is a circuit to separate a
single vertical pulse from the television SYNC sig-
nal. It works by counting up while the SYNC signal
is low and counting down when it is high. If it counts
up to 15, then a vertical syne pulse is present and the
VERTICAL SYNC flip-flop is set. When it counts
back down to zero, the vertical sync period is past,
and the VERTICAL SYNC flip-flop is reset. The
vertical and horizontal sync may be used in any
number of Slot 7 designs, possibly to drive an inter-
rupter like the one in Figure 3.11.

This Slot 7 sync separator will not work on all
Apples. The SYNC signal was not connected to pin
19 of Slot 7 in Revision 0. Also in Revision 0, the
vertical sync was three times as long as later revi-
sions with no horizontal serrations. You can make
the sync separator work in Revision 0 by jumpering
SYNC (C13-8) to pin 19 on any slot, but there would
be no horizontal syne to detect during the long verti-
cal syne period. A second problem occurs in Revi-
sion 7 motherboards. In Revision 7, video generation

Timing Generation and the Video Scanner 3-21

was changed so that the three horizontal serrations
in the vertical syne became double pulses. This dou-
ble pulse was changed back to a single pulse in the
RFI Revision. The result is that digital processing of
the Apple SYNC signal must tolerate or mask out
the second pulse if it is to work with Revision 7
Apples.

Some readers might be surprised to find it is also
possible to synec a non-Slot 7 peripheral card to the
video scanner without connecting jumpers to the
motherboard. In fact, it is possible to duplicate the
entire video scanner on a peripheral card with no
jumpers to the motherboard. The reason for this is
that data from the video scanner is present on the
data bus when PHASE 0 rises on all 6502 read
eycles. Suppose you build a counter just like the
videoscanner and put it on a peripheral card. Call it

The falling edge of

the seanner simulator. Then devise hardware to
read flag bits from the data bus. Finally, cause the
scanner simulator to preset when the flag bits are
detected. The flag bits are set up by a program, and
the scanner simulator preset is enabled by program
control. This only has to be done once, after which
the two video scanners will remain in sync until
power is removed from the Apple.

Figure 3.13 is a five chip circuit which duplicates
the vertical portion of the video scanner on a periph-
eral card. It is made up of a mod-262 counter, a long
pulse detector, and asynchronizer to sync the count-
er to the vertical section of the video scanner. The
long pulse detector simply detects the Apple’s long
cyele, which occurs once every horizontal scan at the
beginning of the horizontal blanking period. This
long pulse is easily detected from any peripheral

the pin 19 signal 5V
represents
HORIZONTAL SYNC %3" 1/2 of LS109
Ttﬁ 11 Rt 16| A5 _l——l_
Vee LOAD ol o PR s o
TELEVISION SYNC J a ‘S,E":!ECAL
. S5 UP/ 7415191 MAX/ |12 — I4 s
i DOWN |JP/DOWN COUNTER MN 3 K .
K >I?K GND COUNT ENABLE R CLR o
- ol |

| |

SLOT 7, PIN 19 U

VERTICAL SYNC: LS109, PIN 6

Figure 3.42 Circuit to Separate a Vertical Sync Pulse from the Television Sync Signal at Pin 19 of Slot 7.

3-22 Understanding the Apple I

V= L 7418161 p
8 74L5161 B
.| o4 11
LONG PULSE DETECTION i E- .-
t 741873
™M) S e T
LL VY L 1y of—wa
1 5
—q
>GK _C>CK
3 K Q 13 10 K by 8
£ CLR ll
PHASE 1 Tz 741573 36
®) A
0 qu ; VERTICAL
CeTcEr Wox | COUNTER
7415161
3 14
” PO aoP4—vs
4 13
P1 13
%:m B 01 Ve
S1po a2}2— vo
&f ps i
—1qcLr PEpS
PROGRAMMED SYNCHRONIZER 16
74LS73 15
w0l 71 2
CET CEP Vg
1
dcLr
pep?
7415161
31pg o 4—v2 A
411 atf3—uv3
5 12
e P2 02l 2—v4
11
_E—ﬁ- P3 asp—vs
5V
TC
15
13 3K

11
L 17| Lso3
12] LS03 Jo

Figure 3.413 Circuit that Duplicates the Vertical Section of the Video Scanner.

Timing Generation and the Video Scanner 3-23

card, because the TMHz clockpulse falls twice dur-
ing PHASE 0 ¢ Q3’ of the long cycle, but only once
during PHASE 0 e Q3 of a normal cycle. In Figure
3.13, every time TM falls twice during PHASE 0 »
Q3’, the vertical counter counts. This means the ver-
tical counter counts horizontal scans.

The vertical counter is nearly identical to the ver-
tical portion of the video scanner. It uses 74LS161
counters which preset on overflow to -262. The LSB
(VA)is mechanized on one half of a 74LS73 flip-flop.
The main difference between this vertical counter
and the video scanner is that this counter has its
CLEAR input connected to the programmed syn-
chronizer. This circuit will detect the top displayed
line of the television scan and clear the vertical
counter. The synchronizer is designed to detect flags
stored in bits D6 and D7 of scanned memory.
Memory is flagged as follows:

1. Clear all HIRES, Page 1 ($2000-$3FFF).
HIRES, Page 1 is selected because clearing it
will not clobber BASIC or DOS.

2. Place a $40 at memory location $3FD0. (See
Figures 5.9 and 5.17.) This is the first byte
scanned during line 191 displayed, and it isonly
scanned once per television scan.

3. Place a $80 at memory location $3827. This is
the last byte scanned during line 6 displayed.

Once memory is flagged, the video counter is
synced by performing a reference to $C080,X then
waiting 21686 or more cycles in a non-writing wait
routine. What happens is this:

1. The reference to $C080,X enables monitoring of
D7 and D6 while PHASE 0 rises.

2. Within 17030 cycles, $3F D0 is scanned, driving
out D6 true. This causesthe CLEAR linetodrop
low, clearing the vertical counter and holding it
clear.

3. The CLEAR line is held low for 5045 cycles until
$3827 is scanned, driving out D7 true. This
brings the CLEAR line high and disables fur-
ther monitoring of D7 and D6. This allows the

vertical counter to start counting with the first
long cycle at the beginning of line 1.

Figure 3.14 is an assembly language subroutine to
syne the video counter. After running this subrou-
tine, the counter will remain in syne in all video
modes until the computer is turned off or an acci-
dental reference is made to $C080,X. Control com-
mands can be made at addresses with Al set
($C082,X for example) and they will not affect the
video counter.

Figure 3.15 is an example of what one could do
with the video sean information on a peripheral
card. This circuit will generate an interrupt before
any one of the 256 horizontal scans beginning with
line 0. The eight bit interrupted scan number is
saved in an octal latch, and a pair of 74LS85 magni-
tude comparators tell when the video scan is equal to
the line number to be interrupted.

The ecircuits of Figures 3.13 and 3.15 are com-
bined on the prototype card pictured in Figure 3.16.
This programmable scan interrupter represents a
considerable enhancement to the Apple II, imple-
mented on just eight TTL chips. Program control of
this card in Slot 0 would be as follows:

$COR0 Synchronize scanner simula-
tor as in Figure 3.14 program.

$C082 IRQ’ disabled; IRQ’
acknowledged.

$COR3 IRQ’ enabled; IRQ’
acknowledged.

STA 8CO8X Set number of scan to be
interrupted.

The circuits shown in this application note are
useful by themselves but could also be used in com-
bination with other circuits. The resourceful de-
signer can use video scan synchronization, long
pulse detection, scan interruption, and Slot 7 syne
separation to create exciting new capabilities for
the Apple.

3-24 Understanding the Apple ||

SOURCE FILE: SYNC INTERRUPTER SLOT7
hkhkhkhkhhhhhhkhhhhhhkhhhhhhhkhkhhkhkhrkhkhhrkhhkkhhhrkkhkkhkk kX kX

0eea: 1
0o00: 2 * il
0000 : 3 * *
0e00: 4 * SYNCHRONIZE VIDEO SCAN SIMULATOR *
9000 : 5 * i
@e0a: 6 * BY JIM SATHER *
0000 : 7 * N
0000 : g * 1/28/83 *
@000 : 9 * *
003 : 10 * "
gggg: 11 ek gk A deodk d g dedo g dede e de g db ok ko o de gk de ko de ke de gk de g ok de ok ok e sk e e e e ok e e e ok ke ok ke e ke ke ek e ok
0000 : 12 *

0e00: 13 *

0006 : 14 BASL EQU $9¢6

ga07: 15 BASH EQU S@7

670 : 16 SLOTNUM EQU $70

3827: 17 LINE6 EQU $3827

3FDO: 18 LINE191 EQU $3FD@

c@s59: 19 GRAFIX EQU S$C@5@

ces2: 20 NOMIX EQU $C@52

C@54: 21 PAGEL EQU $C@54

cas7: 22 HIRES EQU $C@57

0000 : 23 *

@000 : 24 *

Gooa: 25 *

m~==== NEXT OBJECT FILE NAME IS SYNC INTERRUPTER SLOT7.0BJ@

1000: 26 ORG 51000

10@6:AD 50 CO@ 27 SYNCIT LDA GRAFIX

16@3:AD 52 C@ 28 LDA NOMIX

10@6:AD 54 CO@ 29 LDA PAGEl

1609:AD 57 CO 30 LDA HIRES

100C:A9 20 31 LDA #520 CLEAR SCREEN MEMORY

160E:AA 32 TAX

10@F:85 @7 33 STA BASH

1911:29 @0 34 LDA #0

1813:85 @6 35 STA BASL

1615:A8 36 TAY

1816:91 @6 37 BLANKLP STA (BASL) ,Y

1018:88 38 DEY

1919:D0 FB 39 BNE BLANKLP

181B:E6 @7 40 INC BASH

1@1D:ChA 41 DEX

1@1E:D@ F6 42 BNE BLANKLP

1020: 43 *

1020: 44 *

1020:A9 40 45 LDA #S540 SET FLAGS

1622:8D D@ 3F 46 STA LINE191

1825:A9 8@ 47 LDA #5580

1927:8D 27 38 48 STA LINEG6

102a:A2 70 49 LDX #SLOTNUM

102C:BD 80 C@ 5@ LDA $C@84,X ENABLE D7 & D6 MONITORING

102F:a2 11 51 LDX $#17 WAIT 21829 CYCLES

1631:88 52 WAITLP DEY

1832:D0 FD 53 BNE WAITLP

1034:Ca 54 DEX

1635:D0 FA 55 BNE WAITLP

1937:60 56 RTS

**% SUCCESSFUL ASSEMBLY: NO ERRORS

Figure 3.14 Assembiler Listing: Syncronizing the Video Scan Simulator.

Timing Generation and the Video Scanner 3-25

.|| ey L
f L
16 s
—+— 741885
Ty 7
WL T R = .
T L1 prrrramy [

AW’ @

opD—
f
||[—|

4 5 12
D1 ®_7 o1 o A1
741585

vc—4e COMPARATOR

B2
02 HDZ w2l 1,
8

Vo
D3 .—5 D3 wf L} P
ouT
T4LS377 71 5] 8
OCTAL 1
D-FLIPFLOP [
Vi B0 IN
o (6) b, ol 10},
ve — g

5@ i o5 T s

v3—14lg, COMPARATOR

va -
18 19 15
D?.im ar A T
@ /A\CK < CIU= = 5V
n 7 5 6
I 3K
4
Hq '
—dp o ;LS[B 3
oc
_r 3> !"—‘“‘
CK |
741574 CLR
1
DEVICE (7 ‘])
SELECT
Ao
PR
A0 (2 2l ™ g
j- !1>
CK
CLR

- Lr‘13
Figure 3.15 AProgrammable Interrupter. it Generates an Interrupt Before Any One of 256 Selected Horizon-
fal Lines.

3-26 Understanding the Apple I

Figure 316 A Programmable Video Interrupter Card.

t
=)
[IIII

l

The 6502 was designed by MOS Technology in the
mid 1970s as part of their MCS6500 series micro-
processor family. It has been a popular choice as a
microprocessor for personal computers, being used
in computers produced by Apple, Atari, Commo-
dore, Ohio Scientific, Rockwell International, and
other manufacturers. Only the Z80 could compete as
the MPU most often found in big selling microcom-
puters. The 6502 gives adequate computing speed
and versatility at a very low cost. Its programming
language is very simple, making itan ideal MPU for
the occasional computer programmer.

The most important 6502 related knowledge for
an Apple owner to attain is programming knowl-
edge. The ability to read and write 6502 assembly
language programs greatly expands the horizons of
an Apple computerist. 65602 assembly language is
not, however, a major topic of this book. These pages
are concerned primarily with the hardware imple-

chapter 4

The 6502
Microprocessor

mentation of the 6502 in the Apple II computer.
Volumes have been written about various aspects of
the 6502, especially programming. The choice of
6502 topics in this chapter was governed by the
unique features of 6502 use in the Apple, and by the
goal of this book to fill information gaps in Apple
literature available to the public.

Manufacturers of the 6502 are:

MOS Technology, Inc.
950 Rittenhouse Rd.
Norristown, Pa. 19403

Synertek, Inc.
P.O. Box 552
Santa Clara, Ca. 95052

Rockwell International
Microelectronic Devices
P.O. Box 3669, RC55
Anaheim, Ca. 92803

4-2 Understanding the Apple Il

VS5 (GROUNDY — 1 40 |— RESET
READY —1 2 39 = PHASE2
PHASE1 =— 3 38 |— SET OVERFLOW
IRQ — 4 37 p=— PHASED
NC — 5 ¥ —NC
NMI — & 35 — NC
SYNC — 7 6502 MPU M — AW
VCC (+5V) —] 8 13— 00

Al — 9 RI—m
A — 10 N j—02
A2 — 11 »E—0
A3 — 12 2 l—DM
A — 13 % [— 05
A5 — 1 21— 06
A6 — 15 % — 07
AT — 16 & p— Al
AR — W M — A4
A3 — 18 23— A1
AlD— 19 22 — A2
Alt— 20 21— VSS IGROUND)
Figure 44 6502 Pin Assignments.

6502 SIGNALS

There are 40 pins on a 6502, three of which serve
no function. In addition to the address output and
data input/output, there are four outputs (R/W’,
PHASE 1, PHASE 2, and SYNC) and six inputs
(READY, IRQ’, NMI', PHASE 0, SET OVER-
FLOW’, and RESET’). There are three power
supply connections. One pin requires +5 volts and
two pins require ground. Figure 4.1 shows the 6502
pin assignments. Figure 4.2 shows the 6502 hard-
ware implementation in the Apple. A brief discus-
sion of the 6502 signals with Apple implementation
notes follows.

Clockpulses—PHASE 0, PHASE 1, PHASE 2

The 6502 has most of its required clockpulse gen-
eration circuitry built-in. It requires only an exter-
nally generated time base which can be implemented
in several ways. In the Apple, the PHASE 0 time
base is developed independent of 6502 internal cir-
cuits and fed as the clockpulse input to the 6502.

The 6502 generates its required PHASE 1 and
PHASE 2 clocks from the PHASE 0 input. PHASE
1is high during the first half of a machine cycle, and
PHASE 2 is high during the second half of a
machine cycle. PHASE 1 is not the simple inversion
of PHASE 2. There is a slight delay between the
PHASE 1transitions and the PHASE 2 transitions.
The rising edge of one always follows the falling
edge of the other. The PHASE 1 and PHASE 2

clocks are available at pins 3 and 39 of the 6502.
PHASE 2isnot connected in the Apple. PHASE 1is
used to control the direction of data flow in the
external MPU data bus transceiver during MPU
write cycles.

Address and R/W’

During every machine cycle, the 6502 places an
address on its address output. In association with
the address it outputs, it brings its R/W’ line high or
low, thereby telling the world whether it wants to
read or write data. With 16 address lines, the 6502 is
capable of producing 65536 different values at its
address output.

The 6502 address and R/W’ outputs are not tri-
state, but in the Apple these signals are connected to
the address bus through external tri-state bus
drivers. This enables peripheral cards to gain
access to the address bus via the DMA’ line.

Data Bus

The data input/output of the 6502 is eight lines.
This gives the 6502 its overall classification as an
8-bit microprocessor. Data direction is inward ex-
cept during PHASE 2 of write cycles.

In the Apple, the 6502 data lines are connected to
the data bus through external bidirectional bus
drivers. These drivers enable the 6502 to write to
the data bus with all the devices that are connected
to it. Data direction in the external data drivers is
from the data bus to the 6502 except during write
cycles when the 6502 PHASE 1 clock is low.

The 6502 Microprocessor 4-3

.
RIW' 9 ALS32
A)= 2 . TWO 87285 REPLACED
NC NC BY ONE 8304 IN
ADDRESS BUS —=v A RFI REVISION
SYNC PHSZ _ VCC PHST
AW 5 _~14 EL] Py b DATA BUS
10 DO J= a— [0
20 1l 12]
15
Al 51 4 0], L
(“ D1 f=)1
A2 L&l A2
0
23 9 G i H7/H8 .
Bt 6502 02 > ﬁl b2
g MPU 2
9 10 14 14
AS A5
1 D3 20 'ﬁ p—[3
A6 1l 12510
|-Ty
A7 716 16|, 5
0 D4 j= 3 [
A8 5 14 17 ug
e
29 31 12 18, -
@ D5 |- t<—»[)
A0 7! LU Y
10
Al 1 Aaf2—20 a1 o
PO D6 = f—06
A2 3402 o 2an
e
AT3 3 el e a3 "
10
D7 7
Al 13 b2 Jarg
150
AT5 B, 25|
15 Y PHSO RDY NMI* IRQ’ RESET' VSS VSS SO i:-’
741504 37 2 6 4 a0k 21[304 RAOT
2|
> L (1778 1o
3] KEYBOARD
E.a) o T4LS08 CONNECTOR
HASE 0— = .
oA ! ‘ POWER-UP
RESE[U d 5] 2] 4 6
A 77
Y neser (21)
1RO’
NMI*
ROY
OMA
A22 33 2 2131 3 aA2121313 432333 433373 2233 a2 Y3 422131
A 190 1 A1 901 2I‘301_ 41941 q 4901 A1901 AR R 21901

SLOT | | SLOT SLOT SLOT SI:‘OT SIE_’UT SLOT SLTOT

Figure 42 Schemadtic: 6502 Connections in the Apple Il.

4-4 Understanding the Apple I

RESET’

The RESET’ input to the 6502 causes the 6502 to
start or restart. A RESET’ causes the 6502 to dis-
able interrupts and begin program execution at an
address stored in locations $FFFC and $FFFD of
ROM. 6502 operation is inhibited while RESET" is
held low. The RESET’ sequence begins when
RESET" transits from low to high.

In the Apple the RESET' line is connected to pin
31 of the peripheral slots, to the keyboard RESET
key, and to a circuit which generates a RESET’
when the computer is first turned on. A peripheral
card can either cause a RESET’, respond to a
RESET’, or ignore a RESET".

Interrupts—IRQ" and NMI’

The interrupts cause the 6502 to stop its sequen-
tial program execution and execute interrupt hand-
ling routines. Interrupts are normally associated
with input/output functions, but they are a way for
any type of device to get the microprocessor’s atten-
tion. The IRQ’ (Interrupt ReQuest) is enabled or
disabled by program control, so the 6502 doesn’t
have torespond toan IRQ". The NMI' (Non-Maskable
Interrupt) cannot be disabled by program control.

An NMI’ causes the 6502 to perform an interrupt
sequence after the current 6502 instruction has
been executed. The 6502 saves its program location
counter and its Status Register (with BREAK flag
reset) in an area of RAM called the stack. It disables
interrupt requests, then begins program execution
at the address stored in $FFFA and $FFFB of
memory. The NMI’ input to the 6502 is edge sensi-
tive, meaning the 6502 respondsonly toa high to low
transition of NMI'. To generate a second interrupt,
the NMI' line must be brought high, then low again.

An IRQ' causes the 6502 to perform an interrupt
sequence after the current instruction has been exe-
cuted if the program has interrupt requests enabled.
The IRQ’ sequence is identical to the NMI’ sequence
except the address of the IRQ’ handling routine is
stored at SFFFE and §FFFF. The IRQ' signal is not
edge sensitive, so the IRQ" must go high before
interrupts are enabled again, or the same interrupt
will be answered more than once.

The interrupt inputs to the 6502 are connected to
the peripheral slots in the Apple. There are no
motherboard devices which generate 6502 inter-
rupts, and I/O in the Apple II is normally accom-
plished without interrupts. Most real time clock
cards are capable of generating interrupt requests,

and cards which dump Apple memory te disk are
based on non-maskable interrupts. The IRQ’ line is
tied to pin 30 of the peripheral slots and the NMI’
line is tied to pin 29.

READY

Bringing the READY input to the 6502 low dur-
ing the PHASE 1 clock in a read cycle causes the
6502 to go into its wait state. In the wait state, the
6502 holds the current address and does nothing.
The wait state lasts until READY is sensed high
during PHASE 2. If the high to low transition
occurs during a write cycle, the wait state will not
begin until the next read cycle.

The wait state of the 6502 can be used for interfac-
ing to slow memories, single step operation, slow
step operation, or just plain stopping the MPU
indefinitely. It has no impact on the Apple’s video
circuitry or on RAM refresh, so the video display
appears frozen on the screen when the 6502 is halted
via the READY line. The READY line in the Apple
is connected only to pin 21 of the peripheral slots.
This 6502 capability has gone largely unexploited in
the Apple.

SYNC

The 6502 SYNC output goes high when the 6502 is
performing an op code fetch. This is the first cycle in
the execution of any instruction in which the 6502
fetches the one byte operational code of the instrue-
tion. The SYNC signal can be used for single
instruction execution steps (in conjunction with the
READY line) and otherwise identifying the op code
of a 6502 instruction. The SYNC output of the 6502
is not connected to anything in the Apple. It cannot
be used in the Apple without modifying the mother-
board or jumpering it to a circuit.

SET OVERFLOW'

A high to low transition on the SET OVER-
FLOW’ line sets the overflow flag of the 6502. The
overflow flag is normally set or reset as a logical
result of some 6502 instructions, but the SET
OVERFLOW’ input forces the flag regardless of
instruction execution.

The SET OVERFLOW' input has limited value
as a control input, because it must be used only in
conjunction with instructions that affect the over-
flow flag or in avoidance of such instructions so as
not to interfere with them. It is not used in the
Apple, but is tied directly to ground.

The 6502 Microprocessor 4-5

6502 CONNECTIONS IN THE APPLE

Figure 4.2 shows the 6502 hardware implementa-
tion in the Apple. Address, R/W’, and data connec-
tions are routed to the address bus and data bus
through external drivers. The PHASE 0 clock
comes from the timing generator, gated by DMA’
from the peripheral slots. All other signals are con-
nected directly to the peripheral slots.

The method of tying the 6502 control inputs to
multiple sources is called wire-ORing or collector-
ORing. A logical OR function is achieved by tying
lines directly together. As an example, if Slot 0 OR
Slot 1 OR any other slot pulls pin 29 low, the 6502
will sense a non-maskable interrupt. In a wire-OR
circuit, the line is pulled high by a voltage through a
resistor if no card is pulling the line low. Peripheral
cards should not try to pull the wire-OR lines high.
They either pull the line low or present a high imped-
ance to the line, usually by driving the line with open
collector TTL circuits. The 6502 literature specifies
that 3000 ohm pull-up resistors be used for wire-OR
inputs to the 6502. Apparently this is not a particu-
larly important specification because the Apple
works fine with 1000 ohm pull-up resistors.

The tri-state address bus driver is necessary for
DM A operations because the 6502 address and R/W’
connections are not tri-state. The address drivers
used in the Apple are 8T97 6-bit tri-state busdriver.
The data bus drivers are 8T28 4-bit transceivers in
older Apples. The two 8T28s were replaced by a
single 8304 in the RFI Revision. These transceivers
increase the data bus driving capability of the 6502
on write cycles. On read cycles they have a different
effect. The Appledatabus isa heavy capacitive load
and it takes a while for a device to bring it low or
especially to bring it high. The transceiver acts like
a threshold detector on read eycles. As the data bus
gradually changes states, the voltage at the trans-
ceiver input reaches a threshold at which the trans-
eeiver output rapidly changes states. This presents a
cleanly switched data input to the 6502 as opposed to
the dirty data bus.

6502 MEMORY USAGE

Use of the 6502 in the Apple dictates various
aspects of the memory layout. For example, ad-
dresses $0-$1FF are always RAM in a 6502 system.
Apart from design dictates, the 6502 also uses parts
of memory so that they are normally not available
for Apple programs.

Page 0 and Page 1 ($0-8FF and $100-$1FF) of a
6502 system must be RAM simply because the 6502

has special read/write uses for Page 0 and Page 1.
Page 0 locations are used as indirect address loca-
tions in 6502 machine language. Additionally, the
6502 has a zero page addressing mode which
speeds and compacts programs making heavy use of
zero page locations for variousstorage functions. As
aresult, big machine language programs like Apple-
soft BASIC make heavy use of zero page locations. If
BASIC is operating and you indisecriminately POKE
values into zero page locations, you will deep six
BASIC. This is because the critical pointers of
BASIC will be lost. The following program must
erash:

10 FOR A =
NEXT A :

@ TO 255 3
END

POKE A,0Q :

Page 1 is the 6502 stack. The stack of a micro-
processor is an area of RAM which it uses as a last
in—first out memory. To the computer program,
the stack is like a stack of playing cards which it can
discard to or draw from. Conceptually, data is
stored to the top of the stack or withdrawn from the
top of the stack. The stack is actually part of RAM,
While the program pushes data toor pulls data from
the stack, the MPU must increment or decrement a
read address and keep track of where in memory the
"top” of the stack is. In the 6502, the location of the
"top” of the stack is stored internally in an 8-bit
register called the Stack Pointer. When the stack is
accessed, the 6502 addresses a location in Page 1 of
RAM determined by the Stack Pointer. Virtually all
machine language programs access the stack via
Jump SubRoutine and Return from SubRoutine
instructions, soat notime can a program indiserim-
inately modify Page 1.* The following BASIC pro-
gram will crash as surely as the earlier one:

1@ FOR A = 256 TO 511 :

POKE A,@ : NEXT A : END

The 6502 also dictates that the highest memory
location is SFFFF and that it will be assigned to
ROM. That $FFFF is the highest address is an
obvious consequence of the fact that the 6502 has 16
address lines. In a similar vein, the eight data lines

*Exceptions are copy protect schemes which call for program-
ming without JSR, RTS, PHP, PLP, PHA, or PLA instructions.
Inthese schemes, critical data is stored in Page 1 of memory, and
most attempts to examine memory result in the loss of the eritical
Page 1 data.

4-6 Understanding the Apple ||

APPLE PHASE 1 /

APPLE PHASE 0 \

6502 PHASE 1 f

6502 PHASE 2 _\

—
| e
-
e

i 4

Figure 4.3 6502 Clockpulse Relationships.

of the 6502 dictate that memory is organized into
8-bit locations. The reason for assigning the highest
address to ROM is that the 6502 RESET, NMI, and
IRQ vectors must be stored in locations $FFFA
through $FFFF. In particular, the RESET vector
in ROM enables the Apple to immediately begin
executing a non-erasable program at power up.
Since the 6502 has no special input/output control
features, it must control input/output functions
with commands decoded from the address bus. In
the Apple, addresses are assigned to the peripheral
slots and built-in I/0 funetions which could be oth-
erwise assigned to memory. This is referred to as
memory mapped I/0. It was logical in the Apple
design to assign the address space between RAM
and ROM to I/O. That way there are three contigu-
ous addressing groups RAM ($0-$BFFF), 1/0
($C000-$CFFF), and ROM (3D000-$FFFF).

6502 TIMING IN THE APPLE Il

The 6502 was designed to be similar to the Motor-
ola MC6800 microprocessor, but improved. The
clock requirements of the 6502 are the same as the
MC6800, two alternating positive pulses. In the
MC6800, the two clocks must be generated exter-
nally and input. In the 6502, the two clocks are

generated internally from the PHASE 0 clock
input. This is one of the 6502 improvements.

The relationship between the PHASE 0 clock
input and the PHASE 1 and PHASE 26502 clocks 1s
shown in Figure 4.3. The PHASE 1 and PHASE 2
clocks are not symmetrical but are low slightly
longer then they are high. The high period of one
clock always fits neatly inside the low period of the
other. The PHASE 1 and PHASE 2 transitions are
clocked by the transitionsof the PHASE O inputina
repetitive eycle. The falling edge of PHASE 0 is
followed by the falling edge of PHASE 2 and then
the rising edge of PHASE 1. The rising edge of
PHASE 0 is followed by the falling edge of PHASE
1 and the rising edge of PHASE 2. To put it differ-
ently, PHASE 0 falling clocks the end of PHASE 2
then the beginning of PHASE 1, and PHASE 0
rising clocks the end of PHASE 1 then the begin-
ning of PHASE 2.

The effect of the long eycle on 6502 clocks is to
elongate PHASE 2 by 140 nanoseconds. This has no
particular ill effects outside of program timing con-
siderations mentioned in the previous chapter. By
lengthening PHASE 2, all response criteria for
communicating with the 6502 become less critical.
The following timing discussions are valid for either
a normal cycle or a long cycle, but the diagrams
picture normal eycles. The timing specifications of
the 6502 are not affected by the long cycle.

The 6502 Microprocessor 4-7

The 6502 PHASE 1 clock is not the same as the
PHASE 1 signal developed in the timing generator.
PHASE 1 from the timing generator is simply
PHASE 0 inverted. It was named PHASE 1 because
of its kinship with the 6502 PHASE 1 clock. Seman-
tic ambiguity is a great way to confuse those who
would understand. The term which is distributed to
the peripheral slots, address decode, and RAM is
PHASE 1 from the timing generator. The 6502
PHASE 1 clock is used only inside the 6502 and for
control of the external MPU bidirectional data bus
driver. In this chapter only, "PHASE 1" refers to
the 6502 PHASE 1 clock. Outside of this chapter
"PHASE 1” refers to the inversion of PHASE 0,
distributed from the timing generator.

Timing specifications in the 6502 are referenced
to the rising and falling edge of the PHASE 2 clock
(at the .4V point). Important 1 MHz timing specifi-
cations for MOS Technology 6502s are shown here
with Synertek and Rockwell International ratings
shown in parenthesis when they differ:

1. The 6502 address and R/W' line will be valid
within 300 nanoseconds (225 nsec Synertek; 225
nsec Rockwell) after the falling edge of PHASE
2. They will stay valid until at least 30 nanosec-
onds after the next falling edge of PHASE 2.
The address becomes valid during PHASE 1.

2. 6502 writedata will be valid within 200 nanosec-
onds (175 nsec Synertek; 175 nsec Rockwell)
after the rising edge of PHASE 2. The write
data will remain valid until at least 30 nanosec-
onds (60 nsec Synertek) after the falling edge of
PHASE 2.

3. 6502 read data must be valid at least 100
nanoseconds (50 nsec Rockwell) before the fal-
ling edge of PHASE 2 and must be held valid at
least 10 nanoseconds after the falling edge of
PHASE 2. PHASE 2 falling is the 6502 data
transfer clock.

4. The maximum delay between PHASE 0 falling
and PHASE 2 falling is 656 nanoseconds. The
maximum delay between PHASE 0 rising and
PHASE 2 rising is 75 nanoseconds. These values
are specified only by Synertek and only with a
100 picofarad load on PHASE 2.

The time periods represent worst case conditions
over an operating range from 0 to 70 degrees centi-
grade. Worst case timing specifications are shown
in Figure4.4. MOS Technology time values are used
because they are more conservative than Synertek
and Rockwell and, therefore, represent the actual
worst case. Synertek values for PHASE 0to PHASE
2 delay are used because MOS Technology and
Rockwell don’t publish this important specification.

Ten nanoseconds could probably be subtracted from
the clockpulse delay specifications to reflect the fact
that there is no load on PHASE 2 in the Apple.

The Synertek, MOS Technology, and Rockwell
International 6502s are probably all made the same.
When one company gives tighter specifications than
another, itobligates itself to test its microprocessors
using more difficult eriteria. We shall soon see that
the worst case timing specifications are pretty far
beyond typical operation in any case. They had bet-
ter be, because the Apple design doesn’'t meet the
MOS Technology/Synertek 100 nanosecond mini-
mum requirement for 65602 read data setup when
reading from RAM.

Figure 4.5 is a diagram showing the timing rela-
tionships actually found in one Apple. The mea-
surements were made in an Apple using a Synertek
SY6502 marked 78360 (December 26, 19787?). Fig-
ure 4.5 may be considered fairly typical of 6502
timing in the Apple. The important features of Fig-
ure 4.5 are:

1. PHASE 1 and PHASE 2 transitions occur
roughly 30-35 nanoseconds after PHASE 0
transitions at the peripheral slots.

2. The 6502 address becomes valid 128 nanosec-
onds after PHASE 0 falls at the peripheral
slots. This indicates a setup time of under 100
nanoseconds from PHASE 2 falling, far under
the 300 nanosecond maximum. In a typical
Apple, the address is valid before Q3 falls dur-
ing PHASE 1. This is probably true of most
Apples and perhaps all Apples.

3. Write data becomes valid at the data bus 120
nanoseconds after PHASE 0 rises. This is well
under the MOS Technology maximum of 200
nanoseconds setup time from PHASE 2 rising.
6502 write data must be valid before CAS’ falls
for it to be read by RAM. CAS' in the Apple falls
209.5 nanoseconds after PHASE 0 rises, but
CAS’ falling is delayed to RAM by 20 nanosec-
onds typical and 32 nanoseconds maximum.
Therefore, 6502 write data in the Apple that
becomes valid on the data bus 200 nanoseconds
after PHASE 2 begins to rise will be read cor-
rectly if the PHASE 0 to PHASE 2 delay is no
more than about 40 nanoseconds.

4. Read data from RAM becomes valid at the 6502
just 35 nanoseconds before PHASE 0 falls or
about 67 nanoseconds before PHASE 2 falls.
Thus the Apple design does not meet the 100
nanosecond setup time required by MOS Tech-
nology and Synertek. A 100 nanosecond setup
time is unusually long. One wonders which
magician pulled that number out of his hat.

4-8 Understanding the Apple |l

PHASE 2 falls 65 nsec maximum
after PHASE 0 falls.

J

-

PHASE 2 begins to rise
75 nsec maximum after
PHASE 0 rises.

PHASE 0

PHASE 2 Ne

. -

/ N

' Read Data must be held valid
10 nsec minimum after
PHASE 2 falls.
Write Data will be held

30 nsec minimum after

Address and R/W' Write Data is PHASE 2 falls.
are valid 300 valid 200 nsec Read Data must
nsec maximum maximum after be present 100
after PHASE 2 PHASE 2 begins nsec minimum
falls. to rise. before PHASE 2
falls.

Figure 44 Some Worst Case 6502 Specifications.

Specific timing of 6502 communication with var-
ious Apple devices will be discussed in chapters
covering those devices. Listed below are some gen-
eral guidelines for Apple peripheral design. They
serve to illustrate the basies of Apple bus manage-
ment. The primary data bus management signal is
the RAM SELECT' term generated in the RAM
address multiplexor. The RAM chapter should be
studied to clarify the details of 6502 communication
in the Apple.

1. The 6502 address can be read before PHASE 0
in time to trigger a DMA action that same cycle.

9. Write data from the 6502 can be clocked to a
peripheral by the falling edge of PHASE 0.

3. Read data from peripherals should be valid on
the data bus by 45 nanoseconds before the end of
PHASE 0, and should stay valid at least 40

nanoseconds after PHASE 0 has fallen. 45 nano-
seconds does not meet the MOS Technology/
Synertek 100 nanosecond data setup specifica-
tion, but it is not necessary todoso. If it were, the
6502 could not read RAM in the Apple.

4. Atapproximately 60 nanoseconds after PHASE
0 falls, the latched RAM data output is gated to
the data bus. Peripherals should present a high
impedance to the data bus by this time.

The requirements for read data being on the data
bus before and after PHASE 2 can be met in a
peripheral by gating read data with DEVICE
SELECT'. This signal does not overlap PHASE
2. but the data stays valid on the data bus until
after PHASE 2 anyway. When the data bus of the
Apple is floated (when all devices on the data bus
present a high impedance to the data bus), the last

The 6502 Microprocessor 4-9

"sdiysuoypjey Bujwi] Z0s9 IDjusWIadX3
€059 1E pijeA sng ele(q 1e
WYY woJj ejeq peay pliea ejeq ajlim
J3su
19
285U 021 —™
IL 285U GE

Ay

295U GE |1_ —
Ay

S'v ainbiy

sng ssaippy
1B pljeA ssaippy

Jasu gg| —»

285U 28

295U pE

Ay

¢ 3SVHd

985U 6/2

h

A /

I 3SVHd

€0

A'e

- 005U (] —————

A

/\

/ 0 3SVHd

SVJ

4410 Understanding the Apple I

e

PHASE 0

%

PHASE 2

DEVICE SELECT'

RAM SELECT' TO DATA BUS (B6-15)

Data Bus floats /

during PHASE 2

falling, but data

remains valid on
the bus.

Figure 4.6 Reading the Disk Input Port Using Device Select'.

valid data on the data bus at the time it was
floated remains valid until the bus is brought
back under positive control. Therefore, if the data
bus is floated just before PHASE 2 falls, the 6502
will still read the last valid data before the data bus
was floated.* As an example, Figure 4.6 shows a
read access to a peripheral slot data input address.

APPLE PROGRAMMING

There are four levels at which programs can be
written in the 6502 based Apple: 6502 machine lan-
guage, 6502 assembly language, high level compiler
language, and high level interpreter. The order of
listing is from most difficult to least difficult.

*] assume that the data is stored on the data bus via capacitive
charges. I am not sure how long it would take to discharge the
bus, because the bus is normally floated for a maximum of about
700 nanoseconds (during a LDA $C050 in a long 6502 cycle, for
example), It takes mueh longer to discharge the bus than to
charge it. A T4LS257 can bring the data bus to 63% of its high
state in about 35 nanoseconds. Assuming a collector impedance of
100 ohms in the L8257, this indicates a charging capacitance of
350 picofarads. The disk controller (see Chapter9) is an example
of a peripheral whichuses DEVICE SELECT to gate data to the
data bus for reading by the MPU. The controller could not suc-
cessfully transfer data to the MPU if it weren't for the slow
degradation of data when the data bus is floated. Since the disk
controller works reliably, it is my coneclusion that the DEVICE
SELECT' signal can be used to gate data to the data bus for
transfer to the MPU in Apple peripheral designs.

A 6502 machine language program is a series
of numerie bytes. The bytes are stored in sequence in
memory where the 6502 accesses them by incre-
menting the address bus and reading the program
while executing. 6502 machine language instruc-
tions consist of one, two, or three bytes in succession.
Each instruction consists of an op code and possibly
a one or a two byte operand. Execution of a three
byte instruction requires three cycles to fetch the
instruction plus additional eycles to execute the
instruction.

The 6502 has a setof internal registers which are
manipulated by the program. A 6502 program per-
forms its functions by overseeing the interplay
among the internal registers and memory. The 6502
internal register complement is made up of five
8-bit registers and the 16-bit Program Counter. The
following is a list of the registers and their funetions:

REGISTER FUNCTION

Program Counter Contains current address of
instruction being executed.

Accumulator Principle arithmetic and logi-
cal register.

X-register Index register.

Y-register Index register.

Stack Pointer Contains current stack address.

Contains flags indicating 6502
operating modes and logical
results of instructions.

Status Register

The 6502 Microprocessor 4-14

Generally, programs center around the Accumula-
tor and memory with the X- and Y-registers being
used for address indexing. Values of the Program
Counter, Stack Pointer, and Status Register are
automatically kept by the 6502 and don’t usually
have to be accessed directly by the program. Provi-
sions exist for direct control of the Stack Pointer and
processor status. The Program Counter is controlled
by the flow of the program.

The following is a three instruction 6502 machine
language program listed in hexadecimal:

oP ADDRESS ADDRESS

CODE LOW HIGH
AD 89 1D
85 16
00

The first instruction loads the 6502 Accumulator
from address $1D89. The second instruction stores
the 6502 Accumulator contents at address $16. The
final instruction is a BREAK instruction which
terminates the program. The purpose of the pro-
gram is to transfer the contents of $1D89 to $16.
Machine language programs may be entered and
executed from the Apple monitor using methods
described in the Apple IT Reference Manual.

Assembly language is a way of writing machine
language programs with computer assistance. Many
aspects of machine language programming are per-
formed better by computer than by humans. Some
such aspects are remembering op codes, addition
and subtraction of addresses, remembering ad-
dresses of subroutines, and checking for syntax
errors. Assembly language assists the programmer
with these and other details and allows the use of
English language symbology for addresses, oper-
ands, and opcodes. A prime goal in computer
language development is English language com-
patibility.

The same program that was listed above in
machine language is listed here in assembly
language.

LABEL. OP CODE ADDRESS COMMENT

RESTORE LDA $1D89 RESTORE SAVED POINTER
STA $16
BRK

This program contains English language which
cannot be executed by the 6502. A computer can,
however, take this program and convert it to 6502
machine language program. A program that does

this is an assembler. An assembler takes an assem-
bly language source program and assembles from
it a machine language object program.

6502 programs can be assembled in disk-based
Apples using any of several commercially available
assemblers. This is the best way for most Apple
owners to write extensive 6502 programs. Com-
pared to almost any computer, minicomputer, or
microprocessor machine language, 65602 machine
language is very simple to use. This extends to 6502
assembly language. There are only 56 mnemonic
codes to learn, and the logical selection of mnemon-
ics makes this a simple learning task.

The simple instruction set has advantages and
disadvantages. The chief disadvantage is that in
some instances a program will require more instruc-
tions to accomplish a purpose than it would if power-
ful special purpose instructions were available. This
can result in loss of speed and waste of memory
space in somé programs. One should not get the idea
that 6502 is without powerful features. It has a very
versatile set of addressing modes and a decimal
mode which speed execution of certain types of pro-
grams considerably. It’s just that there are more
powerful and complex microprocessors around.

The chief advantage of the simple instruction set
is easeof programming. A second advantage is that it
made it easier for the Apple designer to include
a 6502 disassembler and Mini-Assembler in
the firmware of the original Apples. The Mini-
Assembler in ROM is an invaluable aid to students
and practitioners of 6502 programming. It comes as
an associated utility with Integer BASIC and is
available to Apple users who have Integer BASIC.

The Mini-Assembler has some characteristics of a
full assembler. It automatically translates mne-
monic op codes and 6502 assembly language conven-
tion operands to 6502 machine language code. It also
automaticaly computes relative branch references
from absolute address entries and checks for syntax
errors. In other words, it allows machine language
code to be immediately translated and entered from
assembly language keyboard entries. Some very
important assembly language capabilities are lack-
ing in the Mini-Assembler. There is no English lan-
guage symbolism except for the op code mnemonics.
Also, there is no relocatability feature which is
inherent with full assemblers. 6502 machine lan-
guage is usually not relocatable, but machine code
can be assembled to operate at any valid memory
location from an assembly language source pro-
gram. Still, there is no easier way to write and enter
a short 6502 program than on the Apple’s Mini-
Assembler.

412 Understanding the Apple lI

As an example for Apple users who may never
have used the Mini-Assembler before, here is a short
sequence of keystrokes to enter some 6502 code.
Start by entering Integer BASIC. If you do not have
Integer BASIC, you probably don’t have the Mini-
Assembler.

SCREEN PROMPT /

KEYBOARD ENTRIES REMARKS

>CALL-2458 Enter Mini-Assembler

! 1@00@: LDX #1¢

! JS5R FF3A Use Apple's BELL
routine

! DEX

! BNE 10402

! RTS

! [CTRL-RESET| Re-enter BASIC

>CALL 4096 Call Bellringer

This program calls the BELL routine in Apple
firmware 16 times. This is the end of assembly lan-
guage instruction in this book. Persons who wish to
learn more c¢an do so by reading the Apple I Man-
ual and studying the listings of the Autostart ROM
and Monitor ROM. There are several 6502 assembly
language books which one can purchase. The best
way of all to learn is to buy an assembler and start
programming.

Another way to produce machine code involves
the use of compilers. Programs may be written in
high level languages such as BASIC, Pascal, and
FORTRAN. High level language programs consist
of powerful symbolic commands such as "PRINT”
and "=". A 6502 cannot execute such commands, but
computer programs (compilers) can examine such
commands and produce 6502 machine language
code which will cause the 6502 to perform the indi-
cated functions. _

A compiler is like an assembler in that it takes a
symbolic language source program and translates it
to a machine language object program. It is differ-
ent from an assembler in that whole machine lan-
guage routines are generated by a single compiled
instruction. Only one machine language instruection
is generated by an assembly language instruction.
High level languages are much more powerful than
assembly language in easing the task of the pro-
grammer. However, machine language code com-
piled from high level languages is generally less
efficient than code assembled from assembly lan-
guage programs. The programmer has direct con-
trol over the machine code generated in assembly
language, and human minds generate more effi-
cient code than compiler programs. With compilers,

as with assemblers, symbolic source code must be
entered with the assistance of a text editor. The
compiler source code must be compiled into machine
language object code before a program can be run.

In some ways, this process of converting a high
level language program to machine code is a nui-
sance. The object code must be compiled before it
can be run and debugged. In an alternate process, a
high level language program can be interpreted as
it is run. The interpreting program examines the
high level language commands during program
execution, and it directs program flow to resident
machine language routines which perform the indi-
cated functions. This is the process used with the
Applesoft and Integer BASIC languages supplied
with the Apple II computer.

Both the compiling and interpreting processes
are available for high level languages in the Apple
I1. In addition to the Applesoft and Integer BASIC
interpreters in common usage, compilers are avail-
able that will compile stored Applesoft and Integer
programs into machine language routines. These
routines will execute much faster than an interpre-
ter performing the same function, because the time
consuming interpretation process is separated from
execution. Compilers and interpreters for other
high level languages are also available.

Which language should you program in—assem-
bly language or a high level language? The answer
depends not only on the programmer’s background,
experience, and personal preference, but alsoon the
requirements of the particular application. Assem-
bly language is fastest and provides the most effi-
cient use of memory space. Some programs re-
quiring speed or large amounts of memory can be
written only in assembly language. Machine code
compiled from high level language source code
offers a great combination of programming ease
and speed of execution. BASIC programs inter-
preted and executed by the firmware interpreter
supplied with the Apple are the easiest of all to write
and debug, but very slow in execution.

Whatever language you program in, the 6502 will
be executing machine language code. All of the
important Apple operating systems—BASIC, Pas-
cal, DOS, the monitor, and the Mini-Assembler—
are machine language code which was originally
written in assembly language.

An important footnote while discussing Apple
programming languages and operating systems is
the secondary MPU which may replace the 6502 via
the DMA’ line. These secondary MPUs greatly
expand the possibilities of what one might find

The 6502 Microprocessor 4-13

operating in the Apple. Of particular importance is
the Z80 card and the associated CP/M operating
system. CP/M (Control Program for Microproces-
sors) is a disk operating system developed by Digital
Research company for which many programs are
available. The Apple with Z80 card is potentially the
most important CP/M computer.

DMA IN THE APPLE

DMA (Direct Memory Access) refers to a form
of fast I/0 in which the I/O device directly accesses
memory. In DMA, the MPU is removed from the
data transfer path between the device and RAM.
There is no program sequence loading data from the
source and storing it at the destination.

The video scanner access to RAM while PHASE 0
is low is a form of DM A referred to as simultaneous
DMA. It is possible because RAM can be accessed
twice as fast as the MPU access in the Apple and
because actual MPU data transfers occur only dur-
ing a short period at the end of the 6502 machine
cyele. This simultaneous DMA is completely trans-
parent to the MPU. It has no effect on program
execution since it does not affect the 6502 machine
cycle.

A second form of DMA is cycle stealing. In cycle
stealing DMA, the clock input to the MPU isstopped
for a machine eycle, and the DMA device accesses
RAM while the MPU is stopped. Thus, a cycle is
stolen from the MPU. This type of DM A slows pro-
gram execution.

Cyclestealing DMA is implemented in the Apple.
The DM A’ line is wired to pin 22 of the peripheral
slots and any peripheral card can directly access

RAM by pulling DMA' low while PHASE 0 is low
and holding DMA’ low until PHASE 0 goes high
then low again. Pulling DMA' low forces the MPU
address bus driver to a high impedance state and
gates off the PHASE 0 clock input to the MPU. With
DMA' low, even though PHASE 0 goes high at pin
40 of the peripheral slots and everywhere else on the
motherboard, PHASE 0 does not go high at pin 37 of
the MPU. The 6502 waits with PHASE 1 high and
PHASE 2 low. PHASE 1 high forces the direction of
the MPU external data bus driver to be from the
data bustothe MPU. The MPU is thusisolated from
the address bus and data bus, and the peripheral
card can take control of both buses and the R/W’
line. DMA devices should communicate with the
data bus at the end of PHASE 0 as the 6502 does. In
the Apple, PHASE 1 belongs to the video scanner
and devices do not respond to addresses except dur-
ing PHASE 0.

Figure 4.7 shows the timing for stealing a cycle
from the 6502 on the Apple. It would be wise not to
steal too many cycles ata time, because if the clock is
stopped too long, the 6502 will lose its internal data
and the program will be bombed. It is not clear how
long the clock can be stopped before the 6502 opera-
tion becomes unreliable. The MOS Technology data
sheet lists the maximum PHASE 0 pulse width at
520 nanoseconds. This is clearly not accurate be-
cause every Apple in the world operates very well
with a 629 nanosecond PHASE 0 pulse on one out of
65 cycles. The Osborne 4 & 8-Bit Microprocessor
Handbook (copyright 1981, MeGraw-Hill, Inc. by
Adam Osborne and Gerry Kane) states that you
cannot stretch the PHASE 1 or PHASE 2 clocks on
MCS6500 microprocessors. Osborne and Kane must

DMA DATA TRANSFER CLOCK

PHASE 0 j
PERIPHERAL PIN 40

DMA’

PERIPHERAL PIN 22 \

v J .

PHASE 0
6502 PIN 37 _\

PHASE 1 e

6502 PIN 3

Figure 47 Cycle Stealing DMA.

414 Understanding the Apple |

have read the same data sheet. The Synertek data
sheet for SY650X microprocessors shows a maxi-
mum cycle time of 40 microseconds. This seems to
indicate thatyou can perform DMA in the Apple for
40 consecutive PHASE 0 cycles without adversely
affecting the Apple. The Rockwell International
data sheet shows a maximum cycle time of 10
microseconds which is probably a good number.

[t happens that Steve Wozniak, the designer of the
Apple I, knows a great deal about this subject. In a
conversation with the author, Mr. Wozniak revealed
that his original design for the Apple II used a dif-
ferent method of scanning memory for video output
than the simultaneous DM A used in his final design.
When he was designing the Apple II, RAM chips
which could be accessed at 2 MHz were just becom-
ing available. As a consequence, the early design
had a 1 MHz 6502 from which 40 out of 65 cycles
were stolen for memory scanning. The 6502, there-
fore, effectively ran at about 385 KHz (25/65 x 1
MHz). What Mr. Wozniak found out was that you
could hold off the clock on a new 6502 for 40
microseconds, but that as the chip cooked in, this
hold off capability deteriorated. He found it neces-
sary to keep new 6502s handy so he could replace the
MPU when the Apple started to malfunction. The
6502s were not failing. They were just becoming
unable to retain data for 40 microseconds with the
clock stopped. Mr. Wozniak speculates that the rea-
son for this is a deterioriation in capacitance of
internal elements after the 6502 is run for a while.

Mr. Wozniak never determined the maximum reli-
able hold off time of the 6502 experimentally. The
availability of faster RAM chips enabled him to
design the superior version of the Apple II which
was eventually released. His feeling is that it is safe
to hold off the clock to a 6502 for five microseconds,
which is the value used in Microsoft’s Z-80 card. He
also cautions that any experimental determination
of this capability would have to be performed on new
6502s, used 6502s, and very used 6502s.

It’s pretty obvious that the DM A’ line can be used
for more than just direct access to RAM. Since 6502
control of the Apple is via address decode, any
device controlling the address bus can control the
Apple. For example, a very simple peripheral card
could change Apple sereen modes via pushbutton. It
would just have to steal a single cycle from the 6502
and gate $C05X to the address busduring PHASE 0
to select a screen mode depending on which button
had been pressed. The most common use of the
DMA' line in the Apple is to operate an MPU other
than the 6502 from a peripheral slot. A Zilog 780
card, Motorola MC6809 card, Intel 8088, or what

have you can be plugged in to allow control of the
Apple by the owner’s favorite MPU. These cards
gain access to the Apple via the DMA’ line.

The DMA' line has no effect on video scanner
access to RAM, since the video scanner is isolated
from the address bus. The DM A device must make
its access during PHASE 0, however, for Apple
devices to respond properly. Apple circuits listen to
the address bus only during PHASE 0.

The 6502 designers intended that the READY
line be used for DMA. Their idea was to stop the
6502 in a read cycle and bring an external tri-state
address bus driver to high impedance with the
READY line while DMA took place. The READY
line in the Apple has no effect on the tri-state
address bus driver, so DMA can only be accom-
plished by pulling the DMA’ line low. The DMA’
line can be pulled low in conjunction with the
READY line, but after a number of eycles the 6502
will lose its internal data, because it has no input
clock. Long DM A operations with the MPU in a wait
state must be accomplished by bringing the READY
line low and performing cycle stealing if it is impor-
tant that the 6502 restarts coherently from where it
stopped.

There is a priority system of DMA operation in
the Apple in which the lowest peripheral slot has
priority if more than one peripheral tries to perform
DMA at the same time. The priority system is
implemented by a DMA in/DMA out priority chain
which goes from slot toslot. Pin 27 is the DM A input
on each peripheral slot which tells a eard that no
higher priority card is performing DMA. Pin 24 is
the DM A output by which DM A from lower priority
cards isdisabled. Slot 0 has the highest priority and
Slot 7 has the lowest priority. Pin 24 on each slot is
tied to pin 27 on the next slot with Slot 0, pin 27 and
Slot 7, pin 24 not connected as shown in Figure 7.9.
Please note that in Revision 7 and later Apples, pin
24 of Slot 7 is connected to jumper pad 7 asshown in
Figures 7.9 and 7.10.

In the priority system, when pin 27 is low a card
should not attempt DMA, because a higher priority
card is performing DMA. The card should also
bring pin 24 low so lower priority DMA cards are
disabled. If pin 27 is high, a card may perform
DMA. It should bring pin 24 low while performing
DMA and bring it high while not performing DMA.
Non-DMA cards are always designed with pin 24
jumpered to pin 27 so they can be inserted between
DMA cards in the peripheral slots. This keeps the
priority chain intact. There can be no empty slots
between DMA cards in a priority chain.

The 6502 Microprocessor 4-15

The DMA priority chain can be used to prioritize
other functions besides DMA. Apple does this with
its firmware cards which substitute peripheral card
ROM for motherboard ROM. Several firmware
cards can be placed in a priority chain which pre-
vents ROM on twoseparate cards from being simul-
taneously enabled. If two groups of cards use the
DM A chain for different purposes, they may have to
be separated by an empty slot or by a card with pin
27 or pin 24 open. For example, a firmware card in
Slot 0 would interfere with the operation of a DMA
card in Slot 1. Even when a firmware card is
enabled, cycles are available when RAM or I/0 is
accessed in which the DMA priority line stays high.
A DMA device down line from the firmware card
will operate if it needs only to steal an occasional
cyele, and can wait for the firmware card to access
RAM.

6502 INTERRUPTS IN THE APPLE

There are actually four types of 6502 interrupt:
RESET’, NMI', IRQ’, and the BREAK instruction.
Each has its own unique characteristics and pur-
poses as determined by the 6502 design. The hard-
ware interrupts are connected to the peripheral
slots, and RESET’ is also connected to the RESET
key and power-up reset circuit. The BREAK
instruction is asoftware interrupt. The response of
the 6502 to interrupts in the Apple is determined by
programs contained in the F8 ROM.

RESET’

Except for RESET’, the general idea of the inter-
rupts is to interrupt the MPU, perform an interrupt
handling routine, and then return to the interrupted
program. The general idea of RESET’ is to inter-
rupt the MPU and go to a coherent program start.
There are no provisions in the 6502 response to a
RESET' for saving internal registers and returning
to the place where the program was interrupted.
The 6502 response to RESET’ is as follows:

1. Pull three meaningless values from the stack.

2. Fetch the RESET routine address from §FFFC
and $FFFD, low byte first.

3. Set IRQ’ disable bit of Status Register; leave
other Status bits as they are.

4. Begin execution of RESET routine.

The reason for the three meaningless stack accesses
isthat RESET’ isa modified form of the other inter-
rupts with R/W’ forced high. Accordingly, the

Stack Pointer is decremented while the three values
are being read from memory, as if data were being
pushed to the stack. Normally, the Stack Pointer is
incremented during pull operations and decre-
mented during push operations.

In theoriginal Apples, the F8 ROM was called the
Monitor ROM because it contained the system
monitor, which is a program that enables the user to
communicate with the Appleon a very basic level. A
RESET’ in the old monitor ROM caused the 6502 to
vector to $FF59 which is an entry point to the moni-
tor. Thus, when the computer was turned on or
RESET was pressed, the user found himself com-
municating with the Apple through the keyboard
and television screen as controlled by the system
monitor.

Today’s Apples have a different F8 ROM called
the Autostart ROM. It still has the system monitor
in it, but some old capabilities were lost and some
new ones were gained. The response to RESET' is
completely different. The RESET vector in the
Autostart ROM is §FA62. The operation of RESET’
with the Autostart ROM is fully explained in the
Apple IT Reference Manual, but the basic points are
given here. Most notably, the RESET' transfers
program control to a RAM vector. This means that
the ultimate response of the Apple’'s RESET key is
controllable by software. At power up, the RAM
RESET vector ($3F2 and $3F3) is set, and from that
point, it may be set to any value by whatever pro-
gram is controlling the Apple at a given moment. If
the Apple has no disk drive, the RAM RESET vec-
tor is set to enter BASIC at power up. If there is a
disk drive, the Apple enters the bootstrap routine
contained in ROM on the disk controller. The RAM
RESET vector is usually set by software loaded
from the disk. The automatic startup of the disk is
what gives the Autostart ROM its name.

Autostart ROM firmware only boots the disk on a
RESET that occurs at power up. Other RESETSs
cause program flow to go to the address contained in
the RAM RESET vector. The firmware uses a code
at $3F4 to determine whether a given RESET’ was
initiated at power up or not. The code is never prop-
erly set at power up, but the power-up RESET sets
the code so the following RESETs will not be "cold
starts.” The power-up byte ($3F4) must be the
exclusive-OR between $A5 and the contents of $3F'3,
or a power-up RESET will be performed when
RESET is pressed. Any program can scramble the
power-up code and force a”cold start” when RESET
is pressed.

416 Understanding the Apple ||

There are advantages and disadvantages in the
soft RESET vector. The chief advantage is that the
user has a versatile, programmable reset function.
The chief disadvantage is that the prime purpose of
a microprocessor reset can be defeated by a pro-
gram. There is no way for the user to reset his com-
puter if a program doctors the RAM RESET vector
for some other purpose. The Apple is set up so the
user can be denied access to his own computer by
accident or on purpose. Sometimes the Apple user is
required to turn off the computer and turn it back on
when it gets hung up. At turn on, electronic circuits
are vulnerable to failure, so turning a computer off,
then on, to achieve a reset is a chink in the armor.

NMI’ and IRQ’

The NMI' and IRQ’ lines are both connected only
to the peripheral slots in the Apple. The IRQ’ is the
normal I/O interrupt signal because it can be
enabled or disabled under program control. The
idea of a non-maskable interrupt is to take action
which has higher priority than any programming
purpose. For example, an Apple may be required to
take emergency action in the event of a failure in a
manufacturing robot it is controlling. The non-
maskable interrupt can also be used in monitoring
the Apple operation from a remote panel or single
instruction step execution of 6502 programs. These
applications would, of course, require peripheral
card designs.

The interrupt sequence is similar for either NMI’
or IRQ’. The 6502 first completes execution of the
current instruction. Then the following sequence
occurs in the case of NMI’ or IRQ" with interrupt
requests enabled:

1. Program Counter is pushed on stack, high byte
first.

2. Processor Status is pushed on stack with
BREAK bit reset.

3. Contents of interrupt vector (NMI' = $FFFA-
$FFFB; IRQ = $FFFE-$FFFF) are fetched,
low byte first.

4. Interrupt routine is begun with interrupt re-
quests disabled.

There is a basic hardware difference between
NMI' and IRQ’ in the 6502. NMTI’ is edge sensitive
like a clockpulse input, and IRQ' is level sensitive.
A typical order of events with NMTI' is:

1. The NMI’ line drops low.
2. The NMI handling routine is executed with

interrupt requests disabled.
3. The NMI' line is brought high.

4. Normal program flow is resumed with inter-
rupt requests enabled or disabled as they were
before the non-maskable interrupt occurred.

A second non-maskable interrupt will not interrupt
the routine of the first as long as the NMI' line is held
low. Thus while NMI’ is not maskable by program
control, it is hardware maskable in the sense that
any interrupting device can prevent further inter-
rupting by holding NMI’ low. Recall that part of the
NMI sequence is the disabling of interrupt requests,
sothe IRQ’ cannot interruptan NMI" handler unless
the handler enables it.
A typical order of events with IRQ’ is:

1. The IRQ’' drops low.

2. The interrupt routine execution is begun with
interrupt requests disabled.

3. The interrupt is acknowledged and IRQ’ goes
high.

4. The interrupt routine execution is completed
and normal program flow is resumed with
interrupt requests enabled.

Interrupt requests are disabled by the IRQ’ sequence
just as they are in the NMI’ sequence. This prevents
the still low IRQ’ from immediately generating a
second interrupt. The program maskable IRQ’ can
be used in any variety of implementation methods.
The program must acknowledge and enable inter-
rupts in a manner consistent with the protocol of the
interrupting hardware. The point with IRQ’ is to
acknowledge the interrupt before enabling further
interrupts so that multiple interrupts are not gen-
erated inadvertently. Interrupt acknowledges in
the Apple usually consist of an access to one of the
peripheral slot assigned addresses.

The enabling and disabling of IRQ’ can be done
fairly effortlessly in many applications. Either NMI"
or IRQ’ saves the Program Counter and processor
Status Register on the stack before vectoring to the
interrupt handler. The Status is saved before the
interrupt disable bit of the Status Register is set. If,
at the end of the interrupt handler, an RTI (ReTurn
from Interrupt) instruction is executed, the Pro-
gram Counter and Status Register are restored.
Along with the rest of the Status Register, the pre-
interrupt state of the interrupt disable bit is re-
stored. Further interrupts are automatically dis-
abled by the interrupt sequence and the disable/
enable status is automatically restored by the RTI
instruction. The other 6502 registers(Accumulator,
X-register, Y-register, and Stack Pointer) are not
automatically saved by interrupts. These must be
saved and restored by the interrupt handler if the
application demands it.

The 6502 Microprocessor 447

In some applications it would be desirable to ena-
ble interrupt handlers to be interrupted. This sort of
processing is handled well by the stack architecture.
Return link information for each interrupt issimply
stacked over each other, possibly several interrupts
deep. All of the interrupts are eventually fully ser-
viced when the congestion is reduced.

Any peripheral eard may interrupt the 6502 in
the Apple. If there is a possibility of multiple inter-
rupt sources, the 6502 needs to be able to distinguish
among the interrupting devices. This can be done by
polling. In polling, the interrupt handler checks
each peripheral slot to see if it caused the interrupt.
Each card in a polling system must be capable of
responding to an address prompt by placing its
interrupt status on the data bus (normally D7 of the
data bus).

The peripheral slots have an interrupt priority
chain which works exactly like the DMA priority
chain. Card designs supporting the priority chain
follow the same protocol as described in the section
on DMA. As in other priority operations, Slot 0 has
the highest priority and Slot 7 has the lowest prior-
ity. Cards in a priority chain control interrupts at
lower priority cards and are controlled by higher
priority cards. The priority chain does not eliminate
the need for polling in a multiple interrupt source
environment. Nor is the priority chain necessary to
determine priority since this is determined implic-
itly by the order in which the interrupt handler polls
the devices. Still, there are many conceivable uses
for the priority chain. For example, a card may
perform operations which will not tolerate inter-
rupts from lower priority devices, but will tolerate
interrupts from higher priority devices. Through
the priority chain, system designs can be imple-
mented to selectively enable high priority inter-
rupts only.

There is a way in the Apple to determine priority
of interrupts without any loss of time. This way
would be to have the interrupting card contain its
own IRQ vector. In the Apple, any peripheral card
can disable motherboard ROM and steal ROM
addresses. The interrupting ecard would only have to
steal SFFFE and $FFFF to vector the Apple to its
handler. This system could use the interrupt prior-
ity chain to prevent two cards from simultaneously
responding to $FFFE or $FFFF.

The firmware implementation of NMI" and IRQ’
handlers is very simple and nearly identical in the
Monitor ROM and Autostart ROM. IRQ’ and NMTI'
are handled the same in either ROM, but the

addresses of the IRQ’ firmware are different. An
NMI’ simply vectors straight to $3FB, where a
JUMP instruction to the software NMI’ handler
must be stored.

The IRQ’ is handled differently. A short firmware
routine is executed which determines whether a
BREAK instruction or an interrupt request is being
processed. Both IRQ" and the BREAK instruction
use SFFFE and $FFFF as their vector, and the
IRQ’ handler must distinguish between BREAK
and an external interrupt request by checking the
status that was pushed to the stack when the
BREAK or IRQ’ occurred. When it is determined
that an external interrupt occurred, the program
vectors tothe contentsof $3FE and $3FF. $3FE and
$3FF should contain the address of the IRQ’ handler.

In distinguishing between BREAK and IRQ’, the
Apple firmware saves the contents of the 6502
Accumulator at $45 and then modifies the Acecumu-
lator. The interrupted acecumulator value must be
retrieved from $45 if it is required for processing or
restoration. Stacked interrupt applications requir-
ing the saving of 6502 registers should save them on
the stack. The accumulator value must be retrieved
from $45 before pushing to the stack in the Apple.

The BREAK Instruction

The BREAK instruction is a software generated
interrupt which is not disabled by the IRQ’ disable
bit of the Status Register. Its uses are not obvious,
even to an experienced computer programmer who
has not been exposed to it. Why would a program
want to interrupt itself?

One use of BREAK is to make it the terminating
instruction of 6502 programs rather than a RTS
(ReTurn from Subroutine). The idea here isto havea
program terminating routine which directs pro-
gram flow to some sort of system utility. In this sense
the BREAK is a programmable HALT instruction.

A second way of using BREAK is as a debugging
breakpoint. When debugging or investigating soft-
ware, it is often useful to stop a program at a specific
address and to examine program progress. The
BREAK instruction is a very convenient way of
doing this. Instead of overwriting three bytes of code
with a JUMP instruction, only one byte is overwrit-
ten by the BREAK instruction. The program count-
er and processor status are saved on the stack as
with IRQ" and NMI’ so a BREAK handler can be
written to insert break points and resume flow after
investigation.

448 Understanding the Apple Il

A third use of BREAK is to allow out of control
6502 programs to bomb gracefully. A misdirected
program tends to lead program flow to an address
where no program has been stored. But the MPU
doesn’t know there is no program there. The 6502 is
like a dog in heat; it will try to execute anything it
finds on the data bus. This can be chaotic in any
system but especially in a memory mapped I/0 sys-
tem like the Apple. Printers or disk drives can start
operating when random addresses are accessed by
the MPU. It happens that, at power up, much of
RAM goes to a state of all zeroes. $00 is the op code of
the BREAK instruction and, as a consequence,
many bombed programs wind up executing a
BREAK instruction. This is good, because the
BREAK handler is usually designed to neatly ter-
minate a program and enter a human communica-
tion utility. In this way the BREAK instruction
redirects the indiseriminant 6502. It is an interrupt
upon crash instruction. The response of the 6502 toa
BREAK instruction consists of the following
sequence:

1. Program Count +2 is pushed to the stack, high
byte first.

2. Status Register is pushed to stack (BREAK bit
set).

3. BREAK/IRQ' address is fetched from $FFFE
and $FFFF, low byte first.

4. Program execution is begun at address con-
tained in $FFFE and $FFFF with interrupt
requests disabled.

The difference between the external interrupt
request and the BREAK command is the BREAK
flag, which is shown in 6502 literature as bit4 of the
Status Register. The BREAK flag is conceptually
different from the other status flags, however. It is
not tested by any 6502 instructions, and there is no
set or clear instruction for the BREAK flag. It can
only be checked after the Status Register has been
placed on the stack. It is checked by pulling the
Status value from the stack and checking bit 4.
Rather than a bit of the Status Register, the
BREAK flag seems to be a characteristic of the
way processor Status is pushed to the stack.* The

*The above concept of the BREAK flag is based strictly on my
own experiments. In no literature was I able to find a satisfactory
description of specifically when the BREAK flag isset and reset.
The concept of BREAK status being stored in bit 4 of the Status
Register simply does not fit the way I found BREAK status to be
stored and checked. Inside the 6502, there may well be a bit of the
Status Register which keeps track of BRE AK status. In any case,
the BREAK status can only be checked by retrieving it from
RAM after a push Status to the stack operation,

BREAK flag exists only in RAM after a push to the
stack operation in accordance with the following
rules:

1. PHP command sets bit 4 in RAM (no signif-
icance).

2. Push Status resulting from NMI’ resets bit4 in
RAM (no significance).

3. Push Status resulting from IRQ’ resets bit 4 in
RAM (identifies IRQ").

4. Push Status resulting from BRK command sets
bit 4 in RAM (identifies BREAK interrupt).

BREAK status is meaningful only in an IRQ’
handler. It can be checked in an IRQ" handler with
the following sequence:

PLA

PHA

AND #%00010000
BNE BREAK.HANDLER
BEQ CONTINUE.IRQ

The handling of BREAK commands is different
between the Monitor ROM and the Autostart ROM.
In both ROMs, the BREAK is first detected in the
IRQ'/BREAK routine. Then the interrupted Status
is restored, possibly enabling interrupt requests.
Then all interrupted 6502 register states are stored
in $3A, $3B, and $45 through $49. At this point in
the old Monitor ROM, the interrupted register
states are displayed, the instruction at interrupted
Program Count +2 is disassembled and displayed,
and the system monitor is entered. At the same point
in the Autostart ROM, the program flow vectors to
the contents of $3F0 and $3F1. The soft BREAK
vector ($3F0 and $3F1) is loaded at power up with
the address of the same BREAK routine that was
contained in the old Monitor ROM. Therefore, the
BREAK routines in the two ROMs perform identi-
cally after power up, but, from that point, the Auto-
start BREAK handler can be changed. The old
monitor BREAK routine is fixed in ROM with no
user programmable capability.

The Apple firmware routines are adequate for
terminating programs and inserting debugging
breakpoints. Program status saved by the BREAK
handler isavailable for restart of flow via the G (GO)
command of the monitor.

The 6502 Microprocessor 4-49

Priority Among Interrupts

Thereare priority considerations among the inter-
rupts which determine what happens when more
than one interrupt occurs at the same time. The
general priority of interrupts is as follows:

Highest RESET’
NMI'
BREAK
Lowest IRQ'

In the event of simultaneous interrupts, RESET’
overrides all other processor actions. [f NMI’ drops
low while RESET’ is low, the processor will not
respond to it. Once the RESET’ routine has been
entered, however, the processor can be interrupted
by NMI’' or BREAK. For this reason, it may be best
for a card to disable its NMI" generating circuitry
when RESET’ occurs and leave it disabled until
signaled by the 6502 that the RESET' routine is
accomplished. The idea of RESET’ is to reset the
whole sytem, not just the 6502. All interrupts set the

disable interrupt flag of the Status Register as part
of their initial sequence. This disables external
interrupt requests only (IRQ’).

In the event of simultaneous NMI’, BREAK, and
IRQ’ with IRQ’ enabled, the processor would com-
plete the BREAK instruction, fetching the contents
of the IRQ’/BRE AK vector and disabling interrupt
requests. Then the NMI’ sequence would occur. If
the NMI' handler enabled interrupts and the IRQ’
was still low, the IRQ’ sequence would take place.
The more likely case would be for the NMI’ to be
serviced with interrupts disabled. Following the
RTI at the end of the NMI' handler the IRQ’/
BREAKhandler would be executed with bit4 of the
top byte of the stack identifying the interrupt as a
BREAK. In the Apple, the pre-BREAK Status is
pulled from the stack as soon as a BREAK is identi-
fied. This would enable interrupt requests in our
example and allow the IRQ’ sequence to begin,
assuming IRQ’ was still low. Following the RTI
instruction at the end of the IRQ’ handler, the
BREAK routine would be reentered and its course
would be run.

4-20 Understanding the Apple ||

SOFTWARE APPLICATION

6502 INSTRUCTION DETAILS

The state of the address bus and data bus onevery
cycle of operation are normally of no interest to the
Apple programmer. However, there are non-obvious
features of 6502 command execution which affect
programming of I/0. This is a natural consequence
of decoding I/O commands from the address bus.
These address details are of particular interest to
the assembly language programmer, but they affect
some BASIC programs too.

Table 4.1 contains an example of every type of
instruction sequence found in the 6502. It shows the
state of the address bus and data bus for each cycele
of execution. LDA, DEX, ASL, PHA, and PLA were
chosen to represent classes of instructions whose
execution sequences were identical. Table 4.2 is
keyed to Table 4.1. To find an example of any
instruction and address mode, look up the instruc-
tionin Table 4.2, then see the referenced example in
Table 4.1.

The OP CODE of all instructions shown in Table
4.1 is assumed to reside at $1000. The X- and Y-
registers both contain $20 in all examples. Y-
indexed instructions are represented by X-indexed
examples when Y-indexed execution is identical to
X-indexed execution. When possible, LDA exam-
ples are used to represent storing instructions(STA,
STX, STY), and in these examples the write cycles
of storing instructions have a "w” following their
address. Cycles that are always write cycles have a
"W" following their address. The letters "PX" stand
for Page Crossing. A few examples show the first
cyele of the next instruction. This is indicated by
"NEXT OP” on the data bus.

At times, the 6502 addresses parts of memory
which have nothing to do with a given instruction.
This occurs when the 6502 is performing an internal
operation in a cycle and really doesn’t need to
address anything. Indexing or branching across
page boundaries always results in a superfluous
access to an address in the wrong page. It takes an
extra cycle for the 6502 to increment or decrement
the high portion of an address computed across a
page boundary. A "LDA $5F72,X", for example,
takes four cycles with no page crossing, and five
cyeles with a page crossing. STA instructions in
which the possibility of a page crossing exists allow
an extra cycle whether the page crossing occurs or
not. The Synertek Programming Manual (May 1978)
states that this is necessary to prevent a superfluous
write to the wrong address.

There are other interesting points about 6502
addressing. The read-modify-write instructions
(ASL,LSR,ROL, ROR,INC, DEC) always perform
a double write to the valid address. The first write
cycle writes the same data that was read, and the
second write stores the modified data. Pulling data
from the stack results in a superfluous access to a
wrong Page 1 address. All superfluous accesses to
wrong addresses are on read cycles, and the result-
ing data is ignored by the 6502.

Three software applications of 6502 addressing
details are in the controlling of the serial outputs,
the 16K RAM peripheral card, and the disk con-
troller. The speaker and cassette are toggle outputs
which are usually made to toggle up and down atan
audio rate. The speaker, for example, should not
normally be accessed by instructions which make a
double or quadruple access to $C030, because that
would result in the speaker line toggling back and
forth at one megahertz. The idea is to toggle the
speaker, wait a thousand microseconds or so, then
toggle it again. Similar considerations exist for the
C040 STROBE'. The programmer may select a sin-
gle, double, triple, or quadruple strobe by utilizing
one of the following instructions:

STA $C040 one Strobe
STA $C040,X (X=0) two Strobes
ASL $C040 three Strobes

ASL $C040,X (X=0) four Strobes

In BASIC, it helps to be aware of what machine
language instruction actually performs the memory
access when a PEEK or POKE instruction is exe-
cuted. The following instructions perform the actual
memory access in the Apple:

Applesoft PEEK - E76F: LDA($50),Y Y=0
Applesoft POKE - E781: STA(S$50).,Y Y=0
Integer PEEK - EEF9: LDA (SCE) ,¥ Y¥Y=0
Integer POKE - EFOD: STA(SCE),Y Y=0

Correlating the PEEK and POKE instructions with
examples 26 and 28 of Table 4.1 indicates that
POKE instructions generate a double access to the
POKE'd address, and PEEK instructions generate
a single access to the PEEK'd address. For this
reason, speaker or cassette control from BASIC
should be performed by PEEK instructions; "A =
PEEK(-16336)" or "A = PEEK(-16352).” As for the

The 6502 Microprocessor 4-24

C040 STROBE’; "A = PEEK(-16320)" generates a
single strobe, and "POKE-16320,0" generates a
double strobe.

The way the 16K RAM card is controlled makes it
a prime candidate for sneaky address bus manipu-
lation. The operation of the 16K RAM card is
covered fully in Chapter 5, but a small note about its
operation belongs here. As described in Chapter 5,
the RAM card is configured for writing by
two successive reads to $C081, $C083, $C089, or
$CO8B (see Table5.2). For this purpose, one instruc-
tion can accomplish the same as two.” ASL $C081,X"
with X=0 performs the same task as "LDA $C081;
LDA $C081.” Read-modify-write, absolute indexed,
no page crossing instructions generate two read
accesses and two write accesses to the computed
address. This is more cute than valuable, but it does
illustrate the potential of controlling peripherals by
single instruction address sequences in the Apple.

A more important application of knowledge of
addressing detail can be seen at addresses $B82A
through $B842 of the DOS 3.3 RWTS subroutine.
$B82A is the beginning of the WRITE DATA rou-
tine which writes coded data to a sector of the disk.
Direction of disk operations is accomplished on the
disk controller by a logic state sequencer, which isa
programmed hardware controller. Simply put, writ-
ing data to the disk consists of syncing the writing
loop of the logic state sequencer to the writing loop of
the controlling software. The following program
steps check for write protect and resets the logic
state sequencer to its idle location:

LDA S$SC@8D,X ;X = $60 if Slot 6.

LDA $SCO8E,X

BMI WPROTECT ;Branch if disk
;Wwrite protected.

The program will fall through the branch if the disk
is not write protected. From this induced idle state,
the software can sync itself to the logic sequencer
with the statement, "STA $C0O8F,X"”. This instruc-
tion performs a double access to $COEF (assuming
Slot 6). The first access is decoded in the disk con-
troller to cause the logic state sequencer to leave its
idle state and begin its write loop. The second access
stores actual disk write data in the controller’s input/
output register. The controller will only accept data
on the clockpulse after the one which started the
logic state sequencer and on every fourth clockpulse
afterward. The writing technique involves writing
data in software loops that take exact multiples of
four cycles to execute.

Persons wishing to imitate the writing technique
of the RWTS subroutine should not substitute a
"STA $COEF” instruction for the "STA $CO8F,X"
at address $B83F of DOS 3.3. "STA $COEF” will
start up the software loop one clockpulse out of syne
with the logic state sequencer and the controller
won't accept the write data. "STA $COEF X" will
work with O in the X-register. The instruction must
make a double access to $COEF. Another address
mode of instruction which will work isa STA (ZP),Y
with no page crossing.

No doubt, the Apple controller’s logic state
sequencer was designed around the "STA $C080,X"
instruction, since this makes it possible to have the
disk in other slots besides Slot 6. Given the hard-
ware, Apple disk programmers must understand
addressing details to program the disk on this level.

4-22 Understanding the Apple ||

Table 4.1 6502 Instructions.

1 2 3 4 5 6 7
1. DEX $1000| $1001
sCA IGNORE
2. ASL A $1¢0@|s1001
s@A IGNORE
3. PHA 510006(S1@81 |SPNT W
548 IGNORE | DATA
4. PLA $10600| 51001 |[SPNT SPNT+1
568 IGNORE | IGNORE DATA
5. RTS $100@| S10@1 |SPNT SPNT+1 SPNT+2 PCH, PCL PCH,PCL+1
560 IGNORE | IGNORE PCL PCH IGNORE NEXT OP
6. RTI $1600(S1061 |SPNT SPNT+1 SPNT+2 SPNT+3 PCH, PCL
$40 IGNORE | IGNORE STATUS PCL PCH NEXT OP
7. BRK 51000| S1081 |SPNT W|SPNT-1 W|SPNT-2 W|SFFFE SFFFF
SO0 INGORE|S510 502 STATUS IRQLO IRQHI
B. BEQ §1@ $1000| S1@01 |(s1l@@2
(Z=0) SF@ 51a@ NEXT OP
9. BEQ S1@ S1600@| S1001 |S1e62 51012
{2=1) SFO 510 IGNORE NEXT OP
18. BEQ SF3 51000| s1l0@l [sle@2 S10F5 SFF5
{z=1) (PX) SF@ SF3 IGNORE IGNORE NEXT OP
11. LDA #SAA 51000|s1@01
SA9 SAR
12. LDA §70 S10006| S1001 |S@@7@8 w
STA 570 SAS5 570 DATA
13. ASL S7@ s1@@a| S10e1 |(s@a7@ Se@7@ W|SEe78 W
506 570 OLD DATA|OLD DATA|NEW DATA
14. LDA $70,X S$100@| sleel [s@e7@ S0090 w
STA §7@,X SBS 570 IGNORE DATA
15. ASL §78,X 51000| S1e01 |[s@070 50090 S0P9@ WwW|s5@090 7]
516 $70 IGNORE OLD DATA|OLD DATA |[NEW DATA
lé. LDA §5F72 $1600| s1081 |slo@2 $5F72 w
STA S$5F72 SAD 572 S5F DATA
17. ASL S5F72 S1000| S1001 [S1@02 S5F72 S5F72 W|S5F72]
SOE 572 S5F OLD DATA|OLD DATA |NEW DATA
18. JMP S$5F72 51000| S1001 [Sle@02 §5F72
$4C 572 S5F NEXT OP
19. JSR §5F72 51000| S1001 |SPNT SPNT W|SPNT-1 W|51662 S5F72
520 572 IGNORE 510 $@2 SSF NEXT OP
20. LDA $5F72,X $1le0@| $1061 |sl@@2 $6F92
(NO PX) SBD 572 S5F DATA
21. LDA S5FF2,X $10008| S1061 |S1@082 S5F12 S6012 w
STA $5FF2,X SBD SF2 S5F IGNORE DATA
(PX)
22. STA S$5F72,X 5166@| S1061 [S1@@82 S5F92 S5F92 W
(NO PX) 59D 572 S$5F IGNORE DATA
23. ASL S5F72,X 51000) S10061 |S1@@62 §5792 §5792 55792 wW[55792 W
(NO PX) S1E 5§72 S$5F IGNORE OLD DATA |OLD DATA |NEW DATA
24. ASL S$5FF2,X S1000| $12681 |s1002 $5F12 S6@12 s6@12 W|S6@12 W
(PX) S1E SF2 S5F IGNORE OLD DATA |OLD DATA |NEW DATA
25. LDA (578,X) $1000| S1001 |(s@@7@ 50090 S@e91 ADH,ADL w
STA (570,X) 5a1 570 IGNORE ADL ADH DATA
26. LDA (570),Y $1000| S1061 [S@e7e Sge71 55792
(NO PX) SB1 $79@ $§72 8§57 DATA
27. LDA ($70),Y $1600(s1e@l |[see7@ Sea71 $5712 56612 W
STA ($78),Y SB1 $70 SF2 $57 IGNORE DATA
(PX)
28. STA (570),Y $1000| S1061 |[see7@ 50071 §5792 55792 W
(NO PX) $91 $70 572 57 IGNORE DATA
29. JMP (S5F72) $1000| S1@01 [sl@e2 S5F72 §5F73 PCH,PCL
$6C 572 $5F PCL PCH NEXT OP
W - WRITE CYCLE
w - WRITE CYCLE IF STORING INSTRUCTION
PX - PAGE CROSSING
NEXT OP - OP CODE NEXT INSTRUCTION
X-REG = $20; Y-REG = §20.

Location 50870 contains $5772 or $57F2 as needed for illustration.

ADDR. BUS
DATA BUS

The 6502 Microprocessor 4-23

Table 42 6502 Instruction Cross Reference.

IMP | REL | IMM|ACC|@PG|@PG| @PG|ABS| ABS| ABS| IND| IND | IND
X ¥ X b ¢ X Y
ADC AND CMP EOR 11 12 |14 16 |20 | 20 25 |26
LDA ORA SBC 21 |21 27
ASL LSR ROL ROR 2113 |15 17 123
24
BCC BCS BEQ BMI 8,9
BNE BPL BVC BVS 10
CLC CLD CLI CLV L
DEX DEY INX INY
NOP SEC SED SEI
TAX TAY TSX TXA
TXS TYA
BIT 12 16
BRK 7
CPX CPY 1L 12 16
DEC INC 13 |15 17 123
24
JMP 18 29
JSR 19
LDX 11 12 14 |16 20
21
LDY L 12 (14 16 | 20
21
PHA PHP 3
PLA PLP 4
RTI 6
RTS 5
STA 12 |14 16 | 21 | 21 25 |27
22 | 22 28
STX 12 14 | 16
STY 12 |14 16

4-24 Understanding the Apple I

HARDWARE APPLICATION

D MANUAL CONTROLLER

How many times have you been working with
vour Apple and had to look up control addresses to
select HIRESNO MIX or LORES MIX or any other
screen mode? It's too bad, but sereen mode selection
isn’t supported in the Apple firmware by escape
codes or similarly easy interface. The Apple scheme
of controlling operational features via soft switches
is extremely effective for control by programs, but
theoperator at the keyboard is left without means of
direct control, unless the operating program sup-
ports it. This Application Note deseribes a simple
DMA controller which allows the operator to over-
ride program control and manually select among
the Apple features, including screen modes. 1 call
this circuit D MAnual Controller. Not everybody
likes dis name, but dat’s not my problem!

Figure 4.8 isaschematic of D MAnual Controller.
[t works by stealing a single cycle from the 6502 and
placing an address in the $COXX range on the
address bus. Thisaction is initiated when the opera-
tor presses one of eight pushbuttons (or four momen-
tary on-off-on switches). Six slide switches (or six
DIP switches) configure the controller so the push-
buttons will affect different Apple features—screen
modes, annunciators, disk drives, memory configu-
ration, etec. The concept is to place the operator
switches on a small remote panel, connected by a 16
wire ribbon cable to the cycle stealing peripheral
card. Figure 4.9 is a photo of an earlier prototype
which controlled screen modes only.

D MAnual Controller can control some peripheral
card functions as well as motherboard features.
Those peripheral card funetions which can be con-
trolled are the ones normally programmed using
DEVICE SELECT’ addresses such as RAM card,
firmware card, and disk controller management.
Tables 4.3 and 4.4 are an operational summary of D
MAnual Controller showing how some features are
controlled. Some of these are only educational or
cute, while others, like sereen mode control and
memory bank switching, can be very useful. It is
recommended that the configuration switches be
left in the position in which you will most often need
them, so you will have convenient manual control of
the features which are important to you.

Even though Table 4.3 shows how to control Slot 6
disk drives using D MAnual Controller, it doesn't
follow that disk I/O can be performed manually. D
MAnual Controller is not capable of transferring
data via the data bus. It can only turn the drives on

and off, select between drives, configure the disk con-
troller for different functions, and position the head.
Please take note that turning a drive on and setting
READ/WRITE to WRITE will clobber the dataon a
disk which is not write protected. [t is suggested that
youexperiment with nodisk or an unimportant disk
in the drive. Manual control of the disk drive is edu-
cational, but its only practical function would be to
assist in the development of advanced disk programs
and formats, or to aid maintenance technicians and
disk hardware developers. Incidentally, to step the
head, turn the phases on and off sequentially whilea
driveis rotating. Stepping through the phases in as-
cending order moves the head toward track 34. Step-
ping in descending order moves the head toward
track .

D MAnual Controller is based in hardware and
overrides program control. You can select features
atany time, no matter what software or firmware is
running. This can be very convenient for program-
mers while they are developing programs. The Con-
troller does not lock out program control, though, so
programs which repeatedly select a given mode will
not appear to be affected when the Controller dese-
lects that mode. It would be possible for a more
ambitious design to lock out program control of
selected Apple features via the USERI1 line.

Circuit Operation

The heart of D MAnual Controller is a 74LS148
priority encoder which detects a button push and
converts it toa 3-bit address. This address is latched
in a 74L.S374 when a button is pressed and placed on
A2 Al, and A0 of the address bus at the first oppor-
tunity. The state of AT-A3 of the address bus and
R/W'during the DMA eycle are determined directly
by the six configuration switches. A15-A8 are al-
ways set to 11000000 during the DMA cycle, yield-
ing an address in the $COXX range, the critical
control range of the Apple.

Pressing any of the pushbuttons causes the signal
at pin 14 of the LS148 to go low. This signal is
debounced and inverted and sent to a 74L.S195 shift
register for single cycle generation. If the DMA
priority input is low, the shift register will shift the
button press signal through, and a one eycle nega-
tive signal will be felt at pin 2 of a 74L.S74 flip-flop.
The LS195 is clocked by PHASE 1 rising, so thisone
cyclesignal falls and rises just after PHASE 1 rises.

The 6502 Microprocessor 4-25

5V
= f N 14 14 14 14 16 16 16 20
(&) [—rlLT[e s) e
W (2)— L 104F i z|2(a|=|8|2|8|5
INT (73 25T 108 I8 B I Bl
out £ ¥ 7 7 8 8 8 10
- K
nmn@.) > a0
'y 5V 4 L5132
6
O
* Lsizs
11112
13 12 11
L 13|Ls09 Joet—(22 Joma
4[5 s[14] 6[13 7 | ol
PO Q0 P1 01 P2 Q2 P3 0o | 4
; PR e
SIL - T
2
A ; t 1ok
5 o ;] Ll R
- ———dCLR CK CLR 5V
A 13
T " T 1/2LS74
PHASE 1/ 38 :
. = 3K
7M VBV
. =PU
DEBOUNCED BUTTON PRESS .
Y
5V
5V
L 5! A), L8132
n 4 3
GRO- : po E s @f}——
TXTo o1 I DEBOUNCE
I T
6 2 15 ik
NMIX > 02 Euruc =
MiIX o 3 ! D3 FZSILDSR‘Iﬁ
S 13| .. ENCODER 1 14 15 415
PG1o 5 @ D4 VCK 3 E1 E2
PG2o- 05 pf—4 T3 m | > (10) ne
LORES® Woe Al ?{ ()~ 1 :—D——Z 11)A9
HIRES 0157 A2f® () : D>{2(12) a0
3 2_(5)m . e DL
—o 7 o— |16]A3 13 f12 @ Ad 12 5 11 @ A2
—o 5o |15|a4 14 15 —(7) a5 L] S L (18) 13
o7 o— |14]as = 17l 1 e O ——
o T o1 |12]A6 18 F{2—(9)A7 | = HexDRIVER
075 O 1 la7 5
7415374 +
| 6 w—o—i—48 - +—=—PU OCTAL D-FF alndh dio
1 10 [R/W’ % E1E2 E3
2 T ’ =S 5 (5) Au
16 IN = | ' Z : 17) A5
IP '
JUMPER : —D>—1—(18) AW
T0 SWITCH
PANEL 7418125
QUAD DRIVER

Figure 48 Schematic: D MAnual Controller.

4-26 Understanding the Apple |

The cycle is further delayed for one half a 7M period
in the first half of the 741.S74. The resulting signal
at pin 5 of the LLS74 represents the DMA cycle.

When the DM A cycle signal at pin 5 of the 741.S74
goes low, the DMA' line is brought low. Half a TM
period later, the data enable signal (LLS74-9) of D
MAnual Controller’s address bus drivers drops low.
This delay allows the MPU to be isolated from the
address bus before any attempt is made to control
the address bus. At the end of the DMA cycle, the
opposite order is observed. Because of propagation
delays in the LS09 feeding the DM A’ line and moth-
erboard IC Cl11, control of the address bus is
released before the MPU address bus driver is
enabled.

D MAnual Controller supports the DMA priority
chain, so it can operate with some other peripherals
which perform DMA. It respects the DMA priority
inputand will delay its access until a higher priority
device has finished its DMA. It also will steal cycles
from a lower priority DMA card if that card
respects its priority input.

Supporting the DMA priority chain is a little dif-
ficult, because it is the most abused protocol since
“Do unto others...” Apple abused it by not publish-
ing a protocol and by using the DMA priority chain
in the firmware card. Microsoft abused it in their
780 Softcard by requiring higher priority devices to
wait several cycles after bringing the priority line
low before the Softeard will get off the bus. Yet when
the Softecard takes over the bus itself, it gives lower
priority DMA cards no similar consideration. Some
DMA based MPU cards don’t support the DMA
priority chain at all. Other DMA cards support or
ignore the DMA priority chain in ways which make
sharing of the DMA capability unpredictable.

D MAnual Controller gets around the unpredict-
ability of other DMA ecard designs by monitoring
the DMA’ line and delaying its own DMA cycle if
DMA' is being held low by another card. This should
work with other DMA designs which make any
attempt to support the priority chain. Here are some
ways to install D MAnual Controller with other
DMA related cards:

1. Z80 Softeard. Install D MAnual Controllerina
higher priority slot. It will steal a eycle from the
Softeard without affecting its operation. Switch
S2 on the Softeard must be on for this configura-
tion to work. Solder the Ile jumper on D MAn-
ual controller if operating in an Apple Ile.*
Other MPU ecards which support the DMA
priority chain should work in this configuration.

2. Firmware Card. The firmware card uses the
DMA priority line even though it does not per-
form DMA. Since D MAnual Controller only
needs a single eycle, it will work with a firm-
ware card enabled in a higher priority slot. It
Jjust waits until the MPU accesses a non-ROM
address, then steals a cycle. If asecondary MPU
card like the Softcard happens to be in a lower
priority slot, the firmware card can interfere

*In the Apple Ile, 3000 ohm pull-up resistors are used on the
wire-0OR lines instead of 1000 ohm resistors. This results in a
switching time which is too slow for stealing eyeles from the
Softeard. Soldering the Ile jumper will speed switching time by
paralleling the 3000 ohm motherboard resistor with a 1500 chm
resistor. [fother DM A card designers begin to add this 1500 chm
resistor, the Ile jumper should only be connected on one of the
cards. Incidentally, D MAnual Controller is a good candidate for
installation in Slot 3 of the Apple IIe, because it will work in Slot
3. even though an 80 column card is plugged into the auxiliary
slot,

Table 4.3 Operation of Soft Switches from D MAnual Controller.

AAAA A BUTTON BUTTON BUTTON BUTTON
RW 7654 3 FUNCTION /1 2/3 4/5 6/7
W 0000 6 IIe MEMORY MANAGE 8GSTORE RAMRD RAMWRT SLOTCXROM
W @060 1 IIe MEMORY MANAGE ALTZP SLOTC3ROM 8@COL ALTCHARSET
X 0010 X CASSETE OUT TOGGLE =========-- PUSH ANY BUTTON=====cecee—————
X @@11 X SPEAKER TOGGLE = = -——=--——eeen PUSH ANY BUTTON=-====-e—eeeea—-
X 0100 X C@40 STROBE' = = = ——--eeeemme PUSH ANY BUTTON=-========—=————-
X 0161 @ SCREEN MODE CTRL GR/TX NMIX/MX PG2/PG1 LORES/HIRES
X #1061 1 ANNUNCIATOR CTRL ANO AN1 AN2 AN3
X 0101 1 1IIe 560 POINT MODE -=------- ——commmmem o ENA/DSBL
X 1000 X FIRMWARE CARD CTRL ENA/DSBL ENA/DSBL ENA/DSBL ENA/DSBL
X 1110 @ DISK HEAD CONTROL PHASE-¢ PHASE-1 PHASE-2 PHASE-3
X 1110 1 DISK CONTROL OFF/ON DRIVE 1/2 SHIFT/LOAD READ/WRITE

The 6502 Microprocessor 4-27

TXT Mix PGz Wi

e

b GFX NMxX PG1 LD

Figure 49 A Screen Mode Controller.

with that card’s operation. This can be pre-
vented by opening the DMA IN jumper on D
MAnual Controller. Lower priority firmware
cards are not interfered with by D MAnual Con-
troller, because the Controller does not generate
addresses in the firmware card range.

3. Disk or Cassette 1/0. Disk and cassette [/O in
the Apple are normally performed in precise
timing loops. Any DMA device which is acti-
vated in the midst of such loops will interfere
with them and the associated data transfer.
Therefore, you should never operate a pushbut-
ton of D MAnual Controller while cassette or
disk I/0 is being performed, especially during
write operations. Some hard disk or eight inch
floppy disk Apple interfaces are DMA based.
Any such devices should probably be mounted
in a higher priority slot than D MAnual Con-
troller, so that if they support the DMA priority
chain, the integrity of disk data transfer will be
insured.

4. DMA gards which do not support the prior-
ity chain. Cards like these are like citizens who
do not meet their responsibilities to society. Do
not operate the pushbuttons of D MAnual Con-
troller when such cards are active. Only one
card at a time can perform DMA in the Apple.

Readers who wish to are encouraged to build D
MAnual Controller for their own use. They may also
purchase the Controller, assembled and tested. The
Controller is being manufactured by the Southern
California Research Group of Goleta, California.
Readers of this book may order D MAnual Con-
troller by contacting:

D MAnual Controller

Southern California Research Group

Post Office Box 2231-U

Goleta CA 93118

(805) 685-1931 for information

(800) 821-0774 In California, for orders only
(800) 635-8310 Outside California, for orders only

Table 44 Selection of 16K RAM Card or lle Bank Switched RAM from D MAnual Contiroller.

AARAA A
RW 7654 3 FUNCTION BUTTON @ OR 4 BUTTON 1 OR 5 BUTTON 2 OR 6 BUTTON 3 OR 7
R 10060 @ BANK 2 CTRL READON - WRTOFF READOFF READOFF - WRTOFF READON
WRTCOUNT=0 WRTCOUNT+1 WRTCOUNT=0@ WRTCOUNT+1
W 1668 @ BANK 2 CTRL READON - WRTOFF READOFF READOFF - WRTOFF READON
WRTCOUNT=0 WRTCOUNT=6@ WRTCOUNT=@ WRTCOUNT=@
R 1¢@@ 1 BANK 1 CTRL READON - WRTOFF READOFF READOFF - WRTOFF READON
WRTCOUNT=@ WRTCOUNT+1 WRTCOUNT=0 WRTCOUNT+1
W 1l66@ 1 BANK 1 CTRL READON - WRTOFF READOFF READOFF = WRTOFF READON
WRTCOUNT=0 WRTCOUNT=@ WRTCOUNT=@ WRTCOUNT=@

4-28 Understanding the Apple Il

HARDWARE APPLICATION
AN NMI" BASED SINGLE STEPPER

There is an inherent ability in the 6502 to inter-
rupt execution of every instruction. The non-
maskable interrupt is not used for anything in most
Apples and is available for any sort of high priority
control of the computer. An NMI’ handled by firm-
ware in Slot 0 can be made tooverride any operating
software and give control of the Apple to its owner.

Figure 4.10 is the schematic of a very simple cir-
cuit which uses the high priority features of the
non-maskable interrupt toachieve a hardware based
HALT/STEP/TRACE capability. The operational
philosophy of this NMI STEPPER is to interrupt
every instruction when the RUN/HALT switch isin
the HALT position. The interrupt is serviced in a

RUN'
5V
5V
HALT 5 5“’
10K 741891 8-BIT SHIFT
conee 12 ——NC 11
- RUN [Q 13]L503
| J N4 0c
ACK |
9 T10 _
sV
PHASE 0 1 3 | i Zl TS
B@E O — L503)°Oc Ao a[PR ks ;ﬁms 0c o
— —3>1/2
DEVICE (3 : 6 L (L5768 o
SELECT' - S) s S e
3] 13
5V '
RESET’ ()——

SINGLE pEvice ||
ggg;mmw RTI fe—————RTI INSTRUCTION ——|

NMI =

L

Figure 410 Schematic: An NMI Based Single Stepper.

The 6502 Microprocessor 4-29

0000 SO0 SR TTY
g 9000 9900
R o7 e, .09
o @ HSD

|l'. o e

Figure 441 The Author’s Front Panel.

utility designed for the STEPPER, then, as the con-
trol is passed back to the interrupted program, cir-
cuitry is triggered to interrupt the very next instruc-
tion. This controlled generation of NMI’ is based on
the six eyele RTI instruction. The NMI' line is made
to go high by a DEVICE SELECT’ gate at the per-
tinent peripheral slot. If the HALT/RUN switch is
still in the HALT position, the NMI" will drop low
again after seven cycles. This gives just enough time
to execute an RTI so that an interrupt is generated
during the next instruction of normal flow.

Circuit operation is very simple. An 8-bit shift
register generates the seven cycle delay before re-
interrupt. The interrupt flip-flop is reset by RESET’
or by a DEVICE SELECT'. The interrupt flip-flop
is set by switching from RUN to HALT or on the
eighth cycle after a DEVICE SELECT'. The J-
input to the interrupt flip-flop is available for inter-
rupt sources other than the HALT/RUN switch.

The NMI STEPPER may be controlled by soft-
ware using Apple’s $3FB - $3FD jump to NMI vec-
tor. The user could get the NMISTEPPER software
up and available as part of his HELLO program on
his disk. The STEPPER is more valuable however if
the handling program resides in firmware. This
way, the Apple user always has a programmed halt
switeh at his fingertips. This is achieved by using a
custom F8 EPROM instead of the Autostart ROM or
Monitor ROM. Here are some possible schemes for
substituting EPROM for the F8 ROM:

1. Modify the firmware card in Slot 0 so the F8
socket accepts EPROM and is independently
enabled by NMT".

2. Replace cassette READ and WRITE routines of
the F8 ROM with user routines to handle NMI!
EPROM must be installed on the motherboard
using an adapter to make it pin-compatible with
the Apple’'s ROM sockets. Such an adapter is
deseribed in an Application Note in Chapter 6
(see Figure 6.5).

3. Includean F8 EPROM as partofthe STEPPER
design. This EPROM is enabled by F8 addres-
sing while NMI’ is low. The STEPPER resides
in Slot 0 and echoes $C08X commands via DM A
toa RAM card or ROM card in a separate slot.

4. Include the STEPPER as a low cost add on to a
Slot 0 ROM or RAM card.

The author utilizes the NMI STEPPER as part of
a front panel for the Apple (see Figure 4.11). The
front panel firmware resides in F8 of a modified
firmware card in Slot 0. The FR EPROM is selected
by the NMI' line being low and is simply a merge
between important Apple monitor routines and
front panel utility routines. The NMI handler dis-
plays critical program flow (identically to an Apple
BREAK) and steps, traces, or branches to the moni-
tor as controlled by pushbuttons on the Apple game
paddles. Using paddle buttons prevents the step-
ping process from interfering with keyboard inputs.
The programming is quite simple, and maximum
use is made of Apple monitor routines. Figure 4.12
is a listing showing the basies of STEPPER control.

Figure 4,13 shows a design concept which consid-
erably enhancesthe NMISTEPPER. Figure4.13 is
a hardware breakpoint generator. Sixteen switches
on a remote panel make up a breakpoint register.

4-30 Understanding the Apple I

SOURCE FILE: FIGURE 4.12

gggg:]_ dkhkhkhkhhkhhkhkhhkhkhkkhkhkhkhhkhhkhhkhkhrhhhhhhhhbhhhhhhbhbhhhhhhhbhhhkhk
@009 : 2 * *
gago: 3 * *
P000: 4 * NMI STEPPER ROUTINES *
0000 : 5 * *
0000 : 6 * BY JIM SATHER *
ee00: 7 * 3/28/83 ¥
0ee0: g * *
0000 : 9 * L)
gggg: lg IE 2 R E R SRR R R R RS A S R R R R R R R R R R A R R R RS R SRR R AR R SRR R R R R R)
0000 : 11 *

0o00: 12 *

0@36: 13 CSWL EQU §36

0037: 14 CSWH EQU 537

g@3A: 15 PCL EQU S3A

@@3B: 16 PCH EQU S$3B

g045: 17 ACC EQU $45

0046 18 XREG EQU S46

0047: 19 YREG EQU S47

0048 : 2@ STATUS EQU $48

0049: 21 SPNT EQU S49

G3F8: 22 CYVCTR EQU $3F8

B3FB: 23 NVCTR EQU S3FB

C@61: 24 BUTTON@ EQU $CO61

C@62: 25 BUTTON1 EQU $C@62

coce: 26 NRESET EQU $C@C@ NMI STEPPER IN SLOT 4

FB8DO: 27 INSDSP EQU SF8D@

FAD7: 28 RGDSP EQU SFAD7

FCAB8: 29 WAIT EQU SFCAS8

FD8B: 3¢ CROUT EQU SFD8B

FF3A: 31 BELL EQU SFF3A

FF69: 32 MONITOR EQU SFF69

0000 : 33 *

0060 : 34 *

===~~~ NEXT OBJECT FILE NAME IS FIGURE 4.12.0BJ@

1F@0: 35 ORG S1Fd0

1FG@: 36 *

1F@@: 37 *

1F@@:A9 4C 38 INIT LDA #S$4C INIT SETS NMI VECTOR.

1F@2:8D FB @3 39 STA NVCTR

1F@5:29 10 409 LDA #>NMI

1F@7:8D FC 03 41 STA NVCTR+1

1F@A:A9 1F 42 LDA #<NMI

1F@C:8D FD @3 43 STA NVCTR+2

1FOF:60 44 RTS

1F1d: 45 *

1F1@: 46 *

1F1@:85 45 47 NMI STA ACC NMI IS THE ENTRY FOR THE
1F12:86 46 48 STX XREG HARDWARE STEP ROUTINE.
1F14:84 47 49 STY YREG

1F16:68 50 PLA SAVE 6582 REGISTERS AT
1F17:85 48 51 STA STATUS MONITOR SAVE LOCATIONS.
1F19:68 52 PLA DON'T USE MONITOR SAVE ROUTINE
1F1A:85 3A 53 STA PCL BECAUSE IT CLEARS DECIMAL MODE.
1F1C:68 54 PLA

1F1D:85 3B 55 STA PCH

1F1F:BA 56 TSX

Figure 412 Assembler Listing: NMI Stepper Routines. (1 of 2)

The 6502 Microprocessor 4-341

1F20:86 49 58 STX SPNT

1F22:A5 36 59 LDA CSWL SAVE CSW ON STACK.
1F24:48 60 PHA

1F25:A5 37 61 LDA CSWH

1F27:48 62 PHA

1F28:A9 F@ 63 LDA #SF@ USE SCREEN FOR DISPLAY.
1F2A:85 36 64 STA CSWL

1F2C:A9 FD 65 LDA #SFD

1F2E:85 37 66 STA CSWH

1F30:20 D7 FA 67 JSR RGDSP DISPLAY REGISTERS AND INSTRUCTION.
1F33:20 8B FD 68 JSR CROUT

1F36:20 D@ F8 69 JSR INSDSP

1F39: 70 *

1F39: 71 *

1F39:AD 61 C@ 72 LDA BUTTONG BUTTONG ENTRY TO NMI CAUSES TRACE;
1F3C:30 2B 73 BMI RESTORE

1F3E:48 74 PHA ELSE, STOP AND WAIT FOR BUTTON.
1F3F:48 75 PHA

1F40:68 76 BEEP2 PLA

1F41:68 77 PLA

1F42:20 3A FF 78 JSR BELL

1F45:20 3A FF 79 JSR BELL

1F48:AD 61 CO 8@ STOP LDA BUTTONG BUTTON @ CAUSES STEPPING.
1F4B:30 17 81 BMI DBOUNCE

1F4D:AD 62 C@ 82 LDA BUTTONI1

1F50:1@ F6 83 BPL. STOP

1F52: 84 *

1F52: 85 *

1F52:A9 4C 86 LDA #S4C BUTTON 1l: GO TO MONITOR.
1F54:8D F8 @3 87 STA CYVCTR FIX SO CONTROL=-Y RETURNS TO BEEP2.
1F57:A9 40 88 LDA #>BEEP2

1F59:8D F9 @3 89 STA CYVCTR+1

1F5C:A9 1F 9@ LDA #<BEEP2

1F5E:8D FA @3 91 STA CYVCTR+2

1F61:4C 69 FF 92 JMP MONITOR

1F64:29 00 93 DBOUNCE LDA #0

1F66:20 AB FC 94 JSR WAIT

1F69: 95 *

1F69: 96 *

1F69:68 97 RESTORE PLA RESTORE CSW.

1F6A:85 37 98 STA CSWH

1F6C:68 99 PLA

1F6D:85 36 100 STA CSWL

1F6F:A6 49 161 LDX SPNT RESTORE 65802 REGISTERS.
1F71:9A 102 TXS

1F72:A5 3B 1083 LDA PCH

1F74:48 104 PHA

1F75:A5 3A 105 LDA PCL

1F77:48 106 PHA

1F78:A5 48 107 LDA STATUS

1F7A:48 108 PHA

1F7B:A5 45 109 LDA ACC

1F7D:A6 46 110 LDX XREG

1F7F:A4 47 111 LDY YREG

1F81:8D CO C@ 112 STA NRESET RESET NMI FLIP-FLOP.
1F84:40 113 RTI

*** SUCCESSFUL ASSEMBLY: NO ERRORS

Figure 442 Assembler Listing: NMI Stepper Routines. (2 of 2)

4-32 Understanding the Apple I

BREAKPOINT
ENABLE

5V
SWITCH %

B PHASE 0 ____}

ENABLE

7415682 X
COMPARATOR 16 PANEL MOUNTED

— SWITCHES FORM
THE BREAKPOINT

741.S682 —/_ REGISTER
COMPARATOR

ADDRESS BUS

AN

————— BREAKPOINT SIGNAL TO
J-INPUT OF NMI'
FLIP-FLOP, FIGURE 4.9

Figure 413 Design Concept for a Hardware Breakpoint Generator.

Any address can be placed in the breakpoint regis- can be gated by R/W' high, R/W'low or 6502 SYNC
ter. An NMI' is generated any time the address bus if SYNC is jumpered from the 6502 to the NMI’
isequal to the breakpoint register. From that point, generating card. The NMI STEPPER is a powerful
vou can use the NMI STEPPER to step through the investigative tool, alone or in combination with a
program under scrutiny. The breakpoint detection breakpoint register.

=
[

One might think that RAM and its associated cir-
cuitry should be a relatively easy subject. You write
to it and read from it. What else is there?

Well, the MPU does write to and read from
memory, but the video scanner reads from memory
too. And then there is the 16K dynamic RAM chip
with its ROW address, COLUMN address, and
refresh requirement. As was seen back in the chap-
ter on bus structure, this all adds up to a lot of
circuitry and complexity. In this chapter, we will
examine the requirements of 16K dynamic RAM
and how they are met in the Apple.

It should be mentioned here that earlier Apples
could accommodate either 16K or 4K RAM chips.
This was a throwback to the bad old days when 16K
chips were a hot new expensive item. Today, one can
fully populate an Apple with 48 Kilobytes of RAM
for well under $50. In the Apple, 4K chips are obso-
lete, and there is no effort made in these pages to
document operation with 4K chips. It is assumed
that the Apple contains 48 Kilobytes of RAM.

chapter

RAM in the Apple i

THE 16K DYNAMIC RAM CHIP

16K RAM chips are 16,834 bit read/write memo-
ries. As is indicated in the bus structure diagram in
the back of the book, it takes three groups of eight
chips to make up the 49,152 bytes of read/write
memory in the Apple. Figure 5.2 shows the pin
assignments of the 16K RAM chips. This standard
chipisavailable from a number of manufacturersin
a variety of speeds. With a 2 MHz access rate, the
Apple does not put a particularly stringent speed
requirement on its RAM.

The RAM chip is a 16-pin device requiring four
power supply inputs: +12V, +5V, -5V, and ground.
There isadata input to accept write data, a tri-state
data output to transfer read data, and a R/W' con-
trol input to identify read and write cycles.

It takes 14 bits to address 16K of RAM, but there
are only seven address inputs to the RAM chip. The
14-bit address must be multiplexed on to the 7-bit
RAM address input lines in the form of a ROW
address followed by a COLUMN address. Think of

5-2 Understanding the Apple I

—

PHASE 0 VIDEO SCANNER ACCESS [

MPU ACCESS

feet

AX (ROW ADDRESS)

J

RAS’

‘ COLUMN f ROW \ COLUMN ’ ROW
M9

nNsec

[[L

210
nsec

=) .

CAS’

\ A

=——— Read Data is latched by

178 |

CAS' AT RAM, PIN 15

isus the rising edge of RAS'
min in the Apple. so Read Data
must be valid before RAS'

rises.

=—— Write Data must be
valid before CAS'
falls.

Figure 54 RAM Timing Signals from the Timing Generator.

the 16,384 memory cells as lying in a 128 by 128
matrix.* The first 7-bit addressinput toa RAM chip
specifies which ROW the addressed cell lies in, and
the second 7-bit address specifies the COLUMN.
RAS' falling clocks the ROW addressto RAM.CAS’
falling clocks the COLUMN address to RAM and
initiates the read or write action.

Figure 5.1 shows the timing generator signals
which control RAM access in the Apple. The nature
of thesesignals was dictated by 16K and 4K dynamic
RAM chip requirements, 1 MHz 6502 timing re-
quirements, and the alternating access between the
MPU and the video scanner. PHASE 0 and AX
provide the timing reference for scanner ROW/
COLUMN addressing and for MPU ROW/COL-
UMN addressing. RAS' is applied directly to the
RAS’ input of all the RAM chips. CAS’ is applied
through logic gating to one of three rows of RAM
chips when RAM is accessed.

*As mentioned in Chapter 2, this book refers to a unit of memory
which stores a bit of information as a cell. Each RAM chip has
16,382 cells and is capable of storing 16,382 bits of information.
The eight associated cells which store a byte of information in the

Apple are referred to as a memory location. The Apple has
49,152 RAM locations.

RAS’ falling clocks the ROW address to the RAM
chip. The address input to the chip must contain the
ROW address when RAS' falls and the COLUMN
address when CAS’ falls. Placing the correct ad-
dressing signals at the address input to the RAM
chips is the function of the RAM address multi-
plexor. CAS’ initiates the data transfer by drop-
ping low after RAS’ has already dropped low. RAM
in the Apple must be capable of responding toa read
access within 349 nanosecondsof RAS' falling. Read
data must be valid 210 nanoseconds after CAS' falls.
CAS’ falling can be delayed by as much as 32
nanoseconds by logic gating before it gets to RAM,
so RAM must be able to respond to a read access
within 178 nanoseconds of CAS’ falling at its input.
These requirements are met by 250 nanosecond or
faster RAM chips.

Dynamic RAM must be periodically refreshed for
it to operate properly. The refresh requirement of
16K chips is that each of the 128 possible ROW
addresses must be accessed every two milliseconds,
or 500 times a second. This can be accomplished
in RAS/CAS’ cycles or in RAS'-only cycles. CAS'
is only active at one third of the Apple RAM chips

RAMinthe Apple |l 5-3

atanyonetime, but RAS isactiveatall RAM chips.
The refresh requirement in the Apple is met in
the process of scanning RAM for video output. While
some chips are refreshed by RAS’/CAS' access from
the video scanner, other chips, not part of the screen
memory being scanned, are refreshed by RAS'-
only access. RAM in the Apple is refreshed every
1.85 milliseconds while HIRES memory is being
scanned, and every 1.6 milliseconds while TEXT/
LORES memory is being scanned.

RAM CONNECTIONS IN THE APPLE

The general flow of RAM data was discussed in
the chapter on busstructure. The busstructure dia-
gram in the back of the book should be reviewed to
reinforce, in your mind, how RAM is tied into the
overall scheme of things in the Apple. The basic
features of RAM connections in the Apple are:

1. RAM data input is tied directly to the data bus
for MPU writing.

2. RAM data output is saved in an eight-bit data
latch when RAS’ rises. The latched data is
routed to the data bus through the tri-state
RAM/keyboard data multiplexor.

3. The latched data is also routed to the video gen-
erator for processing.

4. The RAM address input is multiplexed among
the address bus ROW address, address bus
COLUMN address, videoscanner ROW address
and video scanner COLUMN address.

5. RAM latched data is gated to the data bus when
the scanner or MPU is addressing RAM and
R/W’ is high.

6. Physically, the RAM is arranged into three
rows, each containing eight RAM chips and
16,384 bytes of memory. Selection among the
three rows is accomplished by enabling CAS’
only to the row being accessed.

Figure 5.2 is a schematic diagram showing the
connections of RAM, the RAM data latch and the
RAM/keyboard data multiplexor. The RAM chips
are connected together in a way that reminds you of
the wiring of the peripheral slots. The majority of
the RAM lines are just strung from chip to chip.
This includes the address input(RA0-RAG6), the four
power supply inputs, RAM R/W’, and RAS’. In
older Apples, RA6 was distributed to all of RAM
when 16K jumpers were installed. Newer Apples
are hard-wired for 16K RAM, and RA6 is distrib-
uted like RAQ through RAS5.

The RAM R/W' signal is not the same as system
R/W' from the 6502. It is system R/W’ gated by
PHASE 0. The 6502 R/W’' line drops low some time
during PHASE 1 of write cycles. This would inter-
fere with video seanner reading if 6502 R/W’ were
connected directly to RAM. Another way of looking
at this is that the video scanner controls the RAM
address and RAM R/W' during PHASE 1. The
video scanner always reads, never writes.

Each row of RAM in the Apple is the equivalent of
a 16,384 byte read/write memory with eight data
inputs and eight data outputs. The RAM D7 inputs
of rowsC, D, and E are all tied to D7 of the data bus,
and RAM D0-D6 inputs aresimilarly tied directly to
the data bus. The RAM D7 outputsof rows C, D, and
E aretied to the D7 input of the RAM data latch, and
RAM DO0-D6 outputs are similarly tied to the other
seven inputs to the data latch. As mentioned before,
CAS'row C, CAS' row D, and CAS' row E serve as
the enabling signals for the three rows of RAM.

The RAM latch is made up of two hex flip-flop
chips, but only eight of the flip-flops are needed to
latch RAM output data. One of the remaining flip-
flops is not used, and the other three are used in the
video generator. RAM data is saved in the latch
every time RAS' transits from low to high.

The RAM/keyboard data multiplexor provides a
tri-state connection to the data bus for latched RAM
data and for the keyboard input. Keyboard data is
selected by the multiplexor when $C00X is on the
address bus during PHASE 0. Enabling of multi-
plexor outputs to the data bus is controlled by the
RAM SELECT’ signal generated in the address
multiplexor. The output is enabled when the 6502
R/W’ line is high and when:

The scanner or MPU is addressing RAM
or
$C00X is on the address bus during PHASE 0.

The $C00X signal is developed in the address
decode section of the Apple (Figure 7.2).

There are some subtle but important points about
the handling of RAM output in the Apple. It only
makes sense that RAM output data is isolated from
the data bus during MPU write eycles. The MPU
controls the data bus for the second half of PHASE
0 and slightly beyond during write cycles. How-
ever, nothing in a write cycle prevents the video
scanner from reading RAM, and nothing prevents
the latched RAM output from being processed in the
video generator. Therefore, write cycles do not
cause random flicker in the Apple’s video display.

SINIWNIISSY Nid
WYH JINYNAQ %91

0vH

o | ol o] of o] |]

N5
SYd

a1

51
vl
el
21
s
01
6

5-4 Understanding the Apple lI

i == 20N OND
; a8 m._oOPIL
- £0
00=—7 92 A 010 €0 H
6 20 -
)]
T L & 10 o I
sng @ i P (€/2)
v1Ya 15281 i
. el 10
. oL A il
.m_”_..._.|1|h qaz g mmn“ 20
\ g ¥ £ o g
15— L & ou 6 SV
3718YN3 QHY0FATN ' |
TAVNI QYOS sl 123138 Wy i CE)
T
‘\ S mu_. - £0 (4] 0
e £V 710
s - P
GQ~———51pZ P g1a 0 ¥a &
T i
9g~e—rez <k 910 i
b eof e ;
10~—az g na_" 4
\ g 905 T 20l
| dw_ s Y10
As sonang |
ﬁ__ 8 _
AS
HOX3TdILTNW YivO _._a"_.u_.._mn_.u._
OHY0EAIN/WYH i

"V || @|ddy :oypweyss Z's einbi4

M H3Imod

T. (6¢)
?ﬁl 8- 1408

<ESTPL

(01°6)
SS3Haav
03X3dILINW

A

Mol

Sy9
(0Lc)

Wvd 9Ly

RAMin the Apple !l 5-5

Another interesting point is that latched output
from the video scanner access is gated to the data
bus when the MPU is not writing. This data is not
needed on the data bus by any motherboard device.
Its presence on the data bus means that it can be
read by peripheral cards when the MPU is not writ-
ing. Many conceivable peripheral designs could
make use of this data. The programmable video
scanner simulator, described in a Chapter 3 Appli-
cation Note, is one such design (see Figure 3.13).

The propagation delay from RAS’ rising to data
valid on thedata busissignificant. It typically takes
20 nanoseconds (30 max) for data to become valid at
the latch after RAS' rises. It typically takes 12
nanoseconds (18 max) for data to propagate through
the RAM/keyboard multiplexor. The total delay in
the author’s Apple is 35 nanoseconds. Because of this
delay, the Apple does not meet the 100 nanosecond
minimum read data setup time supposedly required
by Synertek and MOS Technology 6502s.

THE RAM ADDRESS MULTIPLEXOR

The RAM address multiplexor can be function-
ally divided into two parts. The larger part develops
RAO through RA6, the multiplexed RAM address
input. Thesmaller part develops the RAM SELECT’
signal and CAS' for rows C, D, and E. The genera-
tion of RAO-RAG6 is a 4 to 1 multiplex operation
controlled by AX and PHASE 0. The generation of
CAS’-C,CAS'-D,CAS-Eand RAM SELECT"isa2
to 1 multiplex operation controlled by PHASE 0.

The functions of the address multiplexor are sum-
marized in Figure 5.3. The CAS’ table and MUL-
TIPLEXED RAM ADDRESS table show which
address bus and video secanner outputs control CAS’
and the RAM address at any moment. The various
blocks show the general hardware elements of the
address multiplexor.

The gating of CAS’ and the gating of RAM data to
the data bus are closely related. The high order
address bits contain the information that RAM is
being accessed, and they also contain the informa-
tion thatrow C or Dor E is being accessed. The CAS’
table in Figure 5.3 shows that during PHASE 0,
CAS’ falls low at row C, row D, or row E depending
on Al15 and Al4 of the address bus. In a sense, CAS’
is part of the RAM address. Addresses $0000-
$3FFF access row C; address $4000-$7FFF access
row D; and address $8000-§BFFF access row E.

The CAS' gating partially defines sereen memory
in the Apple. During scanner access, CAS’ never

falls in row E. It falls in row D when HIRES PAGE
2isbeing scanned, and it fallsin row C when HIRES
PAGE 2 is not being scanned. This means that all
screen memory is between $0000 and $3FFF except
HIRES PAGE 2 which is between $4000 and $7FFF.
Notice that CAS’ is gated during PHASE 1 with no
input from the video scanner. The sereen modes are
an extension of the video scanner when it comes to
addressing RAM. Generally, the screen modes con-
trol the high order address bits, thus determining
what areas of RAM the video scanner reads.

The RAM SELECT’ term is one of the more
important signals in the Apple, being the primary
data bus management signal. When it is low, the
latched RAM data or the keyboard data is gated to
thedatabus. RAM SELECT’ goes low when R/W' is
high and the keyboard or RAM is accessed. The
videoscanner always accesses RAM during PHASE
1, so latched RAM data is always on the data bus
shortly after PHASE 0 drops low unless R/W' is low.

The gating of video data to the data bus is an
interesting feature, because it is not necessary for
generation of Apple video. The video data is not read
by any motherboard device on the data bus, but it
can be read by peripheral cards. Additionally, the
ability of the MPU to read the video data when the
data bus is floating is a very useful design accident.

The HIRES TIME signal which is used in RAM
addressing is developed in the video generator. It
is high when the Apple is in HIRES, GRAPHICS,
NO MIX mode or in HIRES, GRAPHICS, MIX
mode when (V4 e V2) is false. The V4 ¢ V2 gating
switches the scanned memory over to TEXT mem-
ory for four lines of text at the bottom of the screen.
Naturally, the MIXED mode requires switching be-
tween GRAPHICS and TEXT insynec with the video
scanner.

The RAM address inputs are selected from the
address bus, the video scanner state, and the screen
mode. The MULTIPLEXED RAM ADDRESS table
in Figure 5.3 shows the way address bus lines and
video scanner output lines are assigned to RAO-RA6
ROW and RA0O-RA6 COLUMN. There are some
significant aspects to these address assignments:

1. Thescanner low order bits are assigned to RAM
ROW address inputs so the RAM will be re-
freshed by the video scanner.

2. The address bus bit which controls a given RAM
address will be equivalent to the scanner bit
which controls the same RAM address. For
example, A0 controls RA2 during an MPU
ROW access, and HO controls RA2 during a

‘19xe|diIN SSeIPPY 8Uj JO suoyouny 8yl ¢£'s einby

5-6 Understanding the Apple |l

HIA0 S373344
TAHNIHM | SHYeRLY Imoigvy] a3wwd
Svo |*
2 39Yd * SIHIH SIYerlY |- a
Q M01,SY) 309 Mos
300230
(239vd * S3HIH) . d ONNOYY | =
SLVeplY 3 M0 SY) 2 2 30vd GLY
HINNYIS Ndw «SH [
I 3SVHd 0 3SVHd YD HO
SLY by [* PIY
SYJ 193138 |2 39vd * INIL STHIH
I |
309 Mol | 0
HOX3TdILINW Viva 300930
QHVO8AIN/WYH OL
1937138 WvH
M/H X0008
19H *S3H0 1/ 1X31 Sl SRR
| 39vd+S3HIH St N 2hy i
- 139Vd /239Vd
9v-WNS IH 9V v vH T0HLNOD JNIL S3HIH
= 300w
) £v-WNS 6Y gV = s | s
239%d = S3H0T/1X3L .
2 LA LY 8v
HA = SIHIH CYH S1N4LN0
GV-NNS OH GY oY T HINNYIS 030IA
2%
9v-WNS | .-
2 B - 2% ol
139vd « S3H01/1X31 OA oLy Y PY-WNS | < hww_,u._mw
VA » SIHIH 0vH EV-WNS | ol v oH
NWNT0J - HINNYIS MOY - HINNVIS NWN10J - NdW MOH - NdW _,M_H__ﬁ
XYL XY - XY -0 Xy -0
SSIH00V WYY 03XT1dILTNW o EX VAN FA T _ TN A ER B
€H ¥H SH = €H ¥H SH SH

E 0L i |

RAM inthe Apple Il 5-7

scanner ROW access. This means that A0 and
HO perform the equivalent RAM addressing
funetion.

3. Al12 and A13 are assigned to RA6 as part of the
Apple scheme for operating with 4K or 16K
RAM chips.

4. The other assignment features were probably
determined by convenience of mechanical
layout.

Table 5.1 shows the equivalent address bus/video
secanner address bits. You can use this table to take
any screen mode and video scanner state and con-
vert them to an equivalent MPU address. If you
store a byte of data at the equivalent MPU address,
it will bedriven outof RAM during PHASE 1 when
the video scanner reaches the chosen state.

The Arithmetic of Video Scanner Memory
Addressing

If the Apple isn’'t famous for the encrypted nature
of its sereen memory addressing, it should be. The
programmer has a very heavy burden in computing
orlooking up seemingly illogical addresses. There is
logic to the Apple secreen memory addressing. It is
the logic of binary manipulation. The way to under-
stand it is to look at the Apple from the designer’s
viewpoint. In 1975, how would you have gotten the
Apple to display HIRES color graphics, LORES
color graphics, and 40 columns of text?

Forty columns? Two strikes against you to start
with. Didn’t Wozniak ever hear of powers of two?
Digital computers are based in binary numbers.
Use 32,64, or 128 columns. This is as bad as the guys
who designed 80-column typewritten page widths
and 10-digit humans.

The problem is that you want to address memory
sequentially with the output lines of the video
scanner. If the Apple line width had been 32
columns, you could just tie HO-H5 and V0-V4
directly to the 4 to 1 address multiplexor. Memory
would be very neatly divided up into 32 X 24 bytes.
With 40 eolumns, you could still tie HO-H5 directly
to the 4 to 1 address multiplexor, and this would
create an easy hardware connection, but there
would be unused gaps in memory 24 bytes long for
every 40 bytes used. This would waste 576 bytes of
memory in TEXT/LORES modes and 4608 bytes in
HIRES mode. What good are 4608 bytes of memory
divided up into 192 noncontiguous groups of 24
bytes?

In the Apple, it was accepted that there would be
some waste of memory caused by the 40 character
lines, but the waste was minimized at the expense of
a little hardware complexity. Instead of using 40
bytes out of each 64-byte memory segment, 120
bytes out of each 128-byte memory segment are
used. This creates eight bytes of wasted memory for
every three horizontal scans in HIRES or every
three lines of characters in TEXT. This results in a

Table 54 MPU/Scanner Equivalent Address Bits.

MPU VIDEO SCANNER

A0 HO

Al H1

A2 H2

A3 SUM-A3

A4 SUM-A4

A5 SUM-A5

A6 SUM-A6

AT Vo0

A8 V1

A9 V2

A10 HIRES « VA TEXT/LORES « PAGE 1
All HIRES - VB TEXT/LORES « PAGE 2
Al12 HIRES . VC TEXT/LORES « HBL
Al3 HIRES « PAGE 1 =

Al4 HIRES « PAGE 2 -

Al5 —

5-8 Understanding the Apple Il

128 BYTE MEMORY SEGMENTS

A\
r =
FIRST 40 SECOND 40 THIRD 40
0-39 40-79 80- 119
F_—_______-—+
Pt
___—__\\\
‘/‘ \
\

Figure 54 128-Byte Video Memory Segments Consist of Three 40-Byte Sections, Each Mapped Into a

Different Part of the Video Screen.

total wastage of 512 bytes in HIRES and 64 bytes in
TEXT/LORES.

How do you implement this in hardware? Screen
memory is divided into 128-byte segments. Each
segment is divided into the FIRST 40, the SECOND
40, the THIRD 40, and eight bytes of no man’s
memory (UNUSED 8). It so happens that the dis-
played television scan is neatly divided into three
sections by V3 and V4 from the video seanner as
follows:

V4'V3'- Top third of television screen
V4'V3 - Middle third of television screen
V4 V3'- Bottom third of television sereen
V4 V3 - Undisplayed (VBL)

Because the three displayed portions of the screen
can be so easily detected, they are mapped into the
three 40-byte sections of each 128-byte memory
segment as follows:

LOCATION
ONTV LEAST SIGNIFICANT
SCREEN BITS OF ADDRESS
Top 0000000 - 0100111 (FIRST 40)
Middle 0101000 - 1001111 (SECOND 40)

Bottom 1010000 - 1110111 (THIRD 40)

It can be seen that in the binary representations of
the 40-byte address sections, the lower three bits
cross over from 111 to 000 at all section boundaries.
This means that these three bits can be identically
addressed in the FIRST 40, SECOND 40, or THIRD
40. For example, the lowest three bits of the address
of the left most character in any section is 000. For
thisreason HO, H1, and H2 aredirect address inputs
tothe4 to 1 multiplexor and are address equivalents
of A0, Al, and A2.

The next four address bits are different depend-
ing on the 40-byte section that is being addressed.
They are 0000 through 0100 in the FIRST 40, 0101
through 1001 in the SECOND 40, and 1010 through
1110 in the THIRD 40. These four bits are addressed
by H5-H4-H3 plus an offset. The offset value is
selected by V4 and V3 to place the scanned memory
address in the FIRST 40, SECOND 40, or THIRD
40 of the current 128-byte segment. The offset is
added to H5-H4-H3 in asingle chip4-bit adder, and
the four bits of the resulting SUM become the scan-
ning address bits equivalent to A3, A4, A5, and AS6.
This book refers to the SUM bitsas SUM-A3, SUM-
A4, SUM-A5, and SUM-AS6.

There are eight states of H5-H4-H3 but only five
of the states are displayed. 000 through 010 are
undisplayed and occur during the right margin,
horizontal retrace, and left margin of the television

RAM in the Apple Il 5-9

scan. 011 is the first displayed count, and when H5-
H4-H3 reaches 011, it is time to address the first
byte of a 40-byte section. Suppose you built the fol-
lowing summing circuit:

H5 H4 H3
+ V4 V3 V4 V3
SUM-A6 SUM-A5 SUM-A4 SUM-A3

This would create the three offsets 0, 101, and 1010
which are 40-byte offsets. This circuit would work,
but it would make sereen memory address assign-
ments even more complex than they are for the
Apple programmer. Since the display starts at H5-
H4-H3 = 011, we need to subtract 011 from the
offsets 000, 101, and 1010 to make the FIRST 40
start at a natural 128-byte segment boundary. The
required offsetsare1101,010,and 111(-3,2,and 7 in
decimal). You need to address A6-A5-A4-A3 with
the values H5-H4-H3 minus 011 in the FIRST 40,
H5-H4-H3 plus 010 in the SECOND 40, and H5-H4-
H3 plus 111 in the THIRD 40. These sums are clev-
erly created in the Apple by the following addition:

1
H5' H5' H4 H3
+ V4 V3 V4 V3
SUM-A6 SUM-A5 SUM-A4 SUM-A3

H5'-H5'-H4-H3 is equal to H5-H4-H3 minus 100 in
4-bit signed binary arithmetic. 001 minus 100 is
-011, so the needed offset is developed. It is easy to
add 1 because of the carry input to the 4-bit adder.
The equivalent adding circuit is:

1 1 Y 1
HS H4 H3
+ V4 V3 V4 V3
SUM-A6 SUM-A5 SUM-A4 SUM-A3
TEXT/LORES Scanning

Beyond A6, scanning address assignments deter-
mine the memory blocks scanned in the various
sereen modes. VO, V1, and V2 are equivalent to A7,

A8, and A9 in all screen modes. A TEXT/LORES
screen memory page is made up of eight adjacent
128-byte segments. These eight adjacent segments
are defined by V0, V1, and V2 in the scanner and by
A7, A8,and A9 on the address bus. VA, VB, and VC
play nopartin addressing TEXT/LORES memory.
Rather, the same 40-byte section of memory is
scanned for eight adjacent horizontal television
lines. It takes eight horizontal television lines to
paint a line of text or two rows of LORES blocks. In
the video generator, VA, VB, and VC define which
vertical part of a text character it is time to draw,
and VC defines which of two LORES blocks it is
time to draw.

In TEXT/LORES, A15, A14, and A13 equival-
ents are false(low, ground, zip). A12 equivalents are
falseduring display and true during HBL (Horizon-
tal BLanking gate).* The A11 equivalent is PAGE 2
and the A10 equivalent is PAGE 1. This results in
the memory scanned areas for TEXT/LORES shown
at the bottom of this page. The reason for scanning
different memory during HBL has nothing to do
with video display. HBL on the RA6 ROW address
line helps in the task of refreshing RAM. If not for
the refresh requirement, the TEXT/LORES equi-
valent of A12 would be false and the memory
scanned during HBL would be in the same range as
the memory scanned during HBL'.

Figure 5.5 is the TEXT/LORES displayed mem-
ory map. This map shows the same information as
the mapsof the A pple I1 Reference Manual, but there
is a difference in layout. The reference manual
maps accent the 24 lines of text or 48 lines of
LORES blocks, but Figure 5.5 accents the division
of screen memory into 128-byte memory segments.
This should give the reader a second perspective
from which to view the sereen mapping.

*HBL and VBL are signals produced in the video generator.
HBL (the horizontal blanking gate) is high during the right
margin, horizontal retrace, and left margin of the Apple video
display. VBL (vertical blanking gate) is high during the bottom
margin, vertical retrace, and top margin of the Apple video
display. Refer to Chapter 8 for more information about these
signals.

SCREEN MODE

BINARY

HEXADECIMAL

PAGE 1 Displayed 0ooo
PAGE 1 HBL gogl
PAGE 2 Displayed voea
PAGE 2 HBL goo1

@1XX XXXX XXXX
A1XX XXXX XXXX
10XX XXXX XXXX
10XX XXXX XXXX

SP4XX-SPTXX
S14XX-$17XX
SP8XX-S@BXX
$18XX-S1BXX

510 Understanding the Apple I

TOP SCREEN/ MIDDLE SCREEN/ BOTTOM SCREEN/
BASE FIRST 40 SECOND 40 THIRD 40 UNUSED 8
ADDRESS| LIN# RANGE LIN# RANGE LIN# RANGE RANGE
S400 09 S400-5427 o8 $428-544F 16 $450-5477 $478-S47F
1024 1024-1063 1064-1103 1104-1143 1144-1151
5480 g1 $480-S4n7 @9 $4A8-S4ACF 17 54D0@-S4F7 $4F8-SAFF
1152 1152-1191 1192-1231 1232-1271 1272-1279
5500 02 $500-5527 10 $528-S54F 18 $550-5577 $578-857F
1280 1280-1319 1320-1359 1360-1399 1400-1407
$580 03 $580-$5A7 11 S5A8-S5CF 19 $5D@-$5F7 $SS5F8-S5FF
PAGE 1 1408 1408-1447 1448-1487 1488-1527 1528-1535
$600 04 S600-$627 12 $628-S64F 20 $650-$677 $678-S67F
1536 1536-1575 1576-1615 1616-1655 1656-1663
S680 @5 $S680-S6A7 13 S$6A8-S6CF 21 S6D@-S6F7 S6FB8-S6FF
1664 1664-1703 1704-1743 1744-1783 1784-1791
S700 J6 S700-5727 14 5728-S74F 22 $750-S777 S778-S77F
1792 1792-1831 1832-1871 1872-1911 1912-1919
$780 a7 S780-S7n7 15 S7A8-S7CF 23 $S7D@-S7F7 S7F8-ST7FF
1920 1920-1959 196@-1999 2000-2039 2040-2047
5800 []0] 5800-5827 o8 5828-$84F 16 $850-$877 $878-S87F
2048 2048-2087 2088-2127 2128-2167 2168-2175
S880 g1 S880-S8A7 @9 S8A8-S8CF 17 S8DJ-S8F7 S8F8-S8FF
2176 2176-2215 2216-2255 2256-2295 2296-2303
5900 g2 $900-5927 10 $928-S94F 18 $950-$977 $978-S97F
2304 2304-2343 2344-2383 2384-2423 2424-2431
5980 @3 $980-S9A7 p I S9A8-S9CF 19 $9D@-S9F7 S9F8-S9FF
PAGE 2 2432 2432-2471 2472-2511 2512-2551 2552-2559
SAQQ g4 SAPO-SA27 12 SA28-SA4F 20 SAS@-SAT7 SA78-SATF
2560 2560-2599 2600-2639 2640-2679 2680-2687
SA80Q 25 SA80-SAAT 13 SAAB8-SACF 21 SAD@-SAF7 SAF8-SAFF
2688 2688-2727 2728-2767 2768-2807 2808-2815
SBOQ @6 SBO@-SB27 14 SB28-SB4F 22 SB50-SB77 SB78-SB7F
2816 2816-2855 2856-2895 2896-2935 2936-2943
SB8@ @7 SB8@-SBA7T 15 SBA8-$SBCF 23 SBD@-SBF7 SBF8-SBFF
2944 2944-2983 2984-3023 3024-3063 3064-3071
Figure 55 TEXT/LORES Displayed Memory Map.
In addition to the displayed memory locations,
there is reason to know what areas of memory are KBDSTRB EQU $Co10
being scanned while nothing is being displayed. WAIT LDA KBDSTRB
BPL WAIT

This knowledge has applications when software or
hardware synes to the video sean by detecting the
scanned memory output on the data bus. This is
possible in software by reading an address which
does not result in data being placed on the data bus.
For example, if you zero out all scanned memory
except for the bytes in the blanking period preced-
ing a given horizontal display line, you can detect
the beginning of that horizontal scan with the fol-
lowing loop.

Some techniques of exploiting this capability are
discussed in an Application Note at the end of this
chapter. The point is that it is sometimes useful to
know what areas of memory are being scanned dur-
ing blanking periods.

Figure 5.6 isa TEXT/LORES map showing the
areas of memory seanned during displayed and
undisplayed periods. The layout is similar to the

RAMinthe Apple Il 5-41

maps in the A pple II Reference Manual. The area of
memory scanned previous to every horizontal dis-
play period is shown directly to the left of the memory
scanned during that display period. The vertical
blanking period is shown at the bottom. The consid-
erations which determine the memory scanned dur-

Step 20 of the above program is necessary
because horizontal memory addressing wraps
around at the 128-byte segment boundaries.

3. The first address of HBL is always addressed

twice consecutively, because HO-H5 is in the all
zero state for two consecutive scans.

ing the blanking periods are as follows: 4. During VBL (Vertical BLanking), V3 and V4
1. HBL is equivalent to A12 in TEXT/LORES are both true. The horizontal offset sum becomes
mode, so the memory scanned during HBL is H5-H4-H3 minus 0100. This is almost the same
completely separate from the memory scanned as the top of the displayed screen (H4-H3-H2
during HBL'. This is not true in HIRES mode. minus0011). The VBL base addresses are equal
2. HBL scanned memory begins $18 bytes before to the FIRST 40 base addresses minus eight
display scanned memory plus $1000. The HBL bytes using 128-byte wraparound subtraction.
base address can be computed from the dis- Example: $400 minus $8 gives $478; not $3F'8.
played base address using this Applesoft pro- 5. Horizontal scanning wraps around at the 128-
gram sequence: byte segment boundaries. Example: the address
19 HBL = BASE-24 scanned before address $400 is $47F during
20 IF INT(HBL/128)<>INT(BASE/128) VBL. The address scanned before $400 when
THEN HBL = HBL+128 VBL is false is $147F.
30 HBL = HBL+1024.
HORTZONTAL BLANKIMNG (HBL) HORI ZONTAL DISPLAY EMABLE

LINE 11111111 111111111111111122222222
NUM PAGE 1 PAGE 2 |00123456789ARCDEF@1234567| PAGE 1 PAGE 2 |0123456789ARCDEFA1234567ROARCDOEFE1234567
0| 51468 5224 |S1R6E 6248 | +++++rt++BEEE+++++++++4++ (5400 10245800 2048| +H++++++tttbtbbbbbitdbbibbbbbbbbbddttst
1| S14E8 5352 |S18EB 6376 +++++++++4#88++++++4+4444++ 5480 1152|SBBO 2176 ++++++++++++t+bttbbbtttbbtttbttbbtitt s
2 | 51568 S480 |51968 6504 +++++++++FE3E+++++++44+444+ |S500 12805900 2304 | +++++++++ bttt ttttttttb bttt bbbttt bt
SCREEN 3| S15E8 5608 [SL9ER 6R3IZ| ++++tttttSEEi++terbbtttts |5580 1408|3980 2432 | +++tdtttttdttttrttbrbtttrrttttbtbttttttt
TOP 4| 51668 5736 [SLAGE B760| ++++++++BHEE+++++4 444444+ |S600 1536 |SA00 2560 | + 4444444+t bbbbbbbbbtdtbtbbbbbbbbbtttttrt
5| S16E8 5864 |S1AFS GBEB| +++++++++FHAE++++ 4444444+ |5680 1664 |SABD 2688 | ++4++++++++++H+H+be 44444+ +HHHH 444
6| 51768 5992 |S1BER TOL6| +++++++++BEEE+++HH+4+4444 [ST700 LT792[SBO0 2816 | +++++++4++ bttt Hbbtttb bbb bbbt bbbttt 444
7| S17ER 6120 |SIBEE 7144 +++++++++RE85+++++++444++ |STRA 1920 |SBBA 2944 | ++++t+ttt+tttttbtbttttttttttttbttttttttt
8| S1410 5136 |S1810 6160| +++++trt+2884++4+44444+4+ (5428 1064 |SB28 2088 | +++++++++t+++bttttttttttttbbtttbttttt it
Q| S1490 5264 |S1890 6288 | +++++++++H#HE+H++H41HH44+ |SAAB 1192|SBAB 2216 | +H+4+++++++ttdbbtbt bttt bbb b bbb bbb bbbt
10| 51510 5392 |S1918 6416 +++++++e+EREE++4+bbb44+4+ |S528 13205928 2344 | +++t+++++t++++Hb b 444+ bbb bR bR R4
SCREEN 11 | 51590 5520 |51990 6544 | +++++++++885E+++++++4444+ |SOAR 1448|5928 2472 | +4+++t+t+ bttt bbbbtitittddtt+4
MIDDLE 12 | 51610 5648 [S1A1@ 6672 | +++++++++E##E+++++++44+4++ [S628 1576 (SA28 2600 | ++++++++++++++t++ttHt+Httt4bb4444+44
13| 51690 5776 |S1A90 6800 | +++++++++EdEd4++++++t+++++ |SEAR 1704 [SAAR 2728 | +++4+++t+ttttttttbtttttttttbtttttttttt++
14 | $1710 5904 [S1B10 6928 |+++++++++E8 8 #+++btttti+++ [ST2R 1832 |SB2B 2856 | +++++++++t+tdtttdttdtttttbttttdtttttdttt
15| 51790 6032 |S1B93 7056 | +++++++++## 884 ++4+44444+44 |STAB 1960 [SBAS 2984 | H++t+tttttidbbbbbbtbbttttbttbbbbttrdtbts
16 | 51438 5176 |S1838 6200 | +++++++++E4#f++++++++++++ |S450 1104 |$850 2128 | ++++++++++btbbtbttbtttttbbbbbbbttrttits
17 | 514B8 5304 |S18B8 6328 | +++++++++EE45++++++4+4444+ |SADE 1232 |SBDA 2256 | ++++++++++++++rttttttt bbbttt bbbttt 44+ ++
18 | S1538 5432 |S1938 6456 | +++++++++EH8E++++++++++44 |S550 1360 |S950 2384| ++++++++tttttbtttttttttttddbbbbtttt++
SCREEN 19 | S15B8 5560 |S19B8 6584 | +++++++++8# 8444444444444 |S5D0 1488|5900 2512| +++++++++++++tttittttttbttbbtbdbdttbbbbtt
BOTTOM 20 | S1638 5688 |S1A3B 6712 +++++++++EH8E54++44+b444444 (S50 1616 |SASE 2640 +++++++++t++ttitbtttttttttdtbttb bbbt
21 | 51688 5816 |S1ABR 6840 | ++++++t++EEE+++tttt44++ [SODA 1744 |SADO 2768 | ++++++++++++tttttttttttbtbbbdbbtdbtbtttt
22 | 51738 5944 |S1B38 6968 | +++++++++Ef#E+++trrttt++4+ [STS@ 1872 |SB50 2896 | ++++++++++tttttitttttttttttbttttttt b4+
23 | S17BB 6072 |S1BBB 7@96 | +++++++++ER88++++++++4+++ [STDO 2000 |SBDE 3024 | ++++++++++++d+ bbbttt btttt bbbttt b+++
24 | 51460 5216 |S1860 6240 | +++++++++#88++++4+0444+4 15478 1144 |SBT8 2168 | +44++++++++++++ -ttt 4+ H+++ b4+t 444+
25 | S14E0 5344 |S1BEQ 6368 | +++++++++##4 4 HH+4044444++ [SAFB 1272 58F8 2296 | +++++++++++++bbb++tt bbbt bbbttt b4+
26 | 51560 5472 |51960 6496 | ++++++ti+EEEE++rtirbbtitt [S5T78 1400|5978 2424 | +++++++++ -+ bbbt bbbt bbb bbb bbb bbb
VERTICAL 27 | S15E0 5600 |S19E@ 6624 | +++++++++bffE+++++++++4+4+ [SOFR 1528 [S9F8 2552| +++++++++++ttrtttttttttrtrtttttttt+++H4+
BLANKING 28 | S1660 5728 [S1AGE 6752 |+++++++++455 36 FHREREE4E48 [S6TE 1656 [SAT8 2600 | #AR4RFERAE4HARAAURASHARBLAARUREARER RN
29 | S16E@ 5856 |S1AEQ 6880 | +++sitittfiid+bbitittt+++ [S6FE 1784 |SAFS 2808 | +++++++++++ttbttttbtbetbbtbbtbbtbttttbt
30 | S176@ 5984 |[S1B6@ 7008 | +++++++++EE8E+++++4b444+4 [STTB 1912 |SB7B 2936 | +++++++++d+dddbbdtttttb bbbt bbbbttdttbtt
4”’-31 S17E0 6112 [SIBE@ T136| +++++t4++#5i+++a+t++++ [STPE 2040 [SBFE 3064 | +++++++ttbbbbb bbbttt btbt bbb dbstttittbtt

The last row of memory is scanned 14 HORIZONTAL SYNC (REV-7 & LATER) VERTICAL SYNC /
consecutive times. All other rows are

scanned 8 consecutive times.

Figure 5.6 TEXT/LORES Video Scanning Map.

542 Understanding the Apple |l
128 BYTES
VC-VB-VA [A 0 i
$2000 - -
000 x = }
52400 - 3
001 —
52800 |
010
$2C00
011
$3000
100
$3400
101
$3800
110
$3C00
111
Figure 5.7 HIRES Memory Areas (Page 1).
HIRES Scanning VB, and VC affect the memory address in the

Table 5.1 shows that HIRES video scanner ad-
dressing is identical to TEXT/LORES addressing
on bits A0-A9 and A15. The differences in bits A10-
A14 reflect the facts that HIRES memory is eight
times as big as TEXT/LORES memory, and that
HIRES memory is in a different location than
TEXT/LORES memory.

During HIRES scanning, A13 is equivalent to
PAGE 1, and A14 is equivalent to PAGE 2. This
results in a PAGE 1 base address of $2000 and a
PAGE 2 base address of $4000.

VA, VB, and VC are equivalent to A10, A11, and
A12 in HIRES. This is the most important point,
because it represents the great difference between
HIRES and TEXT/LORES. In TEXT/LORES, 40
bytes contain the display intelligence for eight
horizontal scans. In HIRES, 40 bytes contain the
display intelligence for one horizontal scan. The
HIRES scan must address a different 40-byte sec-
tion every scan. This is accomplished by letting VA,

HIRES scan.

Notice in Table 5.1 the oddity that VA, VB, and
VC address higher order bits of memory than VO,
V1, and V2. This causes the base addresses of adja-
cent HIRES lines to be separated by 1024 bytes
rather than the logical 128 bytes. This extra compli-
cation of HIRES address computation could have
been eliminated in the Apple design by the addition
of one chip. It wasn’t, so the user suffers an extra
operational distraction. One way to look at the
HIRES memory layout is as eight adjacent areas
with each area the memory equivalent of a single
TEXT/LORES page. VA, VB, and VC determine
which of the eight areas is being addressed. As eight
adjacent horizontal lines are scanned, one 64-byte
(40 bytes displayed) section from each of the eight
memory areas is scanned. As in TEXT/LORES, the
top, middle, and bottom thirds of the screen are
accompanied by memory scanning of the FIRST 40,
SECOND 40, and THIRD 40 sections respectively.

RAM in the Apple I 543

One way to gain insight into the overall layout of
HIRES memory is to run the following BASIC
program:

10 HGR : POKE -16302,0 :
REM HIRES, NO MIX

20 FOR A = 8192 TO 16383

3@ POKE A,255

4 FOR B = 0 TO 100 : NEXT B :
REM DO IT SLOWLY

5¢ NEXT A : GO TO 1@

This program fills the consecutive memory loca-
tionsof HIRES, PAGE 1 with$FF;slowly so you can
watch the sereen fill. When the program runs, the
screen should fill as follows:

1. Forty short lines are strung together at the top
of the screen to form a long horizontal line.

2. The same thing happens at the first line of the
middle third of the sereen.

3. The same thing happens at the first line of the
bottom third of the sereen. $2000-$2077 (120
bytes) has now been filled.

4. The same thing happens on the ninth line from
the top. The second line from the top will not be
formed until the program gets to address $2400
(9216 decimal).

5. The pattern of lines continues to be drawn until
there are 24 evenly spaced lines on the screen.
At this point the screen is one eighth full, a
128-byte segment from each of the eight memory
areas has been filled, and the program has
reached $2400.

6. The program continues to add patterns of 24
lines in a similar fashion until the screen is
filled.

Figure 5.8 is a HIRES displayed memory map
accenting the division of screen memory into 128-
byte memory segments. This figure was printed out
using an Applesoft program listed in Appendix D.
Like the TEXT/LORES map of Figure 5.5, this
figure gives a different perspective for viewing
HIRES memory usage. Figure 5.9 is the full HIRES
memory map showing addresses scanned during
HBL and VBL as well as the displayed map. It was
also made by an Applesoft program listed in Ap-
pendix D. For reference, "#" isused in Figure 5.9 to
show when horizontal or vertical television sync is
output by the video generator. The #s in the middle
of every HBL period represent the horizontal syne
which causes the horizontal retrace. The long strings
of #s in lines 224-227 represent the vertical syne
which causes the vertical retrace. Please note that
video sync in the Apple was changed in Revision 1,

Revision 7, and the RFI Revision. The sync genera-
tion depicted in Figures 5.6 and 5.9 is that of the RF]
Revision.

The scanning during blanking periods in HIRES
is very similar to that in TEXT/LORES with one
major exception. HBL has no effect on memory
addressing in HIRES, so during HBL, the memory
locations that are scanned are in the displayed
memory area. The memory locations scanned dur-
ing HBL prior to a displayed line are the 24 bytes
just below the displayed area, using 128-byte wrap-
around addressing.

VBL scanned memory is addressed in HIRES,
just as in TEXT/LORES. The area scanned during
VBL is the same as the top third of the sereen minus
eight bytes. Memory scanned by lines 256 through
261 is identical to memory scanned by lines 250
through 255, so those six 64-byte sections are scanned
twice, asshownin Figure5.9. The memory scanning
areas are summarized in Table 5.2. This same
information isdisplayed graphically in Figure5.17.

Mixed Mode Scanning

HIRES graphics mixed with TEXT is a special
case when it comes to video scanner addressing.
Part of HIRES memory and part of TEXT/LORES
memory must be scanned in this mode. The problem
does not arise with LORES graphies mixed with
TEXT, because TEXT memory scanning is identi-
cal to LORES memory scanning.

The HIRES TIME term that is used to scan
memory addresses is not a direct input from the
$C056/$C057 LORES/HIRES soft switch. Rather,
itis aterm developed in the video generator which is
active when it is actually time to scan HIRES screen
memory. In HIRES MIXED mode, the HIRES
TIME term switches low on the third RAS' (rising)
after V4 ¢« V2 becomes true (see Figures 8.6 and
8.13). HIRES TIME switches high on the third
RAS’ (rising) after V4 o V2 becomes false. V4 o V2
identifies the last four lines of the TEXT display,
and the three RAS’ delay prevents switching from
HIRES to TEXT mode in the video generator before
the last seven dots in line 159 of HIRES have been
output to the television.

V4 e V2 actually identifies sean lines 160 through
191 and 224 through 261. The scanned memory
switches to HIRES during the first part of VBL,
back to TEXT for the second part of VBL, then back
to HIRES for the top of the sereen. The switching
during VBL is, of course, not visible on the screen.
This information is only important to those special
applications where it is important to know what is
scanned during the blanking periods.

544 Understanding the Apple |l

TOP SCREEN/ MIDDLE SCREEN/ BOTTOM SCREEN/
FIRST 40 SECOND 40 THIRD 40 UNUSED 8 |

PAGE 1 PAGE 2 |LIN# PAGE 1 RANGE | LIN# PAGE 1 RANGE | LIN# PAGE 1 RANGE | PAGE 1 RANGE
52000 8192 |54000 16384 |B0@ S$2000-52027 @64 S$2028-5204F 128 $2050-52877 52078-S2@7F
$2400 9216 |S4400 17408 |80l $2400-52427 @65 S$2428-5244F 129 $2450-52477 $2478-5247F
52800 10240 |54800 18432 |0@2 S2800-52827 @66 $2828-S284F 138 $2850-52877 52878-5287F
$2C00 11264 |S4CO0 19456 (803 S2C06-52C27 067 S$S2C28-S2C4F 131 S52C58-52C77 52C78-82CTF
S3000 12288 (S5000 20480 |004 S$3000-53027 @68 S$30828-$304F 132 $3050-53077 53078-5307F
$3400 13312|S5400 21504 (805 $3400-53427 @69 S53428-5344F 133 53450-53477 53478-5347F
$3800@ 1433655800 22528 (@06 S$3800-53827 @76 $3828-5S384F 134 S$3850-53877 $3878-S387F
S3C0@ 15360 (S5C00 23552 |@07 S3CEA-53C27 @71 S$3C28-S3CAF 135 $3C508-53C77 $3C78-S3C7F
52080 832054080 16512 (808 S$S2088-520a7 @72 S20A8-S20CF 136 S$S206D@-S20F7 S$20F8-$20FF
$2480 9344(S54480 17536 (009 S$2480-524A7 @73 S$24A8-$524CF 137 $24D0@-S24F7 $24F8-S24FF
52880 1036854880 18560 (@10 5288@-S28A7 @74 $28AB-528CF 138 S$28D@-528F7 $28F8-S28FF
$2C80 11392|54C80 19584 |@11 S2CB@-52CA7T @75 S2CA8-S2CCF 139 $2CD@-S2CF7 $S2CF8-$2CFF
53080 1241655080 20608 |@12 S$3080-530A7 @76 S30BA8-S3@CF 140 S30D0-S30F7 530F8-53@FF
$3480 13440(S5480 21632 (013 $3480-534A7 @77 $34A8-S34CF 141 S$34D@-S34F7 $34F8-$34FF
53880 14464 (55880 22656 (@14 S3880-538A7 @78 S3BA8-S38CF 142 S$38D@-S38F7 S38FB-538FF
$3CB@ 15488 |S5C80 23680 (@15 S$3C8G-S3CA7 @79 S3CAB-S3CCF 143 $3CD@-S3CF7 $3CF8-$3CFF
$2100 844854100 16640 |016 S$2100-52127 @8@ S$2128-S214F 144 $52150-52177 52178-5217F
52500 947254500 17664 (@17 S2500-52527 @81 $2528-S5254F 145 $2558-52577 $2578-5257F
52900 1049654900 18688 (@18 $2900-52927 @82 $2928-S$294F 146 $2950-52977 $2978-5297F
52000 11520 |54D@0 19712 (@19 $2D60-52D27 @83 S$2D28-S2DAF 147 $2D50-$2D77 $2D78-82D7F
53100 1254455100 20736 |@20 S3100-53127 @84 S$3128-S314F 148 $3158-83177 $3178-S317F
53500 1356855500 21760 |021 S$3500-53527 @85 S$3528-5354F 149 §35508-53577 53578-5357F
53900 14592|$5900 22784 (022 $3900-53927 @86 S$3928-S394F 150 $3950-53977 53978-5397F
$3D0@ 15616 |S$5D@0 23808 |@23 S$3DBB-S3D27 @87 S3D28-S3D4F 151 $3D5@-$3D77 53D78-53D7F
52188 B8576|S4180 16768 |@24 S2180-S21A7 (@88 S21A8-S21CF 152 $21D@-S21F7 $521F8-521FF
$258@ 9600|54580 17792(0825 S$2580-525A7 @89 S25AB-$25CF 153 $25D@-S25F7 $25F8-S525FF
52980 10624|54980 18816 |@26 S2980-S29A7 (90 S$29AB-$29CF 154 $29D@-529F7 $29F8-529FF
52080 11648 |S4DB0 19840 |027 $2DBE-S2DAT @91 S2DAB-S2DCF 155 S$2DD@-S2DF7 S$2DF8-52DFF
$3180 12672(S55180 20864 |828 S$3180-531A7 @92 S31A8-531CF 156 S31D@-$31F7 S31F8-S31FF
53580 13696 |S5580 21888 |29 S$S3580-S35A7 93 S$35AB-$35CF 157 $35D@-$35F7 $35F8-535FF
$3980 1472055980 22912030 $3980-539A7 @94 S39A8-$39CF 158 $39D@-S39F7 S$39FB8-539FF
$3D8G 15744 |55DB0 23936 |031 S3DBG-S3DAT @95 S3DAB-S3DCF 159 S$3DD@-S3DF7 S3DF8-$3DFF
$2200 8704(54200 16896 (@32 $2200-52227 096 $2228-5224F 160 $2250-52277 $2278-5227F
52600 9728|54600 17920 (033 S52600-52627 @97 $2628-5S264F 161 $265@-52677 $2678-5267F
S2A00 10752|54n00 18944 |034 S2A00-S2A27 (098 S2A28-52A4F 162 S2a50-52A77 $S2A78-S2A7F
S2EB@ 11776 |S4AEQQ 19968 (@35 S2E@0-52E27 @99 S2E28-S2E4F 163 S$2E508-52E77 S2E78-S2ETF
$3200 1280055200 20992 (036 $3200-53227 100 $3228-5324F 164 $325@-53277 $3278-5327F
S3600 13824 (S5600 22016 |@37 S$S3600-53627 181 S3628-5364F 165 $3650-53677 S53678-S367F
S3A00 14848 |55A00 23040038 S3A00-5S3A27 102 S$3A28-S3A4F 166 S3A50-S3A77 $3A78-S3AT7F
S3EG@ 15872 |SSEQQ 24064 |39 S3EMD-S3IE27 103 S3E28-S3EAF 167 S3E50-S3E77 S3E78-S3ETF
52280 B8832(54280 17024 |040 $228@-522A7 104 S$22A8-S22CF 168 S$22D@-522F7 $22F8-S22FF
S2680 9856 |S4680 18048 (@41 $2680-526A7 105 S$26A8-S26CF 169 S$26D@-S26F7 S26F8-S26FF
S2A80 10880 [(S4A80 19072 |042 S$S2ABO-52AAT7 106 S2AA8-S2ACF 170 S$S2AD@-S2AF7 S2AF8-52AFF
S2EB@ 11904 |S4ESQ 20096 (@43 S2E80G-S2EAT 187 S2EA8-S2ECF 171 S2ED@-S2EF7 S2EF8-S2EFF
$3280 1292855280 21120 |@44 $328@-532A7 188 S$32A8-S32CF 172 §32D0-532F7 S32F8-S32FF
$3680 1395255680 22144 |@45 $3680-S36A7 109 S36A8-S36CF 173 S$36D@-S36F7 $36F8-S36FF
S$S3AB@ 14976 |S5A80 23168 (@46 S3ABG-S3AAT 110 S3AA8-S3ACF 174 S3ADA-$3AF7 S3AF8-S3AFF
S3EB0G 16000 |SS5E8@ 24192 (047 S3EB@-S3EAT 111 S3EA8-S3ECF 175 S3EDG-S3EF7 S3EFB-S3EFF
52300 896054300 17152048 $2300-52327 112 $2328-$234F 176 $2350-52377 $2378-$237F
$2700 9984 (S4700 18176 (@49 S2708-52727 113 S2728B-5274F 177 $27508-52777 $2778-8277F
$2B0G 11008 |S4ROG 19200 |50 S2BEO-S2B27 114 S2B28-S2B4F 178 S2B50-S2B77 $2B78-S2B7F
S2F0@ 12032 |S4F@0 20224 |@51 S2FO0-S2F27 115 S2F28-S2F4F 179 S$2F50-52F77 S2F78-S2F7F
53300 1305655300 21248 (@52 S$3300-53327 116 S53328-5334F 180 $335@-S3377 $3378-S337F
$3700 1408055700 22272 |@53 S3700-53727 117 §3728-$374F 181 $3758-$3777 $3778-8377F
53B@@ 15104 |SS5BA@ 23296 (@54 S3BOA-53B27 118 S$3B28-S3B4F 182 S$3B5@-S3B77 S3B78-S3B7F
S3F0@ 16128 |SS5FO0 24320 |@55 S3F@0-S3F27 119 S3F28-S3F4F 183 S$3F50-S3F77 $3F78-S3F7F
52380 908854380 17280 (@56 S$2380-523A7 120 $23A8-S23CF 184 S$23D0B-S23F7 $23F8-S23FF
$2780 10112($4780 18304 |@57 $2780-S27A7 121 $27A8-S27CF 185 $27D@-$27F7 527F8-$27FF
S2B8A 11136 |54B80 19328 |G58 S2B8@-S2BA7 122 S$2BA8-S2BCF 186 S$2BDO-S2BF7 S2BFB8-32BFF
S2FB@ 12160 |S4F80 206352 (059 S2FBB-S2FA7 123 S2FAB-S2FCF 187 S$2FDO-S2FF7 $2FF8-S2FFF
$3380 1318455380 21376 |060 S$3380-S33A7 124 $33A8-$33CF 188 S$33D@-S33F7 $33F8-S33FF
$3780 1420855780 22400 (061 $3780-S37A7 125 $37A8-$37CF 189 $37D0-S37F7 S37F8-S37FF
$3B8@ 15232 |S5BBQ 23424 |@62 S3BBA-S3BAT7 126 $3BAB-S3BCF 19¢ S$3BD@-S3BF7 $3BF8-S3BFF
S3F8@ 16256 |SSFBO 24448 |063 S3F80-S3FA7 127 S$3FA8-$3FCF 191 S3FD@-S3FF7 S3FF8-53FFF

Figure 5.8 HIRES Displayed Memory Map.

RAM in the Apple Il 5-45

SCREEN TOP
HORIZONTAL BLANKING (HEL) HORIZONTAL DISPLAY ENABLE
LINE 11111111 111111111111111122222222
NUM PAGE 1 PAGE 2 @@123456789ABCDEF@1234567 PAGE 1 PAGE 2 (123456 7B9ABCDEFA123456789ABCDEFA1234567
0 [S2068 0206 |SA068 16488|++rirrtttBRRtttiittittis [S2000 B102|SA000 16384 | +rttttttttttttittibtbbttrtbritrttttttitt |
1| 52468 9320 |S4468 17512 | +++++++++EE5E4+H44+H44+++ |S2400 9216154400 17408 +++++++++t++tbtbbbtbbbbbbbbbdibbditttbt
2 | 52868 10344 |S4868 18536 | +++++++++#8E++++4+++44444 |S2800 1024054800 18432] ++++H+ttttttttbbtbbbbbbbbb bbb bddbrddttd
3 | 52068 1136B|$4C68 19560 | +++++++++EEE++++tttet++ |S2C00 11264 |S4CO0 19456 ++HHHHHrrrttttdttibbddbbb bbb bbb bbb bt 44
4 | S3@68 1239255868 20584 | +++++++++EFEE++++++++++++ (53000 1228855000 20488 | +++++++++++bttbbbtbbdbbbdbbddb bbbt bbbt
5 | S3468 1341655468 21608 | ++++++t++EEEE+++++t++++++ (53400 1331255400 21504 | +H+++HHHH+HHitHttttbttbbttbtbbb bbbt
6 | 53868 14440 |S5868 22f 32| +++++++++EEEE+++++ter++++ |S3800 1433655800 22528 | +H++HHHt+HH+ bbb bbb
7 | 3068 15464 |S5CE68 23656 | +++++++++8E#8++++++++++++ [S3C00 15360 | S5CHE0 23552 ++++++ttttttttttttttttttt bbb bbb bttt
8 | S2PEE 8424 |S40ES 16616 | +++++++++fH##+++++++44444 |52080 832054080 16512| +H+++tttttttttitttbttbbbrbbttbbttttttttt
9 | S24E8 9448 |S44E8 17640 | +++++++++FEE5+++4 44444444 |52480 9344 S4480 17536 | +H+++tttttbttdbbibbbbbbbbbidbbbdttttitit
10 | S28FE8 10472 |S4BE8 18664 +++++++++EE#E++++++++++++ [S2880 10368|54880 18560 | ++++++4++tttttttbtttbbtbbbbbbbbt sttt
11 | S2CE8 11496 |S4CES 19688 |+++++++++E##E+++++++++4+4+4 [S2CB0 11392 S4C80 19584 | +++++tbtbbbbbbtibbbbtttitittbbbitttttttst
12 | $36E8 12520|550E8 20712 +++++++++$E#8+++++++++++4+ | 53080 12416 |S5080 20608 | +++++ttttdbdtitidititbdbbbbbbbbbttttttdts
13 | S34E8 13544 |554E8 21736 +++++++++##8#+++++++++++4 |53480 13440| 55480 21632| ++++++4+bbbtbbbdbbbbbdtttbbbbbddbbbid it
14 | S38ER 14568 |SSBE8 22760 | +++++++++H##4++++++++++4+ |S38B0 14464 | $5880 22656 +H+++tttttttittttbdtibbbbbbbbbtibitiiist
15 | S3ICEB 15592 |55CES 23784 | +++++++++df#f+++++t+++4+ |SICBE 15488 |S5CE0 23680 | ++++++++rr+rHH+HHHHHtHttd bbbttt
16 | S2168 B552|54168 16744 | +++++++++itfd+rttbtittts+ |S2100 B448|54100 16640| +++H++rHHHHHttttbttbttrttttttttttt
17 | 52568 957654568 17768|+++++++++EE8E+++rbbttss+ |$2500 9472(S54500 17664 | ++++++++t++tt+ttttttttrtttrtttttttttttt
18 | S2068 1060054968 18792|+++++++++Eds+++++++44++ (52000 10496 | 54900 18688 | ++ititttttttttttttttttrtttbbbbbtttttitts
19 | 52068 11624 |54D68 19816 |+++++++++E3 8 +++++440444++ [S2D00 11520|S4DF0 19712 | ++++++++H+ttbtbtbbbbbbbbtbddtttttttttttst
26 | 53168 12648 |$5168 20840 | +++++++++ES35++4bb4++++4 |$3100 1254455100 20736 +H++++ttttbttttdtitdtttbbbbbbb bbbttt
21 | 53568 13672(55568 21864 |+++++++++E#Ef+++++++++++4 [$3500 13568 | 85500 21760 | +++++tttttittttttitibbbitbbbbbbtttdtitts
27 | 53968 14696|55968 22888 +++++++++§EEE++++HHH+44+ [S3900 14592|55900 22784 | ++++++++Htttbbtbbbbttbbbtbbtbbbtttbtb bt
23 | S3D6B 15720855068 23912 +++++++++EFEE+++H+++H4444 (53000 15616 | S5DGA 23808 | +++++++++tttittttbbbbbbbbttdtttbtdtdias
24 | S21ER BEBO|S41ER 16872| +++++++++§EEE++++++++++++ [S2180 B576| 54180 16768| ++++++++tttittittittittibbtttbtbtttttttst
25 | S25E8 9704 |S45SES 17896 | ++4++++++EEfE+++++++4444 |S2580 960054580 17792 | +H+++++++i+itttttittttittbsttdttttittitt
26 | 52988 10728 |S49E8 18020 | +++++++++EEEE++eetttst+++ [S2080 1062454980 18816 | +++++++itttbittititiittitttttttitttitttsd
27 | S2DEB 11752 |S4DE8 19944 | ++4++++++ 888 #4404t b4a444 |S2DB0 11648 |S4DBA 19840 +++++++++ttttbtttbtttittbtttdtttitbbits
28 | S31E8 12776|S51E8 20968 | +4+++++++ 8848 +++++444 444+ |S3180 1267255180 20864 [+++++ttbbddddbbbttbbbttttttttttttttbttt
29 | 53588 13800 |S55E8 21992| +4++++++++BE+++++++44444 |S3580 1369655580 21888| +++++++++tbbttbbbtbbbbbbbbtbtbbbttitttst
3¢ | S39E8 14824 |S$59E8 23016 | +++++++++EEEEHHHHEEHHH44+ |S3980 1472055980 22012(+++++++++bbdtbbbtbbbbbb bbb bbbt bbb b bbb bt
31 | S3DEB 15848|S5DES 24040 | +++++++++F4EE+++++++4444+ |SIDBA 15744 | S5080 23936 | +++++++t++tttttbbbbbbdbbddtbbdtbbbtbbtttsd
32 | $2268 B8B08|54268 17000| +++++++++EEEE++++++044444+ 52200 870454200 16896 +++++ttttttttttttbbbitbbtttbbbbbbtids
33 | 2668 9832|54668 18024 |+++++++++8ER++++44444444 (52600 972854600 17920|++++++tttttitttrrittrttiitittbitibiitis
34 | S2A68 10856 | S4AG8 19048 | +++++++++fiRE+++++++++44+ |S2A00 10752 | S4A00 18944| +H++tttttttttttttttttttttbttrttttttttttt
35 | S2E68 11880|S4E68 20072|+++++++++§ERE++++++4+++ |S2E00 11776 S4EAA 19968 | ++++ttttttttttttbbbbttttttttttbttttttits
36 | $3268 1290455268 21096|+++++++++EEEH++HE4+444 (3200 1280055200 20992| +++++4+++ttttbttbbbbbbbibbbbtbbbtbbttits
37 | 83668 1392855668 22120 | +++++++++E 44444444444 |S3600 13824 | 55600 22016 | 44+ +++++ -+t bbbt bbb bbb b bbb bbb bbb bbb bbb
38 | $3A68 14952|S5A68 23144 +++++++++BFEE+Hrrrettb44 |SIAO0 14848 | SSAG0 23040| +++++++Hbbtbbbtbbbbbbbbbbbttdbttbbbbbbrt
39 | S3E68 15976 |SSE6R 24168 | +++++++++#fH#E+++++444444 |SIEOQ 15872| SSEAD 24064 | +++++++++t+bbbtbbbbbbtddbtdtttttbbttbtbt
40 | 522E8 B936|S542E8 17128|+++++++++EEEE+++rb44+44++ 52280 8832| 54280 17024 ++++++bbbbdtbbbbbbbbbbbtbdtbbbtbbtdtit
41 | 526E8 9960 |S46E8 18152 +++++++++EEEE+++++++++4++ 52680 0856 |S4680 1804B|+++++tdittbbibbbbbbbbbbbbtdttbtittttbbt
42 | 82AE8 10984 |S4AER 19176 +++++++++E4ER+++++++444+4 |S2AB80 10880 | S4AB0 19072 ++++++itttbbbbbbbbbbbbbbbbbbbb bbbttt tts
43 | S2EE8 12008 |S4EER 20200 |+++++++++FEfE+++++++++4+4+ |S2EB0 11904 | SAFBE 20096 | +++++++H+HHHbbbtbbbtttttbbb bbbt bt
44 | S32E8 13032|S52E8 21224 +++++++++E R EH+H++HH++44+ (53280 12928 $5280 21120 | ++++++++++ttittittttbbttbbtttrttb bbbttt
45 | SI6E8 14056|S56E8 22248 | +++++++++EEEE+++++b+4444 [$36B0 1395255680 22144 | +H++++tt+ttttttttbtttbtbdttbt bbbt tbtt bt
46 | SIAEB 15080 SSAES 23272 +++++++++i#fE++++4+4444444 |S3ABG 14976 |SSABE 23168 | +++t+tttttttttttittttbbbtbbdtttttttttites
47 | S3EEB 16104 |S5EES 24296 |+++++++++df i+ttt 444 |SIEBQ 16000 | SSEBDA 24192| HH++ttttbbbdbbtbtbbitbtbtttibbiitbbttiss
48 | 52368 9064 |54368 17256 ++++++tr+fBfE+++4+44444441S2300 896054300 17152 H+++ttttrtbbbbbbbbbbbbbbbbbbbbbbibbtet
49 | 52768 10088|54768 18280 +++++++++HFE++++44444444 52700 998454700 18176 (++++++ttittbttbtbbbtitbtbbbtibbtibbis
50 | 52868 11112($4B68 19304 | +++++++++EEEE++ 4444444+ |S2B00 11008 |S4BEA 19200 | +++++++itrttitbttbbbbtbbbbbbt bbbt bbbttt
51 | S2F68 12136|S4F68 20328| +++++++++EEEE+++444++44+ |S2FO0 12032|S4FA0 20224 | +H+++++tttbbbbbtbbbtbbbbb b b bbb bbb bbb bbbt
52 | $3368 1316055368 21352|+++++++++FEEE+++++4++44+ (53300 1305655300 21248 | ++++++++ttttrdbbbidttbttbbbbbbbbbtbbet
53 | $3768 1418455768 22376 |+++++++++REEE++++444+4+44+ 53700 1408055708 22272 ++++++H+rrtttbbbrbbtbbbbtbbttbbtttbitts
54 | S3B68 15208|S5B68 23400 | +++++++++EEEEHHHH -4+ | SIBO0 15104 SSBA@ 23296 +++++++++btttbbt bbbttt bbb bbb R
55 | SIFE8 16232|SSFE8 24424 | +++++++++EEHE+H++++++44+44+ |S3FO0 16128 | SSFO0 24320| +++++++++tttittitbbttbtttttbbbbtbtttttt
56 | $23E8 9192|S$43E8 17384 |++++++++rEEf++HH4444444 (52380 9088| 54380 17280 +++++tHttbtbbbbbbbbbbbbttbbbbbbbbbbibist
57 | S27E8 10216 |S$47E8 18408 | +++++++++EEE+++tatit+4+ (52780 10112| 54780 18304 | ++++++ttttitbbbttbbbibbtbd it bbb bbb bbbt
S8 | S2BES 11240|S4BES 19432 +++++++++EERE++++++++++4+ 52880 11136 SABAEA 19328 | +++++4+bbbbbbbbbb bbbt bbbt b bbb b bR bR
59 | S2FE8 12264 |S4FES 20456 | +++++++++EfRE++++++4+4++4+ |S2FB0 12160 | S4FB0 20352| +++++i+tttttdbtttbitbtttttt bbb bbb bbb
60 | S33E8 13288|S553E8 21480|+++++++++EEREHHHH+++++4+++ 53380 1318455380 21376 | +H++HHrttbbtbbb bbbt bbb b bbb bbb
61 | S37E8 14312|SSTES 22504 |++++++s++fiBf++tittttt++|S3T80 1420855780 22400 | ++++++HHHittttbtitttbttbtb bbb bbb bbb
62 | SIBES 15336|SSBES 23528 |+++++++++EF##++++++++++++ |S3BBA 15232|55BBA 23424| +++Hittitttitttittrtttrttthtrb bbbt
63 | SIFES 16368|SSFES 24552 +++++++++fEf#++444+44444 |SIFBO 16256 | S5F8@ 24448 | +++tttddddbbdttidtbbttbtttttttitttitiits

Figure 59 HIRES Video Scanning Map. (1 of 4)

516 Understanding the Applell

SCREEN MIDDLE

HORIZONTAL, BLANKING (HBL) HORIZONTAL DISPLAY ENABLE
LINE 11111111 111111111111111122222222
NUM PAGE 1 PAGE 2 | @0123456789ABCDEFA1234567 PAGE 1 PAGE 2 |@123456789ABCDEF@123456789ARCDEFG1234567

64 [52010 B208|S4010 16400| +++++++++38E+++++++++4+44|S2028 B8232(54028 16424 +H+++++++++ttttittitttibbtttdtttitisss
65| $2410 9232|54410 17424 +++++++++$58 8444444444444 |S2428 9256 | S4428 17448 | #4444+ttt bttt i bbb tbbbba bbbttt bitt
66 | $2810 10256 (54810 1B448| +++++++++EEEE+++Hr++4+4+4++ 52828 10280 S4B28 1B4T2| ++++++++tttttbbtibibibbbtbtttttbbbtts
67 | S2C10 11280|S4CLE 19472 +4+e+++++ 8588+ bbbbbbbb s+ |S2C28 11304 S4C28 19496 | 44444444+ttt bbbbbbbbbbbbbbbdbbibbbitbtt
68 | $3010 12304|55010 20496 | +++++++++AEE5++--H+++++4++ | S3028 12328 S5028 20520 | +++++++ -ttt bbbb bbbt bbb bbbt bbb bbbttt it
69 | 53410 13328|55410 21520 +++++++++8 8814+ H44 | 53428 1335255428 21544 [#++H+HHHHH4 A HHH AR R R
70 | $3810 1435255810 22544 +++4+++++EFE 444 bH 440444+ | 53828 14376 $5828 22568 |+ttt bbbt bbb bbbt bbbt bbb bbb b
TL | S3C10 15376|S5C10 23568 +4++4+++++8 5854+ +4 4444444453028 15400 S5C28 23592 ++++++4+t++bbtttbbbitbtitbtttbbibbsttss
72| 52090 8336(S54090 16528 ++++++e++EEEE R EH | S20AB BI60| S40AE 16552[+ bbbttt rt bbb bbb bbb bbb bbb
73| 52490 936054490 17552 +++r+++++E88E+H+44Ht+444 52408 9384 | S44A8 17576 +4++44++++++t444++bbbbtbb bttt bbbtbttts
74 | $2890 10384|54890 18576 +++++++++fEd+4+++ttttsss|S28A8 10408| SABAS 18600 | ++++ttttttttsbtbrbbbbbibtbtttbtttibtts
75 | 52090 11408)|S54C90 19600 | +++++++++EEEH+++ttrttrtt+ | S2CAR 11432 | SACAR 19624 | #++++i+ttttttitttbbbbibbtbbbbitbtbbtbtsss
76 | 53090 12432|55090 20624| ++++t++++4FEE+HEbbHb+4+44 | SIOAB 12456 | SSOAB 20648 | +#++ 4+ttt ttbtttititbbibtbbtbbtttitiss
77| $3490 1345655490 21648 | +++++++++8 88 ++rtbbt++44 | STAAR 13480 S54A8 21672 | +4++++sttbitbtitbbitbbbbbbbbbbbddbtbtttistts
78 | 53890 14480|S5890 22672| +++++++++EFE8+HH+HHHHH++4 [S3BAB 14504 | S5BAB 22696 | +++++4+-++++E 4 EERERE R R R R
79 | S3C90 15504 |55C90 23696 | +++++++ b+ 4+ b+4+6++4+ | SICAR 15528 | S5CAR 23720 | +++++++++++++++4H+- 00 bbb bbb b 44444+ 4
80 | 52110 8464|S4110 16656| +++++++++EEE8 44 +4H444444 (82128 B488|S54128 16RSQ| +#++++-t++tt b+ bbbttt it rbdbattittbii+t
81| $2510 94BB8|$4510 17680| +++++++ r+#df+++++e++++++| 52528 9512| 54528 17704 | +++++4+++tttitbrttittibittbttbitttiitt
82| 52916 10512|54910 18704) t+++ter+#F#d++Herr++++++| 52928 10536| 54928 18728 | +++e++ttttttttttrttrrtrbbttbbbttbttett
83| S2010 11536(S4D10 19728 +++H+++++484++HHHHH++H4+[S2D28 11560 S4D28 19752 ++++t4+++t+++ 4+t HH+HHHHHH 44 HHHHH+4 44
84 | S3110 1256055110 20752| #++++++++8528+++b++++++4+4 | 53128 1258455128 20TT6| #+++++tttttttt bbbbtrrtttbtb bbbttt bittt
85| 53510 13584|55510 21776| +++++++++4fE#+++t+et++++[S3528 13608 |S5528 21800 ++++++4+t+ttttddtttbbsbrbbbbbttbbtttrttt
B6 | 53910 14608|55910 22800 +++++++++#HE#+rtbtbit++++[53928 1463255928 22824 | ++++titttttttttitttbbbbrbbbtbtbtbtbttttt
87| $3D1@ 15632|S5010 23824 | +++++++++4ERE+++HHH+++++4+ | S3D28 15656 | S5N28 23848 | +4++++4+t+btbH b+ bbbt bbb bbb bbbt aibbtt
88 | $2190 859254190 16784 ++++4++++4E84 - HHHH4444+4+[S21A8 BAL6|S4A1A8 16B0B| #+++++++H+Ht+ ettt bttt bbb a4+
89 | S2590 9616[S54590 1708 +4+4++44+++E4R44 -+ 4444 | S25AB 9640 S45A8 17832 #4444+t 44004 H AR
9@ | 52990 10640] 54990 18832] +4++etttt+HEEE b bbbbbttiet [S2908 10664 | SA9NE 1HRSH| +4dtbtttbtbtbtbibrbbrbbbbtbbbbbbbrtbtbis
91| 52098 11664|54D90 19856 +++++++++#fRE++++++++++++| S2DAB 11688 |S4DAR 19880 +++++++++t+++++ttbbtbbbbbbtbittbtbbbsts
92 | $3190 1268B8|55190 20880 +++++++++3#88++1+++H++++4+ | S31AB 12712 S551A8 20904 ++++HH++t++tt i+ttt dtttttbe st
93| 53593 13712|55590 21904 | +++rt++++#R++treret++++|S35A8 13736 |S55A8 21928 ++++++tttttttttttttttttibbtibbttttbttts
94 | $3990 14736|S55990 22928 | ++4++ 444443458+ + 4444444 | S39AB 14760 | S59A8 Z2952 | #4+tbtttttbb bbbt bbb b bbb bbb bR R
95 | S3D90 15760|S5D90 23952 +++++++++iERE++++++++++4++| S3DAB 15784 | SSDAB 23976 | #+étbbbbbttdbbbbbbbbbbbbbbtbbbbbbittiitesd
96 | 52210 872054210 16912 +++++++++EERE++4++ 44444452228 BT744 (54228 16936 | #t++tttdtdddttbdbbbbbbbbrdbbbtrbrrrrtes
97| 52610 974454610 17936| +++++4+++EERE4 04444444+ S2628 9768 |S54628 17960+ttt dttttbbbbbbbtibrbtbbbbbbbbbbbbtbbt
a8 | S2A10 19768|54A10 1B960| +++++++++EEER++++++r++++|S2A28 1079254028 1HO84 | ++4+ttttttdbbbbbbbbbbbbbbbbbbbdbbdtisis
99| S2E10 11792|S4E10 19984 +++++++++EHH4+++++++44+4+4+ | S2E28 11816 |S4E28 20008 |+ttt trrrbrrtrrbrbbtr bbbttt
108 | S$3210 12816|55210 21008 +++++++++EEfE++HH++++++++| 53228 12840(55228 21032 | ++++Htttttttitrittttrrrbtbebbbtbbbbiiss
101 | S3610 1384055610 22032| +++++++++E4E8+++H++H+++++| 53628 13864 | 55628 22056 | +H++t++bttttbtbttbbbbbbtbbbbbedttttt4+
102 | S3A1@ 14864 |55A10 23056| +++++++++E##E++++4+4++44++4 | S3028 14888 |S55A28 23080 ++H+++t++++titttttrhtttbbrbtttitittteds
103 | S3E1@ 15888|SS5E1Q 24080 +++++++++4##4++++++++++++|S3IEZB 15912 |SSE28 24104 | ++++H++++HH+ -4 0000 HHR R E RS
104 | $2290 8848(54290 17040 ++4+4++4+++35#H++++++++44++4+| 52208 B872 54228 17064 | +++++++++++++++++t+++t+++++-HHH+HHH44 44
105 | $2690 9872|54690 18064| +++++++++E848 44 ++4++++4++++ | S26A8 9896 |S46A8 18088 | +++tbbtttbbibbibbbbbbbbbbbibbbbbtbbittids
106 | S2A93 10896|S4A90 19088| +++++++++f4f#++++++++++4++ | S2AAE 10920 |S4AAB 19112 ++4++tbdtttttbbittibbbbbbbibbbitibitbsss
107 | S2E90 11920 | S4E00 20112| +++++++++E888 4+ ++++++++++ | S2FEAB 11944 |S4FEAR 20136 | #4444+ttt bttt bbrrrbbbbbbbbibbbtbsds
108 | 53290 1294455290 21136 +++++++++#484 -+ HHHH4++4+ | 532208 12968 |552A8 21160 | ++++++H+++++++ 44404 HHH bR EHH R R HE
109 | $3690 1396B| 55690 22160| +++++++++Effd++++++++++++ | SI6AR 13992 |S56A8 22184 | ++++titttbbtrtibbtbbbbbbbbbbbbbbbbbbtids
110 | S3290 14992|55A90 23184 | +++++++++EEER+++++++++4+++| S3ARB 15016 [SSARR 23208 [+++++-tt+ bbbt bbbtbbbibbbbbbbbbditiins
111 | S3E90 16016|S5E90 24208| +++++++++E$##++++++++++++| SIEADB 16040 |SSEAR 24232 | ++tHt++4+t+HHttttHrttbti bbb itbbittitt
112 | S$231@0 B976|S4310 17168|+++++++++EdE#++++++++++++| 52328 9000 |S4328 17192 | ++++H+4+tHt+btrtttbbrberbbebbbttbrsbtitt
113] $2710 10000|54710 18192| +++++++++EEEE+++ 4444444+ | 52728 10024 |S4728 18216 | ++ttbttttbitbbbbbbbbbbbbbbebbdbbitittits
114 | $2B10 11024 |S4B10 19216 +++++t+++f i f+++rtersrts+| SIBZE 11048 |S4R28 19240 ++++++++++++btt4tbbbttbbb bbb bbbdbbtt bttt
115 | S2F10 12048|S4F10 20240| +++++++++EE#E+++H4++-04++ | S2F28 12072 |S4F28 20264 | +4+++H+4+-4 bbb HH bbb bR R
116 | $3310 13072|S5310 21264 [+++++++++HE88 444+ +4++4+4+++| 53328 13096 [S5328 21288 | +++++t+tttbbtbtbbbbbibbb bbb bbbbtbttitt
117 | $3710 14096|S5710 22288 +++++++++R##H++4 444444444 |53728 14120 (S5728 22312 |+ 4+ttt tbbd bbbt bbbbbbbbb bbb bbbt bbbbits
118 | S3IB1@ 15120|S5B10 23312| +4++++ttt+E B4+ttt | SIR28 15144 |S5B28 23236 [+ttt dbtitbbbbibbbbbbbibbbbbbbbbbbts
119 | S3IF1@ 16144|55F10 24336 +++++++++BE44++++++++++++ | SIF2B 16168 |SSF28 24360 | +++++t4t+t++tttrtibrbrrrbtbbbbdtbbbdsst
126 | $2398 910454390 17296| +++++++++fEHE++++++++++++| S23A8 9128 [S43AB 17320 | +++++++4++++t4tttttbbttrbrbitsttttbtess
121 | 52790 1012854790 18320| +++++++++#E#d++++++++++++| S27A8 10152 [S4TAS 18344 |+ttt ttttttbtettbtbtttiebibttttttet
122 | $2B90 11152|S4B90 19344[+++++++++ffE++++++++4+4+| SZBAB 11176 |S4BAB 19368 | +++++ttsttttttdttttttbttitibbbitttttttt+
123 | S2F9@ 12176 | S4F90 20368| +++++++4+8888+++++++4444+| S2FAB 12200 [S4FAR 20392 | ++++ttttttttttttbbbbrbbbribibbbbdbbbsitt
124 | $3390 1320055390 21392 +++++++++ERE4++++++++++4+| SI3AB 13224 |SS3AB 21416 [+4++HHH4 44440044 H 00 HE b ER R R R R R b 444
125 | $379@ 14224|S5798 22416| +++++4++++HE48++++++++++4++| SITAB 14248 |SSTAB 22440 | +++++4+tti bbbt bbibbbbbbbbbbdbdbbidbbtdt
126 | 53IB9Q 15248| S5R90 23440] +++++++++E8E 444444444 STBAR 15272 SSBAR 23464 #4444+t bbbbbtbibtbbdbbbbbbbdbb bbb b bbbt
127| S$3F90 16272| S5F90 24464| +++++++++4 #5844+ +++++4+444| SIFAB 16296 S5FAB 24433|++++++++++++++++++++++++++++++*+++++++++

Figure 59 HIRES Video Scanning Map. (2 of 4)

RAM in the Apple Il 547

SCREEN BOTTOM

HORIZONTAL BLANKING (HBL) HORIZONTAL DISPLAY ENABLE
LINE 11111111 111111111111111122222222
NUM PAGE 1 PAGE 2 100123456789ARCDEFA1234567] PAGE 1 PAGE 2 |0123456789ABCDEF@123456789ABCDEF@1234567

128 [52038 B8248|S54038 16440] +++++++++ERE8 ettt |S2050 827254050 16464[+HH+ttttrtttttttttrrtrbbrbitbiiitiiss
129 | $2438 9272|54438 17464 | +++++++++E3EE++eriaat++ 52450 9296(54450 17488 |+ttt ttttt bbbttt brtttibb bbb dtitd
130 | 52838 10296|S54838 18488 +++++++++E8EE++ 44444444 (52850 10320|54850 18512 +++++ttt+tttbtbbtbbbbbttttbtbttbbittittt
131 | 52C38 11320 S4C38 19512 +++++++++ B3 +HHH+444444 | 52050 11344 [S4C50 19536 +H+++4+++HHHHHHH bbb HEHHH R
132 | $3038 1234455038 20536 +++++++++5 88840 bbbbbt+++ (53050 1236855050 20560 | HH+++tttttttttttttbttbtrtbttbttibttttitd
133 | 53438 1336855438 21560 | +++++++++885++ttetb+++4 (53450 1339255450 21584 ++4++ttttttbtbbbbbbtrttbtbtitbbit bbbt
134 | S3838 14392|$5838 22584 | +++++++++EEE+4+H44+444+4+ |S3850 14416 |S5850 22608| ++++titttrtrrtrtbtbbttrrbbttbbbbitttbbtt
135 | 53C38 15416]|S5C38 23608 | +++++++++E4F8++-+H+ 444444 | 53050 15440 [S5C50 23632 ++++++++ bbbttt tttbtbbbbtbbbttbitbbtrt
136 | 520B8 B376|S540B8 16568 |+++++++++E4EE++++H+444444 [S20D0 BADO | SA0DA 16592 +44+444++4+4++++bb bbb bbb bbb b bbbt b4+
137 | S24B8 9400|S44B8 17592| +4+4+++++FEEE+HHHHH 44444 | 524D0 9424 [S44D0 L7616 #+++t+t+tt bbb ttbdbrbbbbtbdibbbbbstttdst
138 | 528BR 10424|548B8 18A16|+++++++++EfEE++++rbrtat e+ [S28D0 10448 |S48D0 18640 | 444444444444+t 4444+ b0H0 4 bbb 444 b HE
139 | S2CBS 11448|S4CES 19640 +++++++++FE 83 HHH+++4+++4 [S20D0 11472 |54CDA 19664 | 41+ttt tbttbbbbb bbbt bbbt bbbttt
140 | S30B8 12472|SSPBB 20664 | +++++++++E$EFH++++++++++4 |S30D0 12496 |S5OD0 20688 | ++++t++++t++ b+ttt ttbttttit+it
141 | S34B8 1349655488 21688 +++++++++#88+++++++44444 (53400 13520 [S54D8 21T12| tHHe+tttitt bttt bbbttt bt tb ettt
142 | $38B8 14520|55888 22712|+++++++++#E#++++ 4444444 |S3BD0 14544 |S5EDA 22736 | +H++H+++++++ti++tttttdttttttt bttt ttt
143 | S3CBE 15544 |SS5CEBE 23736 +++++++++§ 888 +44bbeb++44+ [SICOO 15568 |SSCDA 23760 | ++++t+tttbttbtittt bt bbbt bbbttt bbb b4444
144 | 52138 850454138 16696 +++++++++E3E3+44bbtbed++ 52150 852854150 16720|++++++++ttttet bt tbttrtbt bbbttt t+ 44t
145 | $2538 952854538 17728| +++++++++EE 88 H4btbtt bbbt |S2550 9552 |54550 17744 ++etttttbdttbitbtsbrbbrbbbbbbtbbtittttes
146 | $2938 1055254938 18744 |+++++++++EEE8H+Hbb4pbet 44 ||52950 10576 54950 1BTEB|++++++++++tttttttbbttttrbttbbbtttt ittt
147 | 52038 11576|54D38 19768 +++++++++E3 88 b4 4404444444 (52050 11600 |S4D50 19792 | ++++++++++h4+bHb bbb bbb b bR R4+
148 | 83138 1260055138 20792| +++++++++E#E5 44+ 4444444 [53150 12624 55150 20BLE | ++++4++++++++ 4+ bbb bbb bbb+ bbb b4+
149 | $3538 13624|55538 21816| +++++++++hEE8++ 444444444 |S3550 1364855550 21840 |+ttt bbb bbb bbb bbb bbb bbb bbb 4
150 | 53938 1464855938 22840 +++++++++###8++++++444444 53050 14672 (55950 22864 | ++++++++t+ttttitbtttbtttdtbbtttttttitttat
151 | S3038 1567255038 23864 +++++++++E# 88 +++HHH+++4+++ |S30D50 15696 | 55050 23888 | ++++++++++ e+ 400 AR AR R R ER R R4S
152 | 52188 863254188 16824|+++++++++EdE++++++4444+4|521D0 8656 (S41D0 16848 ++++++Ht++t+titttttitrrdtttttttttitttis
153 | 525B8 9656 |$45B8 17848| +++++++++E5EE+ 4444444444+ |S25D0 9680 | 545D 17872 | +H++++ttittttittitrrtrittbbttttttbitst
154 | 52988 10680 |549B8 18B72|+++++++++E§E544tddbtdsss+ (52900 10704 |549D0 18896 | +HH+++++++tt+ ittt titttttttt b+t
155 | S2DB8 11704 |S4DBR 19896 | +++++++++ B E+++rter+i+++ |S20D0 11728 |S4DDO 19920 | #4++++ddtidtbbbbbtbbbbbbbbbbbdbbdidtdsts
156 | S31B8 12728 |S51BB 20920 +++++++++HE S 8++++ 4444444 |S31D0 1275255100 20944 | ++++++4ttdtddddbttbtbdbtbbtbbbtb bbbttt dt
157 | S35B8 13752|S55B8 21944| +++++++++H 8RR ++++bbta+44 53500 13776 |S5508 21968 | #+++4+bttdtbbtbbbbbdbbbbdtbbbbbbbbbttbdttt
158 | 53988 14776|S59B8 22968| +++++++++EH# R+ HHHHEH44 | 530D0 14800 (55900 22992 | #4+4+HbH4H b bbb bR HR R FE R R RR R R
159 | S3DBB 15800 |SSDRA 23902| +++++++++EEEE++++++444444 (53000 15824 |S50DF 24016 #4444 4444 b bbb bbb bbb bbb bbb bbb bbb 444
16@ | 52238 876854238 16952 +++++++++HEER+++++4+44444 |52250 BT84 |54250 16976 +++++tt4++tttttttttbbbtttbtbtbttbttdtttst
161 | 52638 978454638 17976| +++++++++Bi#++++++44+44 [S2650 980854650 18000 +H++++ttttttttttbbrttbbttbbtttttbbtttitt
162 | 52A38 10808 |54A38 19000 +H++++++++3E5E++H+HH++++4+ |S2A50 10832 S4A50 19024 | +++++++++++++ttHttrtttttrt bbbttt bbbttt
163 | S2E38 11832 |S4E38 20024 +++++++++HE88++++++44+44+4+ |S2ES0 11856 |S4ESA 20048 | +++++t++ttttttbbrtbtbrtbd bbbt tbtbttttt
164 | $S3238 1285655238 21048 +++++++++iE#++++rrtde+44 |S3250 12880 |55250 21072 | HH+++ttttttttbtbtbbtrbbbbbbt bbbttt
165 | 53638 13880 |S5638 22072| +++++t+++E i ++tsrbbrtbts |S3650 13904 | 55650 22096 +++++ttttrtttttrtbtbbbbbbbbtttbbtrtbits
166 | S3IA3B 14904 |S5A3B 23096 | +4++++++++EHE#++ 444444444+ |SIASO 14928 | SSASA 23120 | +4+t+ttttt bbbt bbbtbbbbbbbbbetbtttttss bt
167 | S3IE3I8 15928 |SSE3IR 24120 +++++++++BEE8 4+ 44444444 |SIESO 15952 [SSESA 24144 | #4444+t bbbbtbbb bbbt bbb bbbdbbdd bbbttt
168 | S22B8 B8R88E [S4288 17080 +++++++++FEHE+++ 44444444 (52200 BO12|542D0 17104 [#4444+ttt bbbtbbbbbtttttbbbtdbtbbtdt bttt
169 | 526B8 991254688 18104 +++++++++EHEE++ 44444444 |S26D0 9936 | 54600 18128| s+++tbbddbbddbbbdbbbbbbbbbbtsbbbtibtbdiss
170 | S2ABA 10936 |S4ABS 19128| +++++++++ 8 H++++ 44444444 |S2ADO 10960 sqgnﬂ R RN B o e
171 | S2EBB 11960 |S4EB8 20152| +++++++++§ 884+ ++4444444+ |S2EDD 11984 |SAEDO 20176 | +++++++tbbttbbbtbbbbbbbbbbtbbbbbb bbbt
172 | 532B8 12984 |$52B8 21176|+++++++++RE#+++++t+++++4 |S3200 13008 |S5208 21200 | ++++++++++ bbbttt bbt bttt bttt bt
173 | S36B8 14008 |S56BB 22200 | +++++++++EE##+HHH++44444+4 |S36D0 14032 |556D@ 22224 | +H++++t+tttttttttbttttdttrtt bttt b4ttt
174 | S3ABS 15032 |SSABE 23224 | +++++++++ 83 EE+++rt++44++ [SIAD0 15056 [SSADA 23248 [++++++++t++ bt bbbtttd bbb dbddddttddsd st
175 | S3IEBB 16056 |SSEBB 24248| +++++++++ R E+H+HHH+4+444 |S3EDO 16080 |SSEDQ 24272 | +++++tttttttbtrtrbbttrtbbbdtttbtbttttbt
176 | 52338 901654338 17208 | +++++++++8EE++H+H-+44444 (52350 904054350 17232 +44++t+tbt+4bbHH bbb bbb bbb bbbt bbb 4+
177 | 52738 10040 |S4738 18232| +++++++++EE8++++++444444 |S2750 10064 |54750 18256 | ++++tbtttbbbbtbtbbbbbbbbbbtbttbbdtbtdts
178 | $2B38 11064 [S4B38 19256 | +++++++++f#§+++++++++++ |S2B50 11088 [S4B50 19280 | +++++4+ttibbbitbbbbbbbbbbbtbbtbbttttbtts
179 | $2F38 12088 |S4F38 20280 +++++++++Ef##+++++t+44+44 [S2F50 12112 |S4F50 20304 | #4444+ tbbtbtttbtttt bbbttt bbtbbbt bttt
186 | S3338 1311255338 21304| +++++++++8FEE++++++++44+ |53350 1313655350 21328 | ++++++++++tttt bttt b bbbttt trdtbtte et
181 | S373B 14136 [S5738 22328 | +++++++++RE44+++++++44444 |53750 1416055750 22352 | +++++++++tttittitbtttbbbitttttttb bttt
182 | 3838 15160 [S5B38 23352|+++++++++#8FE+++++++4++++ [S3B50 15184 |S5B5@ 23376 | +++++++H+++ttttbtbb bbb bbb bbb bbb bbb bbb 44
183 | S3F38 16184 |SSF38 24376 | +++++++++EEEE+++++++4+444 |SIFS0 16208 |SS5F50 24400 | ++++++++++dtttbtbbbtbbbbtbrbtbttrb bt titt
184 |$23B8 9144 [S43B8 17336 +++++++++$E#E+++rbttbbit+ |S23D00 9168 |543D0 17360 | +++++++ttttttttbtitbbbbdbtbtbttttttitttt
185 |S2788 10168 |S47B8 18360 | +++++++++E#4+HHHHH++++4+4 |527D8 10192 |S4T7DA 18384 | ++++++-+H++HHHHHHHEHH R R R R R H R
186 |S2BB8 11192 [S4BB8 19384 +++++++++$E#E+++4+++44+4+ |S2BDO 11216 | SABDE 19408 | +++++++++ bbbttt bbbttt bbbt b bttt
187 |52FBR8 12216 |S4FBE 20408 t++++++++EEE4+++HHHHH444 |S2FDO 12240 |SAFDA 20432 | +4++4+HH+++HH HHHHHEHH R R 4 4
188 |S33B8 13240 [S53B8 21432(+++++++++df 444444+ 53300 13264 55300 21456 | ++++++++++++tttttttdb bbbt bbbt bbb bbbt
189 [S37B8 14264 [S57B8 22456 +++++++++EEE4++++HHH+b4++ |537D0 14288 |$57D0 22480 | +++++++++++HHHHHHb bbbt bR+
190 |S3BB8 15288 [SSBE8 23480 | +++++++++#E##++++++++++4+ |S3BDO 15312 |S5BD@ 23504 | ++++t+++++ttt+ittittttrt bbbttt bttt
191 |S3FB8 16312 |SSFBE 24504 +++++++++3 884+ +H+++4+4444 |S3FDP 16336 |S5FDA 24528 | +++++++++++H+Hb++btHbb b bttt bbb 44

Figure 59 HIRES Video Scanning Map. (3 of 4)

518

Understanding the Apple I

VERTICAL BLANKING PERIOD (VBL)
HORIZONTAL BLANKING (HBL) HORIZONTAL DISPLAY ENABLE
LINE 11111111 111111111111111122222222
NUM PAGE 1 PAGE 2 0E123456789ABCDEFA1234567 PAGE 1 PAGE 2 #123456789ABCDEFA123456789ABCDEFE1234567
102 | 52060 8288 |S4060 16480 | +++++r+i+ffdfr+++++++++ (52078 8312(S4078 16504 |+++++++ttttrttbdbbdbibtttitttbttibrrtiss
193 | 52460 931254460 17504 |+++++++++EREE+++++++++44+ 52478 933654478 17528 |++++++++tbbrbbbbbedibidtitbbbrbiiriitiss
194 | 52860 10336 |S4860 18528 |+++++++++f84d+++rtti+++ (52878 1036054878 18552 | ++++itbrbbbbtbbbbbbbbtibiribbbibbtits
195 | 82060 1136054060 19552 | +++++++++EEEE++++ 4444444+ |S2CT78 11384 |S4CT8 19576 [+++++++ttbbtbittttttiibbbbbbdbibbbbbitid
196 | 53060 1238455060 20576 | +++++++++BEEEH+++t+++++++ |SINTE 12408 |S5078 20600 | ++++H++bHrtrtbbbdtbbbbidb bbb bbb bbb bbb
197 | $3460 1340855460 21600 |+++++++++iE#E+++Ht++++++ (53478 1343255478 21624 [++++++++titHHirbHttidtdtbit bbb bbbttt
198 | 53868 14432 |S5860 22624 |+++++t+r+ibif+siasttststs (53878 14456 [SSBTB 22648 [++++++tittiirtritttittbbbttitttbbbbbibis
199 | S3C6@ 15456 [SSC60 23648 [++++++++ i f++++trit++++ | SICTE 15480 |55CT8 23672 [+ttt btettitttttbt bttt
200 | S20E0 8416|S40EQ 16608 |++++++++diif++t++++44444 |S20F8 B44@ |S40FB 16632 [+++++tttttibbbbbttirittbitbttititttibss
201 | S24E0 9440 |S44E0 17632 | ++++++++EEEH b4+ |S24F8 0464 [S44F8 17656 [+++++++tttbbbtbbbibbttditbbit bbbttt
202 | S28ED 10464 |SABED 1R656 | +++++++++EH E++++4444+444 |S28F8 10488 [S4BF8 18680 [+++++++++ttibttbbttbdbbdttbbtrbbtibitiiet
203 | S2CED 11488 |S4CE@ 19680 | ++++++r++# S+ H++4+44+++44 |S2CF8 11512 |S4CF8 19704 [+++++Hirirtbibbbtibbbidbibbbbbbbibit
204 | SIPEG 12512 [SSOE@ 20704 | +++++++++8554++++H++++++4 [SIOFB 12536 |SSOFE 20728 [++++++Ht+tbbbbbbbbbbbbbdibbbbbbbribbibtt
205 | S34E0 13536 |SSAE0 21728 | +++++++++ERESErt+itt+i+++ |SI4F 13560 |SS4FE 21752 [++++++ttibbtiritistitibbbbbbbbbbbbbtbist
206 | S38F@ 14560 |S58EQ 22752 | +++++++++4EEE++++++++++++ |SIAFE 14584 |SSBFR 22776 | +H+++++titibbbbibbiddiitbbbbbbrbbrriied
207 | S3CEG 15584 |SSCEQ 23776 | +++++++++fEEE+4+tbettt+++ |SICFE 15608 |SSCEB 23800 [+HH+H++ttitttitbtstttbbbbtbbbitiitibiid
208 | 52160 8544 |S4160 16736 |+++++rrr+fEblsettatttts++|52178 8568 |S4178 16760 [++++++ttitrtrtittittibittittietttbttitsd
209 | 52560 956854560 17760 | +++++i+++Eilrstttttttttt|S2578 9592|54578 17784 [++++++trbrtttitititttitttibtbrbbtibttist
210 | 2960 1059254960 18784 |+++++++++EEE+44+++++++44+ 52978 10616 (54978 18808 [+++++++tttirtttttttitttitttbtibiriiistd
211 | 52060 11616|S4D60 19808 | +++++++++ERE++++++++4+44 52078 1164054078 19832 B ot o
212 | 83160 12640|55160 20832|+++++++++i#f+++e++++++4+|S3178 12664 |S5178 20856 | ++++++++ttibbbbbddtttttttbbbbbbbsttsiiie
213 | $3560 1366455560 21856 | +++++++++hBRS+++tr+++++4++ |SI578 1368855578 21880 [+++++ttttbitrirttttitibbbtbbbbibibiibtis
214 | 53960 14688|55960 22880 | +++++++++dfE+++++t++++++|SI0T8 1471255978 22904 | +++Htbbtbbbbbbbbbtbitbbbtdbbbbibbbiiied
215 | $3D60 15712(S5060 230904 | +++++++++EfE+etettt+++++|S3DTE 15736 |S5D78 23928 | ++H++tttbribbbibbittibttibbbbbbbiiibit
216 | $21E0 B8672|S4A1EQ 16864 |+++++trr+dif++++++++44++|521F8 B696 |SALFB 16888 [+++t+ittittistdtitbttbbtbbbittrrttttiits
217 | $25E0 9696 |S4SEQ 17888 | +++++++++BEEE++4444+4+44+ |S25F8 9720 |SA5FB 17912 [+++++ttttbbtitbtitbtttittitrttbtbbsitiit
218 | S29E0 10720|S49EG 18912 |++++++r+iBsfi++++++++tt++|529F8 10744 |S49F8 18936 [+++++itrititibbttibttibitbittbittitidiss
219 | S2DE@ 11744 |SADEG 19936 | +++++i+++BEHE+4++44++4++++ |S20F8 11768 |S4DFB 19960 [+H+itriiitbbbttbbttibrtitttttttttttest
220 | 831E0 12768B|SS1EQ 20060 | +++++++++EEHE++++++++++++ |SILFE 12792 [SS1F8 20084 | +H++tttttttbibbbtbbbibbbbbbbbbiibiiies
221 | $35E0 13792|555E0 21984 | +++++++++U#f#++++++44++44+ [SISFE 13816 |S55F8 22008 | ++++rtttitttttttbbrbtbbbbriibriibbbtits
222 | $319E0 14816|S59E@ 23008 | +++++++++EHAE++++++++++++ | SIOFE 14840 |SS9F8 23032 |+++H+HHttibbdbtttbbttbdtbbbtbrbtbdbidiss
223 | S3IDEG 15843|SSDE@ 24032 | +++++++++§#f#++++++++++4++ |SIDFE 15864 |S5DFB 24056 | HH++ttbtbbbidttttttbtd bhbbbbrirrt bbb bds
224 | 52260 BBGG|S4260 16992| +++++++++EARUERESEEAAERES|S52278 BB24(54278 17016 |HHFREHRRERLARARAERARINNRERRRERRRIRRANRES
225 | 52668 982454660 18016 | +++rr++++UEuEaRUuEREERREE|S2678 OB4B|S4678 L8040 | HAREHEFEARRERRIRARIERIEURRRUARERIRIRRES
226 | S2A60 1@848|S4R60 19040 |+++++++++ERUHRREHAREEARES |S2ATE 10872 |54AT8 19064 GEREEARE R A R BN RERRES
227 | S2E60 11872|S4E6E 20064 | +++++++++§E4EA84A0p0EREEE | SOETE 11896 |S4ET8 20088 SEBEURUEEEREURI RN RERREREREYRREEREER
228 | $3260 12896|S55260 21088 |+++iittisffEf++++++++++++ (53278 1292055278 21112 |+++++rtttiititbttiiritittbbbddrridsiidtsd
229 | 53660 13920|55668 22112|+++++++++54HE++4+++4+4444+ 53678 13944 [S5678 22136 [+++ibtiiititdititbbbbitbbittittbttists
230 | 3260 14944|S5R68 23136 |+++++ir++EEEEs 4+t ++++|S3ATB 14968 [SSATE 23160 [+++++tiddtititttitiiibdibbbbitiittittt
231 | $3E6@ 15968|SSE6E 24160 | +++++++++E83++4+++++++|SIETS 15992 |S5ETB 24184 [HHH+Hiiiiitttittbbbbtititibtrbbbbibbstit
232 | 522E0 8928|542E0 17120|+++++++++EEEE++++++++++++|S22F8 BOS52[S42F8 17144 [++H+idbtbbbibttidibidtbbbb bbbt b bbbt
233 | $26E@ 9952|S46E0 18144 | +++++++++EE8E+++++++++++4 |S26F8 9976 |S46F8 18168 |+++++iiiibidittitititbbbbbbbibbbibbdttt
234 | SZAE@ 10976 |S4AEG 19168 | +++++++++E4EE++++ttiitt+ |S2AFE 11000 |S4AFE 19192 | ++++Hittisitttittibbbibbbbbirbiibbbbddis
235 | S2EE@ 12000 |SAEEQ 20192| ++++++++ B84+ttt |SZEFR 12024 |S4EFS 20216 | +H+++itittibbtbbiiibibtiibrrtbiriidddas
236 | S3IZEQ 13024 |SS2EU 21216 ++++tttttffgdtttrrtbrrt+|SI2F8 13048 |S52F8 21240 | +++i++iitittitibbbrbrirbrr bt biatiidddd
237 | S36E@ 14048 |SS6EQG 22240 | +++++ttr+EEEE++++it++4444 | SI6F8 14072 |S56F8 22264 | HH+tittittrrittittiibiiiirbitbttiiitddd
238 | S3IAFG 15072 |SSAEQ 23264 | +++++4t++EE4++++++++++++ | SIAFE 15096 |SSAFE 23288 | ++++++ittttttbttbitittitbbibdititiitts
239 | SIEE@ 16096 |SSEEG 24288 | ++++++++EEEE++++4+++4+++ | SIEFB 16120 [SSEFE 24312 | ++++bbtbibtiibttirttibitbbbbibbisittiiist
240 | $2360 905654360 17248 | ++++++++ 455544 4444+++4++ (52378 0080 |S4378 17272|+++++ttttttttbbtbbbibbitbbbbdtbbittiss
241 | S2760 1008054760 18272| ++++++++EE#E++++++++44++(52778 10104 [$4778 18296 | ++++tiitbttibtttbtbbbribitbibbbibdbiiid
242 | 52860 11104 |54B6G 19296 | +++++++++EEfE+++++++++++4|S2B78 11128 [S4B78 19320 |++++tttttittrribrtbbbbbbbibibibbbiddiidd
243 | S2F6@ 12128 |S4F60 20328 | ++++++++EEEE+++HH+H444+4 | S2FT78 12152 |S4FT78 20344 |+ttt bibtbibtbbbbibbbbibidiitts
244 | $3368 13152|55360 21344 | +++++++++3#RE++++++++++++ (53378 1317655378 21368 | +H++ttitttttittritritbtbbbbbbbbidtitttsd
245 | $3768 14176|S5760 22368 | +++++++++ERREHHH4+4++04+|S3778 14200 S5778 22392 [++++ttHtitHiHt bbb bbb R RR R R
246 | SIR6@ 15200 |SSB6Q 23392| +++++++++#EES++et+t444+44 | 53878 15224 |SSB78 23416 | +++irttiittbibbbibitbbtitbiit it daddds
247 | SIF6@ 16224 |SSFEQ 24416| ++++++t++iiEd++++ttit b4+ |SIFT8 16248 |S5FT78 24448 #++i+ttidtitibbibbibibitibbbibttdddtditas
248 | S23E@ 9184 |S43E0 17376 ++++++t++#fEd++++44++4++4(S523F8 0208 |$43F8 17400 | +++irtttdititbdddbddibibbbbbbbtdddttiitist
249 | S27E@ 10208 |S47EG 18400 +++++++++REEd+++++++++4+4(S27F8 10232 |$47F8 18424+ttt iibibbbibbbbbbbbdbbdbdi it
250 | S2BE@ 11232|S4BEG 19424| +++++++++4#4#++++tt++++++|S2BFB 11256 |S4BFB 19448 [+HH++ititttibbbbbbbtbbbbbbbbirtiitites
251 | S2FE@ 12256 |SAFE@ 26448 | +++++++++E844++++++++4++4 | S2FF8 12280 |S4FFB 20472+t bittibbibirrbibibbdbbbbdiiitd
252 | S33E@ 13280|S53EF 21472| ++++tttt+f B d+++++t++H44 | S33F8 13304 |SS3F8 21496 | HH++ii+tititibibbbbbbbbrbbbbbdbdatiiidit
253 | $37E@ 14304 |SSTEE 22496 +4+++++f§H+++++-+444+ |SITFB 14328 |SSTFB 22520 | HHH++H++tttibtittrtirtibibtittbbitidvid
254 | S3BEG 15328 |SSBEG 23520 | ++++++++4###+++++++44++4 | S3BFB 15352 | S5BF8 23544 B e e e s s e s
255 | SIFE@ 16352 |SSFEQ 24544 | +444++++++B 44+ +btrrts+ |SIFFB 16376 | SSFFB 24568 | +H++t++tttttittitirrrttbtititiitititass
256 | S2BE@ 11232 |S4BEQ 10424 | +++++4++++4 4+ +++++ir++++ |S2BFE 11256 |S4BF8 19448 | +++ttttttttibdtbtbrbbbtbitittrttttitiss
257 | S2FE@ 12256 |S4FEG 20448| +++++++++ifdd+++++4+++4+4 | S2FF8 12280 | S4FFB 20472 D R s e m e
258 | S33E@ 13280 |S$53E0 21472 ++++t4+++iff#++r+rrr++++ |S33F8 13304 [S53F8 21496 | +++ittttittttisbtbbbbbibitittrtttstits
269 | S37E@ 14304 |S57EG 22496 | +++++++++#E#4 44+ |SITFB 14328 |$57F8 22520 | +++++H+tibbtibbbibttibbbiibbbbb bbb
260 | SIBE@ 15328 |SSBEG 23520 +++++++++####+H++++++++++ | SIBFB 15352 |S5BFB 23544 | +H+++ttitbbbbibbrtbibitddbbididibies
261 | SIFE@ 16352 |SSFEG 24544 | +++++t+++ifid++++++++++4++ | SIFFB 16376 |SSFFB 24568 | +H+++HHtHitttitttibriibtbbbitbitbibitt

Figure 59 HIRES Video Scanning Map. (4 of 4)

RAM in the Apple |l

519

Table 52 Screen Memory Usage Summary.

TEXT/LORES HIRES

LOCATION HBL HBL' HBL HBL/'
SCREEN (Last 16 of FIRST 40 Last 16 of FIRST 40
TOP THIRD 40 and THIRD 40 and

UNUSED 8) UNUSED 8

PLUS $1000
SCREEN (Last 24 of SECOND 40 Last 24 of SECOND 40
MIDDLE FIRST 40) FIRST 40

PLUS $1000
SCREEN (Last 24 of THIRD 40 Last 24 of THIRD 40
BOTTOM SECOND 40) SECOND 40

PLUS $1000
VBL (Last 24 of UNUSED 8 and Last 24 of UNUSED 8 and

THIRD 40) First 32 of THIRD 40 First 32 of

PLUS $1000 FIRST 40 FIRST 40

The following is a reference list for scanned
memory in the HIRES MIXED mode:

Line 0, HPE' + 1 thru
Line 160, HPE’ —
Line 160, HPE’ + 1 thru
Line 192, HPE’ —_
Line 192, HPE' + 1 thru
Line 224, HPE' —
Line 224, HPE' + 1 thru
Line 0, HPE' — TEXT, Figure 5.6

HPE' occurs during the first video scanner state of
HBL. On the screen, the address switching point for
HIRES MIXED mode comes just at the end of the
display on the right side.

REFRESHING RAM IN THE APPLE

The refresh requirement of 16K dynamic RAM is
that every ROW address be accessed at least once
every two milliseconds. To achieve refresh in the
process of scanning RAM for video output, the
addressinputsto RAM had to be assigned very care-
fully. This assignment was made more complex in
the Apple design by the capability of using 4K or
16K RAM chips.

HIRES, Figure 5.9
TEXT, Figure 5.6

HIRES, Figure 5.9

If the Apple had been originally designed to oper-
ate with only 16K RAM chips, the RAM refresh re-
quirement could easily have been met by assigning
HO,H1,H2,SUM-A3,SUM-A4, SUM-A5,and VO to
the RAM ROW addresses. The 4K/16K capability
adds a new requirement, however, which isn’t met
by these assignments. Pin 13 is RA6 ona 16K RAM
chip and chip select on a 4K RAM chip. In the 4K
configuration, A12and A13 selectamong rowsC, D,
and E via pin 13. This dictates that A12and Al3 are
also assigned to pin 13 in the 16K configuration. In
other words, A12 and A13 must be assigned to the
ROW and COLUMN address of RA6. A13 is equiv-
alentto HIRES PAGE 1 during scanner access. This
is not acceptable for a ROW address, because it
doesn’t change with the video scan. The natural
equivalentof A12is HIRES ¢ VC. This is not accept-
able for a ROW address, because it doesn’t change
inTEXT or LORES mode. The Apple designer made
A12 work as a ROW assignment by changing its
scanner equivalentto HIRESe VC + TEXT/LORES
e« HBL. HBL changes during TEXT/LORES and
meets the refresh requirements. During HBL the
"wrong” addresses are selected, but no harm is done
because the sereen is blanked during HBL.

5-20 Understanding the Apple I

Table 53 The Video Scanner Row Address

Assignments.
RAM Address Scanner Input

RAO Vo

RA1 H2

RA2 HO

RA3 V1

RA4 SUM-A3

RAS Hi1

RA6 HIRES «VC + TEXT/LORES « HBL

The other ROW address assignments are dictated
by the use of HBL as a refresh bit. HO, H1,'H2, and
SUM-A3 run through a 16-state sequence at least
once every time HBL ishighor low. SUM-A4, SUM-
A5,and SUM-A6 are unacceptable, because they do
not make a complete sequence every time HBL is
high. The remaining two ROW address assignments
are VO and V1.

In HIRES mode, VC is arefresh input but VA and
VB aren’t. For every state of V1-V0-VC, all the
lower refresh bits go through their counts four
straight times (once for each state of VB-VA). This
means that the maximum time between refresh
states is no more than 29 horizontal scans (32-3) or
1.85 milliseconds. In TEXT/LORES mode, VA, VB,
and VC are not refresh bits, so the maximum time
between refresh states is 25 horizontal scans (32-7)
or 1.59 milliseconds. In both modes, the 2 millisecond
maximum is met.

RAM ADDRESS MULTIPLEXOR
HARDWARE

Figure 5.10 is a schematic diagram of the RAM
address multiplexor. The multiplexor is shown
Jumpered for 16K, but Revision 7 and later Apples
are wired this way without jumpers. Figure 5.10

does not show the circuits required for 4K operation.

In older Apples configured for 16K RAM chips,
the 741.S139 at E2 serves no purpose and may be
used as a spare. There is no chip at E2 on newer
Apples. The following cireuits serve no purpose in
older 16K configured Apples and are not wired in
newer Apples:

LOCATION TYPE
E2 LS139
J1 sectionsa & b LS257
H1 pins 1,2,3,11,12, & 13 LS08
Cl4 pins12, &3 LS32

Owners may dream up their own modifications to
utilize these circuits.

In the address multiplexor, 4 to 1 multiplexing is
accomplished in LS153s, while 2 to 1 multiplexing is
accomplished in LS257s. The horizontal address
offset is generated by an LS283 adder. CAS’ and
RAM SELECT' are decoded in an LLS139.

Propagation delays in the CAS’ and RAM SE-
LECT' lines are important. CAS’ falling is delayed
to RAM by the high to low propagation of the L.S139
at 2. Thisis listed as 21 nanoseconds typical and 32
nanoseconds maximum by the Texas Instruments
TTL Data Book. This delay is 25 nanoseconds in the
author’s Apple. The significance here is that RAS’
rises only 178 nanoseconds after CAS’ falls at the
RAM chips (210 minus 32 equals 178). The TCAC
specification (maximum time from CAS’ to read .
data valid) should be less than 178 nanoseconds in
RAM chips used in the Apple II.

A second important delay period is the time from
PHASE 0 falling until RAM data becomes valid on
the data bus after an MPU access to an address
above $CO0F. This propagation delay represents the
time after PHASE 0 falls, by which any device other
than RAM must stop controlling the data bus. The
chain is listed below:

LOCATION | TYPE SIGNAL PATH TYPICAL | MAXIMUM
J1 LS257 pin 1 to pins 9,12 14 nsec 21 nsec
F2 LS139 pins 14,13 to pins 10,11,12 26 nsec 39 nsec
D2 LS20 pins 9,10,12 to pin 8 9 nsec 15 nsec
A2 LS00 pin 5 to pin 6 10 nsec 15 nsec
B7,B6 LS257 pin 15 to pins 4,7,9,12 20 nsec 30 nsec
TOTAL 79 nsec 120 nsec

5-21

RAM in the Apple I

“10xa|dijINN SSBIPPY Y] :oypweyss 0}'s anbiy
B =
n_w_ oy
) | 3Moi . Sy)e—o FTRE] 3 pl=—siv
WY 0L | 0 M0 SYD=—nf— -t iA M 3 . 21P2 BTﬂ
9 M0I SY) - 0A
sng viva i TR 6E1S1 [
g L o i
03HOLY S3LVD 0251 5 s M\ e ol—py 8081 S/¥60D
193138 Wy , s 90 9z o 5 ¢39vd
(z) o z 3 - . 3 30T a _Hm_z:m gl
00 " o 300030 75 XIONN L 0Lz | o 08
L = 0
(£ A3Y oﬁ HOI4d) .
M/ NOILI3 T3S
_ SHIdWNT
e Vi Yo 300N N33HIS
g * R
= |¢y
—
9yH AG ayy WA MO ~—F1—3 6 _h..w_.me
) 9YH 9 MOH ~— o
(S9N1d H3AWNF ON) i
3LV ONY £ A3Y AS<—AAAAS 5/v500
iy _ A
N 8
vl : .
! L
IS 05 3 5
€9) e In 5
WvY TV 0L n & & — | o
T ex EX P I3 Ex EX P
S33HA0V Wyl J 9 €A VA EA WA+ = EA VA EA VA+
UEMERLUNIITUNY VI _) EHPHGH = EHbH GH.GH
- 8 (T |
! ¢ I a3
wd_x.l m 1
I~
£Y WNS v £8281
AS pwwns | b3
_ gywns o™
[.Y
o _ v gvmns O s
b 1
= [, T LA) NOILYH3N39
P i £ i BZ m 0H BE) 135440 |, _
FA-0A - fi 3] =,
(6'€) INNYIS 030IA WO | 8A-VA e TR | = o
SH-OH mmz:%ﬂ £0vY e [! = £82 '/52 '6E1 €515
SNQ SSIHAAY WOHS SLY-0V MR e &0 &0 e

XOW LOLY

5-22 Understanding the Apple I

g I

PHASE 0

CAS’

CHT 55 D U S IS M T

CAS' Row C \ l

CAS' Row D

CAS' Row E

f=ms]

Figure 511 CAS' Signal Example.

This time delay is 60 nanoseconds in the author’s
Apple.

A very interesting feature of Apple RAM connec-
tions is the termination resistors on the multiplexed
RAM address lines, RAO-RA6 on the right side of
Figure 5.10. No RAM data sheet recommends pull-
up and pull-down resistors on the address inputs, so
why are they there? They are there because Steve
Wozniak found that stringing large numbers of
RAM chips together can cause reflections on the
RAM address lines. Presumably, this is because the
inductance of the conductors and the capacitance at
the RAM chip inputs give the RAM address lines a
characteristic impedance, just like television coaxial
cable has a characteristic impedance of 75 ohms. A
coax cable or other distributed reactance transmis-
sion line needs to be terminated by an impedance
equal to its characteristic impedance, or reflections
(voltage pulses traveling backwards) will occur. In
the Apple, these reflections were causing RAM ac-
cess to be unreliable. Wozniak is not a transmission
line expert, but he determined experimentally that
1000 ohm pull-up and pull-down resistors would
make RAM access reliable. He says that this was
later verified to be the theoretically correct termina-
tion. The RA6 distribution path inolder Apples was
such that reflections were not a problem. In Revision
7, RA6 distribution was made similar to the other
RAM address lines, and a pair of termination re-
sistors for RA6 was added.

RAM TIMING IN THE APPLE II

Most aspects of RAM timing have already been
covered in various other related discussions. The
intention here is to reinforce the timing details of
basic RAM access.

Oneareaof importance is the gating of CAS’ to the
three rows of RAM. Figure 5.11 shows the last two
cycles of the following instruetion:

906@: LDA $5008 ;APPLE IS
;CURRENTLY 1IN

; TEXT MODE.

The instruction is stored at $9000 through $9002, so
instructions are being fetched from RAM row E.
The Apple is in TEXT mode, so the video scanner is
accessing row C. The instruction is loading from
$5000, so on the last cycle, the MPU accesses row D.
The operation is really very simple. CAS’ at any
RAM row goes low when that row is addressed and
when CAS’ from the timing generator goes low.
Figure 5.12 shows some basic details of a 6502/
RAM read cycle. There are several important
points illustrated here. For one thing, even though
read data from the RAM chips is only valid for a
limited period, it is held valid on the data bus for
nearly half a microsecond by the RAM latch. When
a program stored in RAM is being executed, RAM
output data is continuously controlling the data bus

RAM in the Apple Il 5-23

except during and after write cycles or access to
addresses above SBFFF. Another interesting point
is that while the MPU addresses RAM during
PHASE 0, data from the MPU access is present on
the data bus during PHASE 1, roughly speaking.
Similarly, the video data is present roughly during
PHASE 0. As Figure 5.12 shows, PHASE 0 rising is
a good clockpulse for clocking video data to periph-
eral cards during read cycles.

It goes without saying that data from the MPU
read access is present on the data bus when 6502
PHASE 2 falls. This is required of all read responses
to the 6502, whether the responding device is RAM,
ROM, or an input port.

The order of important events in Figure 5.12 is:

1. PHASE 2 falls, clocking the data transfer of the
previous 6502 machine cycle.

—

2. PHASE 1 AX enables the video ROW address
to RAM, and the ROW address is clocked to
RAM by RAS' falling.

3. PHASE 1 ¢ AX’ enables the video COLUMN
address to RAM and the COLUMN address is
clocked to one row of Apple RAM by CAS'
falling.

4. Videodata becomes valid at the outputof RAM.
The time at which this occurs will depend upon
the speed of the RAM chips being used in a
given Apple. TCAC(Time- CAS" ACcess)should
be shorter than 178 nanoseconds in RAM chips
used in the Apple. In all Apples, the RAM data
must become valid before RAS' rises and latches
the RAM data.

5. The data is latched by RAS' rising.

6. About 35 nanoseconds after RAS’ rises, the

ol |

6502 PHASE 2

65 nsec

typical
PHASE 0 \ SCANNER ADDRESS l MPU ADDRESS \

Video data valid)
= MPU input data
r—\ I_f?liltgg e Iﬂqaplﬁh valid on data bus
RAS» data data ﬂ___
TRAC

s l \ | \ (

CAS row C _l 1

|-._ TCAC —

\ COLUMN J _

AX ROW COLUMN ROW ROW
— | T0FF
RAM DATA \ / { >
OUTPUT '—[— Load text pattern in
video generator

Increment
LDPS’ \ ‘ video

scanner
DATA BUS _Y MPU DATA I VIDEO DATA X MPU DATA

Figure 5.12 Timing Example: A 6502 Read Cycle to Address $41000.

$-24 Understanding the Apple II

video data becomes valid on the data bus. The
delay is due to propagation delay in the RAM
latch (LS174) and RAM/keyboard multiplexor
(LS257). The latched RAM data is held on the
data bus throughout Figure 5.12, because both
the video scanner and the MPU are reading
from RAM.

7. During PHASE 0, the MPU addresses RAM
in the same way the video scanner did dur-
ing PHASE 1, with AX selecting ROW or COL-
UMN and RAS’ and CAS’ clocking the address
to RAM.

8. LDPS' drops low during PHASE 0. This is the
signal which loads TEXT patterns in the video
generator. The TEXT patterns are determined

by the currentstate of the RAM latch and by the
current state of VA, VB, and VC.

9. Just as in the scanner access, RAM data from
the MPU access becomes valid, is latched, and is
propagated to the data bus.

10. The RAM read data is clocked to the MPU by
PHASE 2 falling.

Figure 5.13 shows some basic details of a 6502/
RAM write cycle. The RAS’, AX, CAS’ address
control is identical to a read cycle. The primary
difference between the read cycle and write cycle is
in data bus management. Also, the features of data
bus management during write cycles are the same
whether the 6502 is writing to RAM addresses or to

-

any other addresses.

s

Latch SFF in
write cycle \-ﬁ“"‘“] ‘

MPU ADDRESS

e 200 nsec

typical

6502 PHASE 2 \
PHASE 0 \ SCANNER ADDRESS l
Latch video data
RAS' \{
- TRAC -
CAS' I

le— TCAC—|

4 . 20nsec
typical

CAS' row C _/ ‘

\ /

RAM data :i
—_— output
RIW L
RAM R/W' \ ‘
Load text pattern in
video generator
LDPS' Increment
video
scanner
: 6502 PHASE 1 falling switches _L.—-* SFF to data bus
RAM SELECT] P A direction of MPU B
o] e 27 nseC L~ bidirectional bus driver —o] |e—30nsec
typical typical
DATABUS VIPEOY MPU \FLOATINGBUSSTORES MPUDATA 6502 WRITE DATA VALID ON DATA BUS SFF
DATA DATA e
6502 PHASE 1 rising changes

=" direction of MPU bidirectional
bus driver. Floating bus stores
write data until R/W' rises.

Figure 513 Timing Example: A 6502 Write Cycle to Address $1000.

RAMin the Apple Il 5-25

In the write cyele, the video scanner makes its
read access to RAM during PHASE 1 just as in the
read cycle. Nothing interrupts the scanner access to
RAM in an unmodified Apple. The latched video
data never gets to the data bus in a write cycle,
however. While R/W' is low, the MPU (or DMA
peripheral) owns the data bus.

Excluding the scanner access which is the same as
in a read cycle, the order of important events in a
write eycele is as follows:

1. PHASE 2 falls, clocking the data transfer of the
previous 6502 cycle.

2. The R/W’ line drops low at the same time the
6502 address becomes valid (about 100 nanosec-
onds after PHASE 2 falls). This forces RAM
SELECT' high which disables the output of the
RAM/keyboard multiplexor. No other device
takes control of the data bus at this time, so the
latched data from the previous MPU ecycle
remains valid on the data bus (because of the
long bleed off time of data when the Apple'’s
data bus is floated).

3. PHASE 0 rises, enabling MPU addressing at
the RAM address multiplexor and enabling
R/W’ to drop low at the RAM chips. The RAS’,
AX, CAS’ addressing sequence is identical to
the read cycle sequence.

4. 6502 PHASE 1 falls, causing the MPU bidirec-
tional bus driver to take control of the data bus.
The 6502 write data is not yet valid, and until it
becomes valid, the data bus in the author’s
Applestays low if it was low and oscillates down
then up if it was high. The state of the data bus
during this time period is not significant.

. The 6502 write data becomes valid before CAS’
fallsat the RAM chips. The Apple write cycle is
what is referred to in RAM literature as an
early write cycle (as opposed to a read/write
eyele). R/W' drops low before CAS', and write
data must be valid at the RAM input before
CAS' drops.

6. RAS' rises, latching $FF in the RAM data latch.

During the write cycle, the output of RAM

floats. The response of the data latch to the float-

ing input is to bring its output lines high when

RAS' rises.

6502 PHASE 1 rises, reversing the direction of

the bidirectional bus driver and floating the

data bus. The 6502 write data remains valid on
the floating data bus.

8. R/W’ goes high, causing the RAM SELECT’
signal to go low. This places the latched data
($FF) on the data bus. $FF will remain on the

o

=]

data bus until data from the current video
access is latched. A write eycle is always fol-
lowed by a period of time with $FF on the data
bus.

The RAM SELECT’ term is the primary data bus
management signal in the Apple. When the MPU is
not accessing RAM, RAM SELECT’ defines when
the data bus is available for other devices to respond
to RAM. This timing is illustrated in Figure 5.14,
which shows a read to $C010, the keyboard strobe
reset address.

$C010 is one of the Apple addresses which causes
the data bus to float. The floating data bus stores the
video data from the scanner access so that it can be
read by the MPU. A read to a data responding
address like $F800 (ROM) will have very similar
timing, except that at some timeduring the floating
bus period, the responding device will take control
of the data bus. The main order of events in Figure
5.14 is as follows:

1. The scanner accesses RAM during PHASE 1.

2. About 35 nanoseconds after RAS' rises, the
latched data from the video access is on the data
bus.

3. PHASE 0 rises, routing the MPU address
through the address multiplexor. Since the
MPU is not addressing RAM or the keyboard,
the RAM SELECT’ goes high, floating the data
bus. It takes about 60 nanoseconds for RAM
SELECT' to go high after PHASE 0 rising,
because the logic must be propagated through
four LSTTL devices.

4. After RAM SELECT’ goes high, the data bus
floats, storing the latched video data. If a data
responding device had been addressed, it could
take control of the data busanytime during this
floating period.

. RAS' rises and latches $FF at the RAM data
latch. The RAM data output is floating when
RAS' rises, because CAS’ does not fall at any of
the three rows of Apple RAM. As in a write
cycle, the floating RAM output is interpreted as
$FF by the latch.

6. PHASE 0 falls, causing the scanner to address

RAM.

7. The 6502 PHASE 2 clock falls, clocking video
data to the MPU.

8. RAM SELECT' drops low about 60 nanoseconds
after PHASE 0. After a further short delay, the
latched RAM data ($3FF) is gated to the data
bus. As in a write eyele, any MPU access to an
address above $BFFF is followed by a period of
time with $FF on the data bus.

|

5-26 Understanding the Apple |

o

6502 PHASE 2 l

PHASE 0 \ SCANNER ADDRESS MPU ADDRESS L

LATCH LATCH

VIDEO SFF
RAS' | \ DATA \‘[_ l] __
RAM DATA |
OUTPUT Meek 4 .

— vyl
RAM SELECT’
I
IDEO | FLOATING BUS STORES VIDEO DATA |
DATA BUS 1 MPU DATA x by e] 5¥F
Figure 5.14 Timing Example: A 6502 Read Cycle to Address $C010.

THE 16K RAM CARD an excess of 4K of RAM which is utilized by bank

There are two common operational philosophies
encountered in today’s microcomputers. One is to
have an extensive operating system, including a
BASIC interpreter in ROM. These computers come
up in BASIC and may use disk or cassette or both for
program and data storage. The other philosophy is
to have a strictly disk based system with little firm-
ware beyond a bootstrap program which loads
operating systems from disk to RAM. This philos-
ophy yields far more versatility than the other for
the obvious reason that any available operating sys-
tem may be loaded, giving the computer a com-
pletely different personality. The Apple computer is
of the former philosophy with a string attached. The
string is that installation of a 16K RAM card con-
verts it to a computer of the latter philosophy.

A card in any peripheral slot can inhibit mother-
board ROM and respond, itself, to addresses $D000-
$FFFF.16K RAM cards use this feature to steal the
12K addressing range from ROM and use it for ad-
dressing expansion RAM. Use of 16K chips creates

switching the $D000-§DFFF range. Installation of
the 16K RAM card gives the Apple the full versatil-
ity of a 60K disk based computer with the added
features of 4K of bank switched auxiliary RAM and
12K of instantaneously available firmware.

The 16K RAM card was originally released as
part of the "Language System”, which included the
RAM card and Pascal, Integer BASIC, and Apple-
soft BASIC on disk. 16K RAM cards eventually
became available as stand alone products from a
number of sources, and the card now supports sev-
eral languages as well as CP/M when used in con-
junection with a Z80 MPU card.

This section will cover the operational features of
the 16K RAM card produced by Apple; however,
probably all 16K RAM ecards made for the Apple
will operate the same way. The basis for these dis-
cussions will be the schematie diagram of Figure
5.15. Thisdrawing was prepared by the author after
study of a "Language System” RAM card and of an
imitation purchased in Tokyo. The imitation turned
out to be identical in all but a few details.

"PIDD NV X9} SUl :DiDWeYds G’ aInbyy

~
3
— = JLIEM-3td
o TTRVNT T00M -
rel 3o |
< i
.nnu e 2)ov
..m 80).M/H
c e 50
81-WOY
W 03VHd T 25001 i
(a4
.20
Hm 20
LIGIHNI & g
M
8 o
0 10 §) £ e {21 OV
Ack+ v O) s I .,&.mr e
T W . %6 oms oKl ——11 89 mamw ‘_ 01)8Y
' - -
L. ¥ Y (% A
_ i] 997 N ¥ 3o 10(%y= 7| 10 s oy
_ il o sisw sl
sl b e 19 va 90 (B Y=gy %0 it We (8 N
) TL 50 ovle < L GV
Lt b OHVOBKIHION SVii|y sa()q H0 74
™ NO V0 ‘ va(So)ye A0 GIE2 byl 9 W
G- o oo 01> - m @SEZ_ M $2) LN0 YWQ i b i _,mcm i b o
b W0l M .] |
ve) P BN A+ | | @)N {12)Nivwa 0tttz 9699 s
it b o Nds e 3 80T (W)) Pt
o [T 1 0 m = 108);if 10 Whe < €)W
—] 00 + +—(92) ON9 0a 00 Ovf= {2)0V
g™ o [Bogy ge LSY OV oo v vk L Y6 YE YSIyr Y8 Vi uq:._' iy e_._r___. | ® m. - 8 AU
A AL+ .5vd 9y [(L L O A S+ MH S0 SHZl+ 8 v £5D :zqm
by 3 ey 1 _
v aup 7S ==
7 iy ol OBYOBHIHLON) rﬂm.m_.
s LR s LA L1 WO Bl ;i
s =10 NOSNE O |- v 4 % 5a ¥ £d a 10 0a
yiva 4 o 2 (e) (er) () b o I B iy
0L bl A+ _M ,—\
= ° bl e e fuje fije M} fnpe fnie
F. 20/ 5657} 0] o0 0] [o0 0] [o0 0] [o0] oo o) oo 0] [00 ia
P ng oy e || e | | e || e | | w | | e | | e | | v
o oy || oue || oowe || oue || ouy || owr || ouv | | oiw
o] A 28 Pl 20 1] 19 19 10
0
ir
i

5-28 Understanding the Apple |

Apple’s 16K RAM card requires the owner to
movea RAM chip from the motherboard tothe RAM
card and connect a 16-pin DIP jumper between the
card and the vacated motherboard socket. This was
Apple’s way of getting around the necessity of de-
veloping RAS" and ROW/COLUMN multiplexed
addresses on the card. RAM timing signals are not
available at the peripheral slots, and developing
equivalent signals is madedifficult by the absence of
14M at the slots. Rather than tackle the problem of
developing timing signals and multiplexing the ad-
dress bus from 14 to 7 lines, Apple bypassed the
problem by connecting the jumper to the mother-
board RAM socket. This probably lowered the cost
of producing the hardware, although you wouldn’t
have guessed it based on the retail price of the "Lan-
guage System.”

The RAM chip that is transferred from the moth-
erboard has all of its pins connected to pins of the
DIP jumper socket. This means that the transferred
chip performs the same function it did on the moth-
erboard and that any RAM chip may be chosen for
transfer as long as the jumper reaches the vacated
socket. RAO-RA6 and RAS' are also distributed to
other points from the DIP jumper. RAO-RA5 are
connected directly to their respective pins on all
eight expansion RAM chips. RAS' and RA6 are
gated to their respective pins on the eight chips
during PHASE 1 with CAS’ held high. This results
in the same RAS'-only refresh during PHASE 1
that occurs on the motherboard. During PHASE 0,
things get a little more involved.

Enabling and disabling of transfer to and from
the expansion RAM during PHASE 0 is controlled
via RAS’. The RAM may be disabled, enabled for
reading only, enabled for writing only, or enabled
for both reading and writing under program con-
trol. When an address in the $D000-$FFFF range is
on the address bus during PHASE 0 and expansion
RAM isenabled for the existing stateof R/W’, RAS’
will be gated to the eight expansion RAM chips.
Also during PHASE 0, CAS’ will follow RAS’,
delayed by one 7TM period. This results in RAS’ and
CAS’ falling at the expansion RAM at nearly the
same point as motherboard RAS’ and CAS’ with the
only difference being propagation delay.

The tri-state outputs of the expansion RAM are
connected directly to the data bus, not to an 8-bit
latch as on the motherboard. This makes timing less
critical because RAM read data does not have to be
valid when RAS' rises but must be valid when 6502
PHASE 2 falls.

Bank switching of the 4K auxiliary bank is
accomplished via RA6. This is natural when you
remember that RA6is A12 during ROW accessand
A13 during COLUMN access. The four possible
multiplexed states of RA6 therefore partition the
16K of expansion memory into its four most signifi-
cantdivisions. The $D000-$DFFF portion of expan-
sion memory addressing is identified by A12e A13’
meaning the ROW-COLUMN states of RA6 are 1-0.
If bank 2 is selected, this ROW-COLUMN combina-
tion is allowed to oceur. If bank 1 is selected, the
ROW-COLUMN combination is forced to 0-0, caus-
ing access to a different 4K area of expansion
memory. Bank 2 is selected at power up and, under
some conditions, by FP,INT, or RUN commandsor
a RESET when DOS is active. Bank 2 is therefore
normally accessed at $D000-$DFFF, and bank 1 is
the auxiliary bank.

The expansion RAM enabling and bank switch-
ing circuitry is centered around the four flip-flops of
a T4LS175. These flip-flops save the current config-
uration of expansion memory which is set up by
DEVICE SELECT' commands. The assigning of
these command funetions was obviously designed
for DOS compatibility, so the RAM card would look
like the firmware card to DOS when it was checking
for availability of Applesoft and Integer BASIC.
This means that a write access to $C080 must enable
a RAM card in Slot 0 for reading only, and a write
access to $C081 must disable the Slot 0 expansion
card for reading. In their effort to maintain this
compatibility, Apple came up with a rather involved
programming method for configuring expansion
RAM. The Slot 0 configuration characteristics go
like this:

A3 controls the 4K bank selection. $C080-$C087
resets the BANK 1 flip-flop, enabling bank 2.
$C088-$CO8F sets the BANK 1 flip-flop, ena-
bling bank 1. ‘

A0 and A1 control the READ ENABLE flip-
flop. Access to $C080, $C083, 3C084, $C087,
$C088, $C08B, $C08C, or $CO8F setsthe READ
ENABLE flip-flop, enabling reading from
expansion RAM. Access to $C081, $C082, $C085,
$C086, $C089, $CO8A, $C08D, or $COBE resets
the READ ENABLE flip-flop, disabling read-
ing from expansion RAM.,

Writing to expansion RAM is enabled when the
WRITE ENABLE’ flip-flop is reset. The con-
trolling MPU program must set the PRE-
WRITE flip-flop before it can reset the WRITE
ENABLE' flip-flop. The PRE-WRITE flip-flop
is set by an odd read access in the $C08X range.

[t is reset by an even access or a write access in
the $C08X range. The WRITE ENABLE’ flip-
flop is reset by an odd read access in the $C08X
range when the PRE-WRITE flip-flop is set. It
is set by an even access in the $C08X range. Any
other type of access causes the WRITE ENA-
BLE' flip-flop to hold its current state.

At power up, the RAM card is disabled for read-
ing and enabled for writing. The PRE-WRITE
flip-flop is reset, and bank 2 is selected. The
power-up circuit of R5 and C1 forces this con-
figuration by resetting the LS175 flip-flops.

The Apple II system RESET at pin 31 of the
RAM card has no effect on the RAM card con-
figuration. The RESET handling program must
configure the RAM card.

The write enabling flip-flops can be thought of as
2 write counter which counts odd read accesses in
the $C08X range. The counter is set to zero by even
or write access in the $C08X range. If the write
counter reaches the count of 2, writing to expansion
RAM becomes enabled. From that point, writing
will stay enabled until an even access is made in the
$C08X range. This means there is a feature of RAM
card control not documented by Apple: write access
to an odd address in the $CO8X range controls the
READ ENABLE flip-flop without affecting the
state of the WRITE ENABLE'’ flip-flop.

The Slot 0 control characteristics are summarized
in Table 5.4. There are two address commands possi-
ble for every function. The programming convention
is to use addresses $C080-$C083 and $C088-$C08B.

Based on Table 5.4, here are some Slot 0 pro-
gramming examples.

BIT $C@80 WRTCOUNT = @, WRITE
DISABLE, READ ENABLE,
BANK 2. SIMULATES
FIRMWARE CARD.
BIT $C@83 WRTCOUNT + 1, READ
ENABLE, BANK 2.
WRTCOUNT + 1, READ
ENABLE, BANK 2.
ENABLE 12K OF EXPAN-
SION RAM FOR READING
AND WRITING, BANK 2.

BIT $C@83

BIT $C@81 WRTCOUNT + 1, READ

DISABLE, BANK 2.

RAM in the Apple Il 5-29

BIT $C@81 WRTCOUNT + 1, READ
DISABLE, BANK 2.
ENABLE WRITE, DISABLE
READ, BANK 2.

BIT SC@82 WRTCOUNT = @, WRITE
DISABLE, READ DISABLE,
BANK 2. DISABLE
EXPANSION RAM,

STA $SC@81 WRTCOUNT = @, NO
EFFECT ON WRITE
ENABLING, DISABLE
READ, BANK 2.

STA SC@8B WRTCOUNT = @, NO
EFFECT ON WRITE
ENABLING, ENABLE
READ, BANK 1.

BIT SC@8B

BIT S$SC@8B ENABLE READ/WRITE
BANK 1.

LDA SDXXX

BIT $C@83 ENABLE READ/WRITE
BANK 2.

STA S$DXXX TRANSFER BYTE FROM

BANK 1 TO BANK 2.

As mentioned before, the unusual nature of the
RAM card configuration commands are a result of
making the RAM card compatible with DOS. This
involves making it compatible with the short rou-
tine which starts at $A5B2 of DOS 3.3. This is the
routine used by DOS to switch to Integer or Apple-
soft. It is entered with $20 in the accumulator when
looking for Integer and $4C in the accumulator
when looking for Applesoft. These are the values
found at address $E000 of the two programs. With
firmware card comments, the DOS language find-
ing routine looks like this:

AS5B2: CMP $SE@00

ASB5: BEQ S$A5C5S ;FOUND IT.

A5B7: STA $C080 ;s ENABLE FIRM-
; WARE CARD.

ASBA: CMP SE@00

ASBD: BEQ SAS5CS ;FOUND IT.

AS5BF: STA SC@81 ;DISABLE FIRM-
; WARE CARD.

A5C2: CMP SE@00

AS5CS5: RTS

5-30 Understanding the Apple lI

If thedesired language is already selected, noaction
is taken. Otherwise, the language is looked for with
switching via STA $C080 first and STA $C081
second.

Ifa RAM card is installed in Slot 0, the comments
look more like this:

AS5B2: CMP SE@0@

A5B5: BEQ S$A5CS ; FOUND 1IT.

A5B7: STA $C@80 ; WRTCOUNT = @,
;DISABLE WRITE,
; ENABLE READ,
;BANK 2.

ASBA: CMP SE0@@

A5BD: BEQ SA5C5 ;FOUND IT.

A5BF: STA $C@81 ; WRTCOUNT = @,
;NO EFFECT ON
;WRITE ENABLING,
;DISABLE READ,
;BANK 2.

ASC2: CMP S$SEQOQ

A5CS5: RTS

If the desired language is already selected, no action
is taken. Otherwise the language is looked for via
storing commands which reset the write enable

count, disable the RAM card for writing, select
bank 2, and enable then disable the RAM card for
reading. This means that with the RAM card
installed and DOS eonnected, initialization of either
Applesoft or Integer BASIC via FP, INT, RUN, or
RESET will select bank 2 and disable writing to the
RAM card. Reentering a language, however, does
not effect the RAM card configuration at all. For
example, "RUNing” an Applesoft program when
Applesoft is already active causes no change in the
status of RAM card read enable, write enable, or
bank selection flip-flops.

The action of RESET at the RAM card is of par-
ticular interest. RESET performs no hardware
function at the RAM card. The power-up configura-
tion of the RAM card is controlled by circuitry on
the card which is not associated with the Apple
system RESET that occurs at power up. The only
effect RESET has on the RAM card is through the
RESET handling program. If DOS is not connected
or some other controlling program is not cognizant of
the 16K RAM card, pressing RESET will do nothing
tothe RAM card. Applesupportsonly one RAM card
installation, namely: RAM card in Slot 0, Autostart
Monitor active, and DOS connected. The RESET is
soft, and any variations from the normal installation
will require appropriate software support.

Table 54 16K Ram Card Address Bus Commands.

BANK 2 BANK 1 ACTION

ce8g cgss WRTCOUNT = @¢*, WRITE DISABLE READ ENABLE
c@g84 c@gscC

RC@81 RC@89 WRTCOUNT = WRTCOUNT + 1%* READ DISABLE
RC@85 RC@8D

WCg@gsl WC@89 WRTCOUNT = @%* READ DISABLE
WCp@85s WC@8D

c@s2 cgsa WRTCOUNT = @*, WRITE DISABLE READ DISABLE
c@gse COBE

RC@83 RC@8B WRTCOUNT = WRTCOUNT + 1% READ ENABLE
RC@87 RC@8F

WC@83 WC@8B WRTCOUNT = @* READ ENABLE
WC@87 WC@BF

*Writing to expansion RAM is enabled when WRTCOUNT reaches 2.

RAMin the Apple Il 5-31

The 16K RAM card also contains a socket for a
2316 ROM or 2716 EPROM. To use 2716 EPROM,
one jumper pad must be cut and a second must be
soldered. These configuration pads are labeled 2716
onthe RAM card. The ROM isan F8 ROM, meaning
that it responds to addressing in the $F800-§FFFF
range. Operation is such that when the expansion
RAM is disabled, the F8 ROM on the RAM card is
enabled for response to the $F800-$FFFF range. In
other words, when the RAM eard is installed, the F'8
ROM on the motherboard is never accessed and may
as well not be installed. There must, however, be an
F8 ROM installed on the RAM card.

It is the author’s guess that the reason Apple
included the ROM socket was as a vehicle for dis-
tributing the Autostart ROM to those persons who
were still using the old Monitor ROM. Addition-
ally, they gave ownersof the “"Language System” an
easy means of installing their own F8 EPROM.
User beware! Some commercial software won't run
correctly if anything other than the Autostart Mon-
itor or old Monitor programs are responding to
$FR800-$FFFF. This is because some copy protection
schemes call for performing a checksum on this
addressing range to ensure the user has not installed
copy busting firmware. If the checksum is incor-
rect, the program won't run.

The INHIBIT' output is the means by which the
RAM card steals $D000-$FFFF addressing. Bring-
ing the INHIBIT' line low disables motherboard
ROM response to this address range. The RAM card
brings the INHIBIT' line low:

1. If an address in the $F800-§FFFF range is on
the address bus.

2. If an address in the $D000-$FFFF range is on
the address bus, R/W'is high, and the expansion
RAM is enabled for reading. This also allows

RAS’ and CAS’ to fall during PHASE 0 at the
expansion RAM. It also disables the FE ROM on
the RAM card.

3. If an address in the $D000-$FFFF range is on
the address bus, R/W’ is low, and the expansion
RAM is enabled for writing. This also allows
RAS’ and CAS'’ to fall at the expansion RAM
during PHASE 0. It also disables the F8 ROM
on the RAM card.

The 16K RAM card is normally mounted only in
Slot 0, inspiteof the fact that the card will operate in
any slot. Multiple RAM cards or combinations of
RAM cards and firmware cards are rare because
little or no software exists to support such configu-
rations. Also, unlike the firmware card, the RAM
card does not utilize the DM A priority chain to pro-
vide a fail-safe method of preventing two or more
cards from trying to steal $D000-$FFFF at the
same time. As a result, multiple RAM/firmware
card configurations would be susceptible to accid-
ental simultaneous enabling. The RESET key might
be of little help in the resulting chaotic situation
because RESET does not automatically disable
RAM cards. RESET does disable firmware cards if
theswitch in the back is down. The fact remains that
use of the RAM card anywhere but in Slot 0 would
require very careful software support, probably
generated by the owner.*

One last point of detail in the RAM card schematie
isthat RAO through RA6 are all connected toan un-
used LSTTL input. It is the author’s assumption that
this is to prevent reflections which might otherwise
be caused by transmitting RAM address informa-
tion viaa DIP jumper to nine RAM chipson a periph-
eral card.

*Multiple RAM card configurations are the subject of an Appli-
cation Note at the end of this chapter.

5-32 Understanding the Apple i

HARDWARE APPLICATION

UPGRADING APPLES TO 48K RAM

There has been adramatic decrease in the price of
16K dynamic RAM chips since the Apple was first
introduced. It is the author’s perception that the
prime cause of this price reduction has been compe-
tition from Japanese manufacturers. Also, the 16K
RAM chip is becoming obsolete as a mass memory
device. Early Apple owners paid hundreds of dol-
lars to achieve the Apple’s 48K capability. In 1980,
the author saved $300 from the price of his Apple by
buying the 16K version, taking a train to Tokyo, and
paying $60 for the remaining 32K of RAM chips. In
1981, the advertised pricein U.S. magazines for sets
of eight 16K dynamic RAM chips was $25. The
December, 1982 issue of BYTE magazine carried
an ad for 200 nanosecond, 16K chips at $10 per set of
eight. The point is this: you should have 48K of RAM
in your Apple I1, and yvou shouldn’t pay very much
money to put it there.

The Apple supports 48K of motherboard RAM
fully. Plug the chips into the sockets and away it
goes. When changing from 4K to 16K chips in older
Apples, it will be necessary to buy or build 16K
configuration plugs. You can modify old 4K plugs to
16K plugs or build 16K plugs out of IC sockets. The
schematic of the 16K jumper plug can be seen in
Figure 5.10. In most instances, coming up with 16K
jumper plugs won't be necessary because a 16K
Apple will come jumpered for 48K. Newer Apples
have no RAM jumpers, but are hard-wired for 16K
chips.

The only remaining questions are what chips to
buy and where to buy them. What tobuy is 4116 type
16K RAM chips that are fast enough tooperate in the
Apple, which is to say, not exactly greased lightning.
RAM chips are usually referred to as 250 nanosec-
ond RAM, or 300 nanosecond RAM or something
similar. This time is the read response time of the
chip. There are two important read response times
in dynamic RAM—the maximum time after RAS’
falls before data becomes valid (TRAC), and the
maximum time after CAS’ before the data becomes
valid (TCAC). The TRAC period is usually the way
the chips are referred to. Read data from 250 nano-
second RAM becomes valid a maximum of 250
nanoseconds after RAS’ falls, except not in the
Apple. You see, when CAS’ falls pretty soon after

RAS’ falls, the access is ROW-limited. CAS’ falls
140 nanoseconds after RAS’ in the Apple, which is
not soon enough, so Apple RAM accessis COLUMN-
limited. In other words, the TCAC specification is
what determines the acceptability of a RAM chip
for use in the Apple.

In the Apple, RAM data output is latched by the
rising edge of RAS’, so TCAC on Apple RAM chips
should be less than 178 nanoseconds to insure data is
valid before RAS' rises. This criteria is met on 250
nanosecond or faster RAM (TCAC = 165 nanosec-
onds), but is not met by 300 nanosecond RAM. Since
TCAC is the critical specification, you can operate
the Apple with 250 nanosecond RAM. The author’s
computer was supplied with NEC 416-2 (200 nsec)
chips. The computer was upgraded to 48K with
Fujitsu 8116N (250 nsec) chips.

Table 5.5 is a list of manufacturer’s part numbers
of 4116 compatible 16K dynamic RAM chips. If you
do not have a good discount supplier, the best place
to get RAM is through the mail. It is recommended
that yvou peruse microcomputer magazines to find a
hardware supplier you can live with. Strictly as a
convenience to readers of this book, a list is included
here of some suppliers advertising 4116 type RAM
chips for under $15 per eight in the December, 1982
issue of BYTE Magazine. No endorsement of these
suppliers is intended. The reader may wish to con-
tact one of them to acquire ordering information.

DoKay Computer Produects Inc.
3250 Keller St. #9

Santa Clara, Ca. 95050
1-800-538-8800

1-800-848-8008 (Ca.)
1-408-988-0697

Jameco Electronics
1355 Shoreway Road
Belmont, Ca. 94002
1-415-592-8097

JDR Mierodeviees Inc.
1224 S. Bascom Avenue
San Jose, Ca. 95128
1-800-538-5000
1-800-662-6279 (Ca.)
1-408-995-5430

RAMin the Apple Il §-33

Table 55 416K Dynamic RAM Chips.

MANUFACTURER 120 nsec 150 nsec 200 nsec 250 nsec
AMD 9016F 9016E 9016D
Fairchild F4116-2 F4116-3 f4116-4
Fujitsu MB8116H MBR116E MB8116N
Hitachi HM4716A-1 HM4716A-2 HM4716-3 HM4716A-4
Intel P2117-2 P2117-3 P2117-4
Intersil IM4116-2 IM4116-3 IM4116-4
ITT ITT4116-2 ITT4116-3 ITT4116-4
Mitsubishi M5K4116-2 M5K4116-3 M5K4116-4
Mostek MK4116-2 MK4116-3 MK4116-4
Motorola MCM4116B-15 MCM4116B-20 MCM4116B-25
National MM5290-1 MM5290-2 MM5290-3 MM5290-4
NEC Micro uPD416-5 uPD416-3 uPD416-2 uPD416-1
Oki MSM3716-2 MSM3716-3 MSM3716-4
Panasonic MN4116
Siemens HYB4116-3 HYB4116-4
TI TMS4116-15 TMS4116-20 TMS4116-25
Toshiba TMM416-2 TMM416-3 TMM416-4
Zilog 76166-2 76166-3 76166-4

Quest Electronics
P.O. Box 4430X

Solid State Sales
P.O. Box 74B

Sommerville, Ma. 02143
1-800-343-5230 (orders only)
1-617-547-70563

Santa Clara, Ca. 95054
1-800-538-8196 (orders only)
1-408-988-1640

5-34 Understanding the Apple |l

HARDWARE APPLICATION

BANK SWITCHING THE MOTHERBOARD RAM

The Apple design includes a very versatile char-
acteristic in that the motherboard ROM ecan be
inhibited from the peripheral slots. This feature
enables the design of very important peripherals
suchas ROM and RAM expansion cards which work
by stealing ROM addressing (3D000-$FFFF). With
the coming of the 64K RAM chip, we now have 64K,
128K, and bigger Apple RAM expansion cards,
divided up into 12K banks which are switched in
and out and addressed at $D000-$FFFF with moth-
erboard ROM disabled.

There is a trick, though, which the RAM card
designers haven't picked up. The trick is that it is
quite possible and easy to disable motherboard
RAM in the Apple. By disable, it is meant that you
can isolate the motherboard RAM from the data bus
and access other devices at addresses $0000-$BFFF.
This opens up the possibility of peripheral card
designs with RAM or ROM switched in banks of up
to 64K.

Disabling of motherboard RAM is easy, because
the functions of gating CAS' to the RAM chips and
gating RAM output data to the data bus are both
controlled from one chip, F2. This chip is the LS139
decoder which decodes address bits to generate
RAM SELECT’ and CAS’ for rows C, D, and E (see
Figure 5.10). Consider what would happen if all
outputs of F2 were forced high during PHASE 0,
regardless of the address bus. First, CAS' would not
be generated for any RAM row, so no data transfer
would take place to or from motherboard RAM.
Second, RAM SELECT’ would stay high unless
$C00X was being addressed, so latched data would
not be gated to the data bus, even if the MPU was
calling out a RAM address. Thus the data bus is
floating and available for control from a peripheral
card. Third, the scanner access is not interrupted,
because the F2 outputs are forced only during
PHASE 0. So motherboard RAM is still refreshed
as it is scanned for video output.

The way to implement this is to pull the LS139
from the F2 socket and connect the socket to the
peripheral card via a short 16-line DIP jumper

(short because F2 is close to the peripheral slots).
The LS139 is plugged into a socket on the peripheral
card where it performs the same funections it did on
the motherboard except that the outputs are enabled
by bank switching logic.

Figure 5.16 shows the basic idea of how to bank
switech motherboard RAM. Only one half of the
LLS139 is used and CAS’ is gated by three separate
low level AND gates. This is very important, because
the scheme causes no further delay in CAS’ propa-
gation than is normally tolerated in motherboard
RAM operation. This will ensure correct operation,
even with 250 nanosecond RAM. The AND gate
propagation delay will actually be about 10 nano-
seconds less than in normal operation, making the
6502 motherboard write data setup slightly more
critical. However, you would probably have to put a
6502 in a freezer to make it take 200 nanoseconds to
set up write data after its PHASE 2 clock rises.
CAS’ could be routed through an extra logic device
to completely equalize CAS’ propagation time to
that of normal operation.

The 64K bank switched RAM could be controlled
by any number of schemes. The most naturally im-
plemented scheme would be a 192K RAM card, giv-
ing the expanded Apple a 256K byte capability in
four banks. The screen display is always stored
in motherboard RAM and special care would be
required for bank switching PAGE 0 and PAGE 1.

Expansion RAM is not the only possible applica-
tion of the eapability to inhibit motherboard RAM.
For example, a fairly inexpensive design could be
built with the Apple DOS in EPROM, operating at
its normal address. For about $50 in parts you could
leave behind forever the process of booting the DOS
and the necessity of wasting disk spaceon the Apple
DOS. That would be a pretty nice improvement to
the disk controller.

The design suggestions in this Application Note
are put forth in hopes of encouraging hardware
manufacturers to develop this previously overlooked
Apple capability.

RAM in the Apple Il 5-35

MOTHERBOARD
RAM ENABLE -
PHASE 1
5v
1 16
Ea VSS
2| oa vob! row C 12
| 5 row D _"
_ 3] Al 2 T g
Y2 36 5 row E _10 16
PIN
| _74L5139 | CAS' 1 DIP
SOCKET
JUMPERED
T0
F2
CAS'E 6
GND
18 2 :]3

Figure 516 Schematic: Bank Switching Motherboard RAM.

5-36 Understanding the Apple ||

SOFTWARE APPLICATION

READING VIDEO DATA FROM A PROGRAM

In the October, 1982 issue of SOFTALK maga-
zine, Bob Bishop reported an exciting discovery.
Any time a 6502 program reads an address from
which there is nodata response, the video data from
the previous scanner access is read by the MPU. Mr.
Bishop made a big mistake publishing this informa-
tion. He could have made a living making bets with
Apple experts that you can sync an unmodified
Appleto the videoscan under program control. He'd
have made about a thousand dollars per sucker.
Who would have thought that the data on the floating
data bus would remain valid for over half a micro-
second. The article "Have an Apple Split” contains
programming examples and is highly recommended
reading. It is partly because of "Have an Apple
Split” that this book has endeavored to present
extensive memory scanning maps for programmer
reference.

One reason for syncing a program to the video
scan is to create displays that are a mixture of the
normal Apple screen modes. For example, if you
switch to HIRES before line 5 of every vertieal scan
and switch to LORES before line 10 of every vertical
scan, you will have a stable combination of HIRES
and LORES graphies displayed on the screen.

The method of reading video syne from a program
is to set up flags in scanned memory at the point of
the television scan where the program needs to take
an action, such as switching from LORES to HIRES.
Then the program polls a nonresponding address
such as the cassette output port until it detects the
flag. The choice of flags and their location in
memory will be dictated by the application.

Programming a combination display requires the
normal programmer’s imagination to conceive of
the display. Additionally, a thorough grasp of mem-
ory scanning details is a necessity. The purpose of
this application note is to provide some discussion of
techniques that might be used.

Forstarters, here is a list of addresses from which
video data can be read:

$C01X KEYBOARD STROBE FF Reset

$C02X Cassette Output

$CO3X Speaker Output

$C04X C040 STROBE'

$C05X Screen Switches and Annun-
ciator Outputs

$CO6X Serial Inputs (D0-D6 only)

$C07X Timer Trigger

$CO80-3C7TFF I/0 Control (use if slot is
empty)

$CFFF Expansion ROM Disable

Of all these choices, the screen switches stand out as
having no chance of interfering with the operation
of somedevice. The sereen switehes will normally be
used, because the task of polling and switching can
then be combined. Also, the polling loop is self doe-
umenting to investigators of the program. In the
rare instance that one of the sereen switches will not
do for video polling, the annunciators, the keyboard
strobe reset, the $C040 strobe, and the cassette out-
put addresses are likely choices.

Figure 5.17 is a diagram designed to aid the pro-
grammer in seleeting locations for syneing flags. It
should be used in conjunetion with the memory
maps from earlier sections of this chapter. From
this diagram, one can quickly see the prospects for
successful syneing at a given point in a given mode.
The most obvious feature discerned from Figure
5.17 is that HBL secanned memory in HIRES over-
laps HBL' scanned memory, butthe HBL and HBL/
scanned memory areas of TEXT/LORES are dis-
tinet, This means that different problems will arise
when choosing flags for these two different memory
scanning modes.

A problem with HIRES is that most memory gets
scanned more than once every vertical scan. Only the
first 16 bytes of the SECOND 40 and the first 16
bytes of the THIRD 40 are scanned just once per ver-
tical frame. This makes it more difficult to uniquely
flag a scan position. In TEXT/LORES, memory is
more uniquely scanned with only a partial overlap
between the area scanned during VBL and during
the top of the screen. However, one must deal with
the fact that critical non-displayed memory areas
are scanned. HBL scanned memory is in an area
normally taken up by Applesoft programsor Integer
BASIC variables, and the undisplayed eight bytes
at the end of each 128 byte segment are used by the
DOS for eritical disk information (like active slot
number).

The following is a typical video polling loop:

POLLIT CMP $SC@50 ;FLAG VALUE
; IN ACCUMU-
;LATOR.

BNE POLLIT

RAM in the Apple Il 5-37

SCREEN
TopP

SCREEN
MIDDLE

SCREEN
80TTOM

VBL

SCREEN
TOP

SCREEN
MIDDLE

SCREEN
BOTTOM

VBL

SCREEN
Top

SCREEN
MIDDLE

SCREEN
BOTTOM

VBL

BEGIN HBL SCAN

LINES
0-83

LINES
64-127

LINES
128-191

LINES
192-261

LINES

LINES
64-127

LINES
128-191

LINES
192-261

LINES
0-63

LINES
64-127

LINES
128-191

LINES

FIRST 40

/\

> BEGIN HBL' SCAN

SECOND 40 THIRD 40

A FAN

v

HIRES

TEXT/
LORES
+$1000

TEXT/
LORES

192-261

Figure 517 Screen Memory Scanning.

The loop takes seven clockpulses to execute and thus
establishes one criteria for a screen flag. It must
occupy a minimum of seven adjacent scanned bytes
of memory or six bytes if one of the bytes is the first
byte of a HBL scan. The first byte of a HBL scan is
scanned twice so six bytes here is the same as seven
elsewhere.

Here isone way to flag PAGE 1 of TEXT memory
at the beginning of line 12 (the thirteenth line from
the top if the first line is line 0). Store the value §5B
at locations $1610-$1627. Figure 5.6 shows this is
HBL scanned memory before line 12, and Figure
5.17 shows that this memory will only be seanned
once per vertical scan. $5B is the ASCII value of a
flashing left bracket which is very unlikely to be
found in text memory. It may be found in the
UNUSED 8 or in other HBL scanned memory,
which creates a problem. One way to solve it is to

blank the other HBL seanned memory. Then poll for
the flag as follows:

POLLIT CMP S$C@51 s ACCUMULATOR
;IS S5B
BNE POLLIT
NOP
CMP $C@51
BNE POLLIT

This loop will not be exited without finding two $5Bs
separated by eight bytes, Thisexcludes accidentally
syncing on anything in the UNUSED 8 and solves
the problem without messing up the memory loca-
tions used in disk I/O. Any Applesoft program
beginning at $800 and extending beyond $140F is
clobbered.

5-38 Understanding the Apple I

It is not necessary to uniquely flag a scan position.
It is only necessary that there is no interference in
detecting a scan flag between the present scan posi-
tion and the flagged sean position. For example,
assume we switched from HIRES to LORES at the
middle of the display screen and we wish to detect
the beginning of VBL. A flag at $1460 through
$1477 will serve this purpose nicely. Even though
parts of this memory are also scanned at the top of
the screen, the next time they are scanned is during
HBL, before VBL. There is no interference between
the present location and the detection point.

Mr. Bishop showed an interesting flagging tech-
nique in his SOFTALK article. He flags the middle
of the TEXT/LORES display area with a string of
$E0s. He uses this toswiteh from TEXT to LORES.
These $E0s are printed as spaces on the text screen
and as arow of black blocks and a row of aqua blocks
in LORES. By detecting this row of $E0s from
TEXT mode then switching to LORES mode for the
lower part of the screen, the program effortlessly
transits from an empty textlinetoa LORES display
with an upper aqua border. The program is short
and simple and illustrates that programming mixed
sereen displays is a bit of an art form.

The further possible flagging techniques have not
all been dreamed up yet. Here are some related
ideas and facts:

1. Switching modes during HBL or VBL elimi-
nates the unsightly display of switch points.
This can be accomplished by flagging VBL or
HEL or by flagging a display area and waiting
for HBL or VBL with timed execution loops.

2. The UNUSED 8 is the only undisplayed area of
HIRES available for flagging. It is scanned
during HBL before the top third of the display
and just after HBL during VBL. The undis-
played eightisof minimal use in flagging PAGE
1 of TEXT/LORES because of interference
with the DOS.

3. Bit 7 of HIRES may be used as a flag and
checked with the BIT instruction. This is one
way of flagging the displayed HIRES area if bit
7 isn’t critical for color or positioning.

4. Bit 7 is a good TEXT flag if there is no inverse
video on the screen. Other likely TEXT flags
are flashing ASCII, control ASCII, lowercase
ASCII, and ASCII of characters not supported
by the Apple keyboard.

5. When considering LORES flags in displayed
areas, bits 0-3 control the upper block, and bits
4-7 control the lower block.

6. The video polling method works very well in

conjunction with timed execution loops. There
are 65 cycles in a horizontal scan—25 eycles of
HBL and 40 cycles of HBL'. There are 262
horizontal scans in a vertical scan—64 in each
third of the display sereen and 70 during VBL.
When a group of flagged bytes is located, it is
then possible to find a precise byte in the group
by slewing backwardsin 17029 e¢ycle loops until
the first flagged byte is found. 17031 eyele loops
can be used to slew forwards.

7. The first byte scanned during HBL is scanned
twiceinarow.InTEXT/LORES, every memory
line is scanned eight times in a row, except the
last line of VBL is secanned 14 times. In HIRES,
every memory line is scanned once, but lines
250-255 are rescanned after line 255 (250 is
same as 256, 251 is same as 257, ete.).

8. Switching rapidly between GRAPHICS and
TEXT mode will cause many televisions to lose
color syne. This is a factor of alignment and
response of the 3.58 MHz oscillator inside the
television. Because of this unpredictability from
TV to TV, it is not possible to say what percent-
age of the time a program can leave the Apple in
TEXT mode and still hope to maintain color
syne. Commercial programmers could be well
advised to keep at least a 50% GRAPHICS mode
to TEXT mode ratio in their products if color
stability is important.

9. Avery heavily loaded data bus may not reliably
store video data long enough to be read by the
MPU. Apparently, some commercially avail-
able peripheral cards cause this condition when
plugged in. Beware!

Figures5.18 and 5.19 are example programs that
will ecreate a mixed display in which all the text on
the screen except the bottom line is underlined.
NORMAL, INVERSE, and FLASHING text are
all underlined. The program works by setting up a
LORES map of PAGE 1 text in PAGE 2. Then the
sereen mode is switeched to LORES PAGE 2 for the
top of every text line except line 0, then back to
TEXT PAGE 1 for the next seven lines.

Figure 5.18 is an Integer BASIC program which
sets up the PAGE 2 map and flags HBL scanned
memory for both PAGE 1 and PAGE 2. The process
is pretty slow in BASIC, but this program is
included for illustration and BASIC is easy to fol-
low. Just give the program about thirty seconds to
work. Integer BASIC is used because Integerisvery
easy to work around when modifying low memory
just above $800. The actual screen splitting is done
by the assembly language program in Figure 5.19.

RAMin the Apple Il 5-39
1 REM
2 REM
3 REM CALL UNDERLINE
4 REM
5 REM
6 REM FIRST MOVE INTEGER LOW POINTERS UP TO S1C40.
7 REM
8 REM
10 POKE 74,64: POKE 75,28: POKE 204,64: POKE 205,28
20 PRINT "BLOAD UNDERLINE.OBJ@"
22 POKE -16304,0: POKE -16299,08: POKE =16298,0: REM LOOK AT LORES PAGE 2.
25 REM
26 REM
27 REM NOW FILL PAGE 2 WITH THE UNDERLINES FOR THE CURRENT TEXT DISPLAY.
28 REM
29 REM
3¢ FOR P2=2048 TO 2176: POKE P2,0: NEXT P2: REM BLANK TOP LINE OF PAGE 2
4@ FOR Pl=1024 TO 1919:P2=P1l+1152: GOSUB 160
45 NEXT Pl
5@ FOR P1=192¢ TO 1999:P2=P1+168: GOSUB 16@
55 NEXT Pl
60 REM
61 REM
62 REM NOW FLAG HBL SCANNED MEMORY WITH "S$5B"S.
63 REM
65 REM
70 FOR A=@ TO 192@ STEP 128: FOR B=@ TO 23
75 FLAG=0: IF B<6 THEN FLAG=91: REM 91 IS FLASHING LEFT BRACKEET
8¢ POKE 5136+A+B,FLAG: REM HBL BEFORE MIDDLE SCREEN = FLAG
99 POKE 5176+A+B,FLAG: REM HBL BEFORE BOTTOM SCREEN = FLAG
108 NEXT B
116 FOR B=@ TO 31
115 FLAG=@: IF B<1l4 THEN FLAG=91: REM 91 IS FLASHING LEFT BRACKET
120 POKE 5216+A+B,FLAG: REM HBL BEFORE VBL AND TOP SCREEN = FLAG
130 NEXT B: NEXT A
149 CALL 7168: REM GO SPLIT THE SCREEN
150 END
155 REM
156 REM COLOR = @@ OR 1 OR 15
157 REM
166 T= PEEK (Pl):COLR=1: REM UNDERLINE COLOR = 1
165 IF T=32 THEN COLR=15: REM INVERSE SPACE?
178 IF T=96 OR T=16@ OR T=224 THEN COLR=0#: REM SPACE?
180 POKE P2,COLR: RETURN

Figure 5.18 Integer BASIC Listing: Underline Program.

The difficult part about a program of this nature
isdesigning a flagging method. UNDERLINE uses
strings of $5Bs as flags stored in the HBL areas. $5B
is the code for a flashing left bracket, which can
safely be said to rarely be printed on the TEXT
screen. A string of 14 $5Bs is stored beginning at
HBL before VBL. Note from Figure 5.17 that this
alsostores six $5Bs in HBL before screen top. Addi-
tionally, six $5Bs are stored in HBL before screen

middle and HBL before screen bottom. All other
HBL scanned bytes are cleared. Since the first byte
of HBL scanned memory is driven out twice, this
flagging method results in seven $5Bs being driven
out every HBL before display and fifteen $5Bs being
driven out at HBL before VBL.

Here's the scheme for switeching. First, wait for
VBL. HBL before VBL is the only area which will
respond to two consecutive polls with $5B. Once the

540 Understanding the Apple i

SOURCE FILE: UNDERLINE

fa0a:] *hkkkhkkkkhkhkkhkkhkhohhhhhhhhhhhhhhhhhhhhhhhkkhhkkhhkk
¢o0a: 2 * *
9000 : 3 * *
¢o0a: 4 * UNDERLINE TEXT =
po0a: 5 * *
gooe: 6 * BY JIM SATHER %
goea: T * %
goea: g * 1/4/83 o
0000: 9 * *
0000 : 10 * *
Goga: 1] *kkdkkkkhkkkhhhkhhhhhhrhhhhhdhhhhhrhhhhhhokhhrkhhkhkk
000 : 12 =

eoead: 13 *

Cc@50: 14 GRAPHIX EQU $C050

C@g51: 15 TEXT EQU $C@51

c@52: 16 NOMIX EQU $C@52

C@54: 17 PAGEL EQU S$C@54

C@55: 18 PAGE2 EQU $C@55

FCa8: 19 WAIT EQU SFCARS8

Aeoa: 200 *

@000: 21 ¥

0o0a: 22 *

----- NEXT OBJECT FILE NAME IS UNDERLINE.OBJ@

1C00: 23 ORG $1C00

1C@@:8D 52 C@ 24 DOSCRN STA NOMIX

1C@3:8D 54 CO 25 STA PAGEl

1CO6:A9 5B 26 LDA #S5B

1C@8:CD 51 C@ 27 SCRNLP CMP TEXT LOOK FOR STRING OF 15 "$5B"S
1COB:D@ FB 28 BNE SCRNLP

1COD:EA 29 NOP

1COE:CD 51 C@ 30 CMP TEXT

1Cl1:D@ F5 3L BNE SCRNLP

1¢13:a9 28 32 LDA #528 GOT VBL

1C15:20 A8 FC 33 JSR WAIT WAIT 4553 CYCLES

1C18:A9 SB 34 LDA #S5B

1ClA:A0 17 35 LDY #23 DO 23 LINES

1C1C:Aa2 @8 36 LDX #8

1ClE:DG @2 37 BNE TEXTLP

1c2@: 28 *

1C20: 39 *

1C20:22 @7 49 DOLINE LDX #7 7 TEXT LINES FOR 1 LINE OF GRAPHICS
1C22:CD 51 C4@ 41 TEXTLP CMP TEXT

1C25:D@ FB 42 BNE TEXTLP

1C27:CA 43 DEX GOT HBL

1C28:D0 F8 44 BNE TEXTLP

1Cc2A:8D 55 C@ 45 STA PAGE2 SWITCH TO LORES

1C2p:CD 50 C@ 46 LORESLP CMP GRAPHIX

1C30:D0 FB 47 BNE LORESLP

1C32:8D 54 C@ 43 STA PAGEl GOT HBL

1C35:8D 51 C@ 49 STA TEXT

1C38:88 50 DEY

1C39:D@ ES 51 BNE DOLINE

1C3B:F0@ CB 52 BEQ SCRNLP

*** SUCCESSFUL ASSEMBLY: NO ERRORS
Figure 5.19 Assembiler Listing: Underline Program.

RAM in the Apple Il 5-41

first line of VBL is located, wait 4553 cycles. This is
a ball park figure which waits until after HBL of the
first displayed line. Now that the scan is past VBL,
Figure5.17 shows that there is no further possibility
of reading $5B in polling loops before the next VBL,
except that $5B will be read once within the first
seven bytes of every HBL. This creates a flagged
situation in which HBL can be detected before any
displayed line.

The given task is to underline the current PAGE 1
TEXT display. The ground work for doing this is
laid in the BASIC program. First understand that
the top line of every text character pattern is blank.
This creates the space between the text lines. To
underline the character at position 1 of line 0, you
map a LORES block into the top of position 1 of line
1in PAGE 2. Then for the first scan of text, line 1 you
switech to GRAPHICS PAGE 2. During HBL of the
next scan, you switch back to TEXT PAGE 1. This
creates an underline appearance for line 0. The

BASIC program simply checks the PAGE 1 display
memory for space or no space, then maps corre-
sponding LORES blocks into the adjacent line of
PAGE 2 memory. The bottom line of text is not
underlined because there is no adjacent lower line to
switch to LORES.

With screen memory fully mapped, the task of the
sereen splitting program is reduced to finding the
top of the sereen precisely, then switching to LORES
PAGE 2 for one line every eighth line. It's easy once
the flags are properly set.

Since the Appleis in TEXT mode most of the time
during UNDERLINE, probably any television will
lose color sync and the underline will be white
rather than colored. Readers may wish to experi-
ment with colors by changing lines 160 through 180
of the BASIC program. Just don't POKE 91 into
LORES displayed memory. 91 ($5B) is our flag, and
it is reserved only for undisplayed memory.

542 Understanding the Apple li

HARDWARE APPLICATION

MULTIPLE RAM CARD CONFIGURATIONS

Installing a 16K RAM card in Slot 0 makes a nice
improvement to the Apple. The capability of loading
programs to high memory is inarguably desirable.
But a natural question arises as to whether it is
possible to install more than one RAM card in an
Apple and use the second card for auxiliary data or
program storage. The answer to this question is a
qualified "yes.” It is possible to use more than one
16K RAM card in the Apple, but certain obstacles
must be overcome. This Application Note discusses
the nature of the obstacles and offers some ways to
overcome them.

The first obstacle is the nature of the ROM ena-
bling circuitry on the RAM card. If the expansion
RAM is notenabled on a RAM card, the ROM on the
card will respond to $F800-$FFFF addressing—
period. There is no way to inhibit this response with-
out modifying the RAM card. The result is that
when a RAM card is installed, neither the mother-
board nor any peripheral card can respond to F8
addressing. This "I own F8" philosophy of the 16K
RAM card represents a degradation of the versatil-
ity of the Apple which, fortunately, is easily over-
come. Just perform the following simple modifi-
cation to each RAM card you want to install with
other F'8 stealing cards.*

1. Remove the F8 ROM from the RAM card.

2. Remove the 74L.S20 IC from the A5 socket of the
RAM card.

3. Bend pin 6 of the 74L.S20 IC so it will not go into
the socket and reinstall the 74LS20 in the A5
socket.

4. Place the RAM card, component side down, on
your work table. Solder a bare wire jumper
between pins4 and 5 of the A4 socket(A4 holdsa
741.S09).

5. Install your primary F8 ROM in the F'8 socket of
the motherboard. Leave the ROM socket on the
16K RAM card empty.

The original versatility of your Apple is restored
by this modification. The RAM card responds to F'8
addressing only when enabled for reading or writ-
ing to RAM. Any RAM card, firmware card, or
other peripheral card can steal access to F8 address-
ing by pulling the INHIBIT' line low. If INHIBIT'
is high, the motherboard F8 ROM will respond to F'8
addressing.

*Please read the NOTE OF CAUTION at the beginning of the
book before making any modification to your hardware,

A second obstacle to multiple RAM card configu-
rations is loading on the RAO-RA6 multiplexed
RAM address lines. These lines drive 24 RAM chips
on the motherboard plus 1000 ohm pull-up and pull-
down resistors. Additionally, RA0-RA5 drive eight
RAM chips and one LSTTL load on every RAM card
installed, and RA06 drives two LSTTL loads on
every RAM card installed. Presumably, this loading
places a practical limitation on the number of RAM
cards which can be installed in an Apple. I have
made no attempt to define this limit through exper-
imentation, so I can only suggest that multiple RAM
card users should be on the lookout for signs of
unreliable transfer of RAM data. Symptoms of such
problems would quite possibly vary with operating
temperature.

If RA0-RAG6 prove to be overloaded in your Apple,
one trade-off you can consider is to replace the
741.S153s at C1, E11, E12, and E13 on the mother-
board with 74S153s (see Figure 5.10). STTL chips
draw more current than LSTTL chips at their
inputs, but they can drive more circuits connected to
their outputs. The trade-off is that changing to
74S153s will greatly increase the amount of RAM
chips that RA0O-RA6 can drive, but it will cause
some increase of the load on the address bus. The
desirability of this trade-off must be evaluated for
your total peripheral card configuration.

The final obstacle to multiple RAM card configu-
rations is that all software support must be gener-
ated by the user. This will, of course, be the most
time consuming obstacle to overcome. Important
points to consider in your software are handling of
your configuration after a RESET, patching DOS
and Pascal to support your configuration, and fail-
safe software which avoids enabling two different
RAM cards for reading. One programming trick is
to enable two RAM cards for writing simultane-
ously when you want to fill their memories with
identical data. Both RAM cards will accept the data
from a single storing instruction to the $D000-
$FFFF range.

When installing more than one RAM card, a
separate DIP jumper must be connected from a
motherboard RAM socket to each RAM card. Just
select any convenient RAM socket for each RAM
card and move the RAM chip from that socket to the
empty socket on the RAM card. The motherboard
socket which you choose makes nodifference because
the signals which the RAM card uses (RAS’ and
RAO0-RAG6) are identical on every socket.

4
I_._u_._]
l....

|

Non-erasable, random access, read only memo-
ries have taken many forms in the history of digital
computers. From vacuum tubes to diodes to small
scale integration to large scale integration, there
has always been a need for the general purpose
computer to have a resident program ready to tell it
what to do at turn on. With the coming of large read
only memories on single chips, the scope of pro-
grams contained in ROM in general purpose com-
puters has expanded greatly. Placing a BASIC
interpreter in ROM was a significant event in the
development of personal computers.

The Apple II design supports 12,288 bytes of
motherboard ROM, addressed from $D000 through
$FFFF. Additionally, several provisions exist for
controlling the Apple via programs in ROM on
peripheral cards. These include addressing periph-
eral ROM using a slot’s assigned address area
(its $COnX DEVICE SELECT’ range and its
$CnXXI/O SELECT' range), addressing peripheral
ROM using the expansion ROM addresses ($C800-
$CFFF), and inhibiting motherboard ROM and
stealing addresses $D000-$FFFF. All told, the
Apple computer has a very versatile capability for
operating under control of programs stored in
ROM.

chapter 6

ROM in the Apple Il

The sophistication of the ROM chips makes their
connections in the Apple simple and easy to under-
stand. Nevertheless, the topic of ROM is involved
enough to merit itsown chapter. Since the hardware
connections aresimple, let that be the starting point.

ROM HARDWARE

The Apple II firmware is programmed into six
2316B type ROMs. The 2316B is a 24 pin, 2048
byte, NMOS ROM with three programmable chip
selects and a 450 nanosecond access time. NMOS
stands for Negative channel, Metal Oxide Silicon
construction. These technical terms will help you if
vou look for the equivalent chip in a manufacturer’s
data book. Look under NMOS, 2048x8 ROMS.

The 2316B goes by several different manufactur-
er’s part numbers. This book refers toit as the 2316B
because that seems to be the most common identify-
ing number. The Apple II Reference Manual refers
tothe ROM as9316B, which is the part number used
by General Instruments for 2316 B compatible ROM.
Perhaps General Instruments was the ROM supplier
when the Apple Il was first introduced. All the
Apples that the author has inspected have Synertek
ROMs and the Synertek part number is 2316B. In

6-2 Understanding the Apple I

any case, the 2316B, 9316B, and all other 2316B
compatible ROMs have the same characteristics.

These ROMs are programmed by the manufac-
turer to the specifications of Apple Computer Inc.
Once the chip is built, only a casualty will cause
alteration of the stored data. In addition to specify-
ing the data to be contained in the ROM, Apple also
specifies which of the three chip select inputs are
active high and which are active low. Thisis why the
chip selects are said to be programmable.

The ROM connections in the Apple are shown in
Figure 6.1. The ROM chips are wired in the way
most microcomputer hardware is wired, with repe-
titious, identical wiring going toall six chips. It takes
eleven lines to address 2048 bytes and the eleven
address inputs to the ROM chips are connected di-
rectly to A0-A10 of the address bus. The eight tri-
state data outputs are connected directly to the data
bus. These address and data connections are pleas-
antly simple when contrasted to RAM connections.

The only remaining connections are power supply
connections (+5V and GROUND) and the chip select
inputs. The chip selects control the tri-state data
outputs, enabling the outputs when all three chip
selectsare active. In other words, for an Apple ROM
chip to take control of the data bus, its CS1’ and
CS3’ inputs must be low, and its CS2 input must be
high. The CS2 input of all six ROM chips is tied to
the wire-OR INHIBIT' signal from pin 32 of the
peripheral slots. This reveals the power of the
INHIBIT' line. If any peripheral card pulls it low,
all motherboard ROM is isolated from the data bus.
This means that any peripheral can respond to
addresses $D000-$FFFF in any way it wants when
it has pulled INHIBIT' low. The only function of
ROM is to put data on the data bus. When it is
isolated from the data bus, ROM may as well not be
installed.

The CS1" and CS3’ inputs of each ROM chip are
tied together and connected to one of six address
decoded ROM ENABLE' signals. These six signals
are decoded directly from the address bus during
PHASE 0 and divide ROM addressing up into six
equal parts (3D000-$D7FF, $D800-$DFFF, ete.).
Decoding of signals from a multiline input is a very
common problem in digital design, so general pur-
pose ICs exist which are tailor made to the task.
Detecting the address range of each ROM chip and
generating the data bus management signals for
those six chips is accomplished by a single 741.S138
decoder and an AND gate.

Two other outputs from the LS138 represent the
$C000-$C7FF and $C800-$CFFF address ranges

during PHASE 0. The $C000-$C7FF signal is used
toenable I/O decoding as described in Chapter 7 and
illustrated in Figure 7.2. The $C800-CFFF signal is
the I/O STROBE’, which is tied to pin 20 of all
peripheral slots. This signal enables the "seventh
ROM chip” which can be installed on any peripheral
card or several peripheral cards. The $C800-$CFFF
addressing is shared by all peripheral cards under a
protocol described in the next section. Within this
protocol, any card can activate response to addresses
$C800-3CFFF, thus supplying its own 2K program
in firmware. The I/O STROBE’ at pin 20 is the the
"(C8" enable term for any card on which the “seventh
ROM"”, or "expansion ROM”, is active.,

An interesting feature of the ROM connections in
the Apple II is that ROM is not gated off by R/W’.
This means that if a program writes to a ROM
address, the enabled ROM will compete with the
MPU bidirectional busdriver for control of the data
bus. The possibility of “"bus fights” like this is some-
thing microcomputer engineers try very carefully
to eliminate from their designs. At least three bad
things can happenina”bus fight”: hardware can be
damaged; data transfer on the bus can be unreliable;
and current spikes created on the power supply and
ground lines by the "bus fight” can interfere with
the operation of other circuits. It appears that none
of these ill effects occurs when a program causes the
MPU to write to a ROM address in the Apple.

The ICs involved are the 2316B ROM and the
8T28 (8304 in the RFI Revision) bidirectional driver.
When the 2316B and an 8T28 or 8304 fight for con-
trol of a line, the 2316B loses. Surprisingly, even
when the 2316B is trying to pull a line low, an 8T28
or 8304 can pull the line above 2 Volts. The current
drawnduring this busfight is not sufficient todam-
age the 2316B, 8T28, or 8304, so hardware damage
is not a likely result. The second possible ill effect,
unreliable data transfer on the bus, is not a factor.
Remember we are writing to ROM, an unusual pro-
gramming action which is normally done only by
accident(as when the programmer tries to writetoa
16K RAM card but neglects to enable the RAM
card). Data transfer does not exist when the MPU
writes to ROM, because no device on the data bus is
configured to receive data. The third possible ill ef-
fect, interference caused by current spikes, appears
not tooceur. I rana test program for twelve straight
hours on my Revision 3 Apple. The program contin-
uously wrote the complement of the data at $E000 to
that same address. No discernable operational mal-
functions occurred during this experiment.

ROMinthe Apple Il 6-3

PERIPHERAL SLOTS
A
e N
5V
1 ANY PERIPHERAL SLOT CAN
INHIBIT MOTHERBOARD ROM
1H£«01 BY PULLING PIN 32 LOW
7 2 |32 D 32 B2 |32 |2
ADDRESS BUS INHIBIT’ DATA BUS
1 5V
118 [24
Ts2 VCC
B0
2Zag 17
2|,, 23168 07
ROM pghi6
1 A7 1]
» D8 D5 15
e E »
s B e 3
4 F8 D3 L
Ad 11
5 D2
A3 10
8 D1
he nof
a1
81n0
oSl 0S3
_]1_2 ‘[20 Y21
5V
Tm
A1 1| vee THERE ARE SIX ROM
A ENABLE' SIGNALS, ONE
A12 2f . FOR EACH ROM SOCKET
A13
A14 4, —
6 6]
A15 5| H1 F12
741508 7415138
DECODER 1/0 STROBE
e gL
‘ 7 1/0 DECODE ENABLE’
PHASE 1 E1 SEE FIGURE 7.2 (7.9)
18

Figure 64 Schematic: ROM in the Apple II.

6-4 Understanding the Apple |

Even though there seems to be no real harm in it,
purposefully writing to ROM addresses while the
INHIBIT' line is high is not recommended. The
outcome of "bus fights” may not always be abso-
lutely predictable, and the Apple designer would
have done well to prevent the possibility by connect-
ing R/W' toone of the chip selects of the motherboard
ROM. A parallel situation to that of ROM exists with
the motherboard serial inputs. If a program stores
data to address $C06X, both the MPU driver (8T28
or 8304) and the serial input multiplexor (74L.S251)
attempt to control D7 of the data bus at the same
time. As with ROM, purposely writing to the serial
input addresses is not recommended.

THE SEVENTH ROM CHIP

As Figure 6.1 shows, the I/0 STROBE' signal at
pin 20 of the peripheral slots is generated identically
to the six ROM ENABLE’ signals. In fact, I/0
STROBE' is the ROM enabling signal for any pe-
ripheral card on which $CR00-$CFFF is currently
active. There are no motherboard control signals to
tell the various slots when they may or may not
respond to the I/O STROBE', so Apple Computer
Ine. decided on the following protocol which cards
responding to I/O STROBE' must follow:

1. When pin 1(I/O SELECT')or pin41 (DEVICE
SELECT') goes low, a peripheral card may
begin toactively respond to the I/Q STROBE' at
pin 20.

2. When $CFFF is on the address bus during
PHASE 0, all peripheral cards must stop re-
sponding to the I/O STROBE'.

Actually, the Apple II Reference Manual says only
to use I/O SELECT" to activate response to the I/0
STROBE'. However, Slot 0 shares $C800-$CFFF
addressing with the other slots and it has no I/O
SELECT’ input. The only way Slot 0 can activate
response to I/O STROBE' is through its DEVICE
SELECT’ input at pin 41. It should be noted that
Slot 0 designs which respond to the I/0 STROBE’
are either rare or nonexistent.

Anexample should clarify how the I/O STROBE'
protocol works. Assume that Slot 1 and Slot 2 have
peripheral cards installed and that both have a
"seventh ROM"” on board. A PR#1 is executed from
BASIC which results in 6502 program flow vector-
ing to address $C100 for all character output. The
card at Slot 1 responds to $C1XX addresses by plac-
ing a program on the data bus, and by activating

response tothe /O STROBE'. Suppose that the pro-
gram driven out at address $C100 begins with:

Cl@@: BIT S$CFFF
Cl@g3: JMP SC80@

On the last eyele of execution of the first instruction,
response to the [/O STROBE' is deactivated on all
peripheral cards including Slot 1. However, on the
first cycle of execution of the second instruction,
$C1XX isback onthe addressbusand I/0 STROBE’
response is again activated at Slot 1. It is now safe to
begin execution of programs stored in the "seventh
ROM" at Slot 1. The ROM at Slot 2 will not interfere
with Slot 1 access to $CR00-$CFFF, because it is
designed toignore the /O STROBE' after an access
to $CFFF.

It is possible for a peripheral card to store its
$CnXX program and its $C800-$CFFF program on
a single 2K ROM. This is accomplished by enabling
the output of the ROM to the data bus when I/O
SELECT’ (pin 1) goes low or when I/O STROBE’
response is activated and I/O STROBE’ (pin 20)
goes low. If the card is located at Slot 1, the 256 bytes
at $C1XX will be identical to the 256 bytes at
$CI9XX. The 256 bytes at $C1X X can be accessed at
any time. The 2048 bytes at $C800-3CFFF can be
accessed only when I/0 STROBE' response is acti-
vated (after a $C1XX access).

The "seventh ROM" capability should not be con-
fused with the capability to steal addresses $D000-
$FFFF via the INHIBIT' line. The former gives a
peripheral card unlimited access to 2048 bytes of
addressing not used by motherboard devices. The
latter gives a peripheral card access to 12,288 bytes
of addressing at the expense of disabling mother-
board firmware.

FIRMWARE IN THE APPLE

The hard features of the Apple ultimately deter-
mine its capabilities and limitations. However, the
computer is only as powerful as the program control-
ling it at any given moment. Possibly the most im-
portant programs ever written for the Apple are the
ones stored in the motherboard ROM. These give life
to the machine and are used so often that we forget
that they are just programs and that operational
features created by any program can be changed.

The contents of Apple II firmware has been the
subject of many writings which this book cannot
hope to match in a limited space. The goal here is
justtogiveanoverview of the Apple firmware and to
provide some insight into the importance of the pro-
grams contained there. The approach is historical.

ROMinthe Apple |l 6-5

First, there was Integer BASIC, the Monitor
ROM, and some 6502 utilities. These programs were
written primarily by Steve Wozniak, the designer of
the original Apple computer. This was in the bad old
days before the proliferation of inexpensive disk
drives and before Microsoft Inc. started supplying
all the computer companies with more sophisticated
BASIC interpreters. Integer BASIC takes up about
5K of memory and has some very important limita-
tions: no floating point arithmetic, no HIRES graph-
iecs commands, and no subseripted string variables,
to name three. This is not said to belittle the consid-
erable design accomplishments of Mr. Wozniak. It's
just that within a few years, Integer BASIC became
less than state-of-the-art.

The 6502 utilities included with Integer BASIC
were some floating point arithmetic routines, the
"SWEET 16” double word length command inter-
preter, and most importantly, the Mini-Assembler.
SWEET 16 is a small but sophisticated computer
language which lets the programmer manipulate
data in 16 bit word lengths. It utilizes RAM ad-
dresses $0 through $1F as 16 registers of 16 bits
each and has normal machine language commands
suchas ADD, SUBTRACT, COMPARE, BRANCH,
ete. Writing some programs in SWEET 16 will
make them take less space than the equivalent 6502
program, but the 6502 program will run faster.

The Mini-Assembler is the utility on which
uncounted numbers of Apple owners have first
learned to program 6502 assembly language. Its use
is fully described in the Reference Manual, and there
is also some description in the 6502 programming
section of Chapter 4 of this book.

SWEET 16 and the floating point routines are not
described in any published Apple literature. In the
old red Reference Manual, there are source/object
listings of SWEET 186, the floating point routines,
and the Mini-Assembler. SWEET 16 is fully de-
seribed in the November, 1977 edition of Byfe mag-
azine ("SWEET 16: the 6502 Dream Machine” by
Steve Wozniak).

The Monitor ROM

In microcomputer terminology, a system monitor
is a program containing the most basic utilities of
the system. Before the innovation of BASIC in ROM,
a monitorin ROM was the primary user interface to
the mierocomputer. Some basic routines of a system
monitor are keyboard input routines, video output
routines, memory display and modification rou-
tines, and storage media input/output routines.

The Apple was one of the microcomputers which
led the transition from a monitor in ROM to BASIC
in ROM as the primary human to machine interface
for home computers. However, the Apple II does
have an extensive monitor in ROM, and the older
Apples came up in the system monitor, not in
BASIC. The system monitor is contained in the F'8
ROM, and the F& ROM was naturally called the
Monitor ROM.

The Monitor ROM contained such important Ap-
ple utilities as entry to BASIC, keyboard input,
video text and LORES graphies output, cassette
I/0, assignment of different peripheral slots as
primary input or output, memory display and modi-
fication, a 6502 disassembler, machine language
single step, trace, or normal subroutine execution,
handlers for RESET’, NMI’, IRQ’, and BREAK,
and some 16 bit multiply and divide routines. Con-
trol of the Monitor is via a highly usable command
interpreter, the use of which is well described in the
Reference Manual.

This, then, was the Apple: a cassette based system
with a poor man’s BASIC and a rich man’s monitor
in ROM and two empty ROM sockets for user firm-
ware. Oh yes, one more important thing—Apple
published a source/object listing of the Monitor
ROM. This was a risky move which paid off immea-
surably. By publishing their listing, Apple opened
the way for investigators to learn thoroughly the
nuts and bolts operation of the Apple. They thus
aided competitors in developing numeroussoftware
and hardware applications for the Apple II. With
this combination of extensive available applications
and freedom of information, the Apple II pulls off
the delicate trick of appealing not only to the masses
who don’t care how it works but also to more serious
users who develop even more applications.

The contents of the Monitor ROM dictate many of
the operational characteristics of the Apple: what
happens when the computer is turned onor RESET
is pressed, the format of the screen text, the nature
of cursor moves, and the assignment of primary
input and output devices. The monitor zero page
assignments must be taken into account by software
designers. Page 2 of RAM is thought of as the Apple
keyboard input buffer because that is the way the
monitor uses Page 2. Cards capable of being primary
input or output devices must have programsat their
I/0 SELECT’ addresses, because the firmware
assigns a slot as a primary input or output by jump-
ing to the slot’s first [/O SELECT' address ($C100
for Slot 1, $C200 for Slot 2, ete.). These features are
not inviolate in the Apple. They can be changed by

6-6 Understanding the Apple I

loading a new operating system into RAM or by
replacing a single ROM chip, which is exactly what
Apple did when they decided to change a few opera-
tional features of their computer.

The Apple Il Plus

The Applell evolved rapidly in the late 1970’s into
a more sophisticated machine than was originally
introduced. The dynamic nature of the hardware
and software support provided to the Apple II by
Apple in 1978 and 1979 is remarkable. In approxi-
mate order,

1. Applesoft BASIC became available on cassette,

2. The Disk II was introduced with its powerful
DOS,

3. Applesoft became available on diskette,

4. Applesoft became available on a firmware card,

5. The Apple II Plus was released with Applesoft
and Autostart Monitor in ROM,

6. The Language System was released with 16K
RAM card, Pascal language, and 16 sector disk
capability, and

7. DOS 3.3 was released with its 16 sector capabil-
ity (August 1980).

A popular Apple configuration became both Integer
BASIC and Applesoft in ROM with automatic selec-
tion between the two by the DOS when a program
was RUN. One BASIC resided in motherboard
ROM, and the other resided in ROM on a Slot 0 firm-
ware card. As this configuration demonstrates,
bank switching of firmware operating systems is a
very powerful concept.

The availability of Applesoft BASIC greatly
improved the versatility of the Apple by making the
manipulation of the HIRES screen, large disk text
files, and floating point numbers practical. Unfortu-
nate Applesoft weaknesses were incompatibility in
command and memory usage with Integer BASIC,
no AUTO numbering, no DSP (DiSPlay) command,
and the absence of the 6502 Mini-Assembler. Also,
the SWEET 16 interpreter and old floating point
routines which are associated with Integer BASIC
are not available with Applesoft.

The new Autostart ROM reflected the changing
nature of the personal computer owner. It caused
the Apple to come up in BASIC instead of the system
monitor, gave the Apple the capability to boot a disk
at power up, and greatly improved the ESCape
mode cursor moves. In the process, the SINGLE
STEP and TRACE investigative utilities for ma-
chine language programs and the 16-bit multiply
and divide routines were removed. Programmers’

utilities were thus sacrificed for improved opera-
tional features. The small businessmen gained a sys-
tem that automatically loads and starts at power up,
and the computer hacks lost the convenience of
STEP and TRACE in ROM.

The Impact of the RAM Card

A more recent development in the evolution of the
Apple IT has been the popularity of the 16K RAM
card. With adisk based system, as the Apple is now,
it is no longer as necessary to have extensive oper-
ating systemsin ROM as it was with a cassette based
system. The entire Integer BASIC program and
associated utilities can be loaded into the $E000-
SFTFF area of the 16K card in a tolerably short
period of time, giving the user the equivalent of the
firmware card but more versatile. The system mon-
itor becomes alterable by the user and the number of
operating systems that may possibly reside in high
memory becomes unlimited. The disadvantages of
the 16K RAM card are the possibility of overwriting
high memory, occasional extra waiting for loading
the program into the 16K RAM card from disk, the
impossibility of protecting 6502 vectors from pro-
gram encrypting artists, and the lost capability of
other peripheral cards to respond to $F800-$ FFFF
addressing. For most users the advantages of the
16K RAM card outweigh the disadvantages.

So now we have the Apple I as it was before the
introduction of the Ile in January, 1983: Applesoft
and system monitor in ROM with alternate oper-
ating systems in firmware or RAM peripherals,
disk based, and who knows what other peripherals
plugged in. A clean machine.

ROM TIMING

ROM read timing is very simple and similar to a
read to any address above $CO0F. The two main
timing signalsinvolved are RAM SELECT’ and the
ROM ENABLE' signal for the addressed ROM
chip. The important specifications of the 2316B
ROM are:

1. The output data will become valid a maximum
of 450 nanoseconds after the address input
becomes valid.

2. The output data will become valid a maximum
of 120 nanoseconds after the three chip selects
become active.

3. The data output will go to high impedance a
maximum of 100 nanoseconds after one of the
chip selects becomes inactive.

ROMin the Apple |l 6-7

- 4 |-

6502 PHASE 2
|
PHASE 0 \ SCANNER ADDRESS MPU ADDRESS \
RAM SELECT' ’ l \
o [o e e e P2
FO ROM ENABLE'
1, | ROM DATA s valig when PHASE 2 falls.
DATA BUS _Y MPU DATA 1y ROM DATA VALID SFF
450 nsec

l maximum
6502 address becomes valid

typically 100 nanoseconds
after PHASE 2 falls.

ROM DATA becomes valid no more
than 120 nsec after the ROM ENABLE'
signal and no more that 450 nsec
after the address becomes valid.

In the Apple, the 450 nanosecond
maximum delay from address valid

to data valid is usually met before

ROM ENABLE' has been low for 120 nsec.

Figure 62 Timing Example: ROM Read, Address $F000.

4. 120 nanoseconds maximum after the ROM EN-
ABLE’ signal falls, the ROM data becomes
valid, assuming the address bus became valid
early enough. With a typical 6502, the address

ROM read timing in the Apple is illustrated in
Figure 6.2. The main order of events is:

1. During PHASE 1, the video scanner performs

2.

its normal access to RAM.
At approximately 100 nanoseconds after 6502
PHASE 2 falls, the MPU address becomes
valid. ROM data will be valid 450 nanoseconds
from this point if the ROM ENABLE' input has
been low sufficiently long.

. PHASE 0 rises, causing the ROM ENABLE’

signal to drop and the RAM SELECT torise. It
takes longer for RAM SELECT' to rise because
PHASE 0 is propagated through several logic
devices to RAM SELECT". The data bus floats,
storing the video data until the ROM data
becomes valid.

becomes valid early enough that the chip select
to data valid delay of the ROM chip will deter-
mine when data becomes valid. In any case,
ROM data becomes valid well before 6502
PHASE 2 falls.

5. PHASE 0 falls, causing the ROM ENABLE' sig-

nal to rise, followed by 6502 PHASE 2 fall-
ing, followed by RAM SELECT' falling. The
time differences in the three events caused by
PHASE 0 falling are the result of different prop-
agation delays. After ROM ENABLE’ goes
high, the ROM chip holds data valid for a
maximum of 100 nanoseconds. If the ROM chip

6-8 Understanding the Apple I

stops holding data valid before PHASE 2 falls,
the floating data bus will hold the ROM data
valid anyway until after RAM SELECT’ falls.
This ensures that PHASE 2 falling correctly
clocks the ROM data to the MPU. In the unlikely
event thatthe ROM chip actually tries to control
the data bus for 100 nanoseconds after ROM
ENABLE' rises, it will fight with the RAM/
keyboard data multiplexor for control of the
data bus for about 30 nanoseconds. When the
RAM/keyboard data multiplexor actually does
take control of the data bus, it will bring the
data bus to $FF as it always does following a
read access to an addressabove $BFFF. As was
noted in the chapter on RAM, this is because the
RAM data latch interprets the floating output
of the RAM chips as $FF (all ones).

THE FIRMWARE PERIPHERAL CARD

Not long after Applesoft was introduced on cas-
sette tape, it became available on the Applesoft
firmware card. Then, when Apple started putting
Applesoft in the motherboard ROM, Integer BASIC
became available on a firmware card. These cards
are supported by DOS 3.2 and DOS 3.3 in an amaz-
ingly usable manner. One simply types "RUN pro-
gram name” and the DOS automatically switches to
the language that "program name” is written in and
loads and runs the program. Unlike possibly any
computer system prior to the Apple, this switching of
high order languages is accomplished almost in-
stantly by disabling one bank of ROM and enabling
another.

This switching is made to seem even more amaz-
ing than it is, because Apple doesn’t supply a hint of
how the firmware card works in any of their docu-
mentation. Here then, possibly for the first time in
print, is a description of the capabilities and limita-
tions of the firmware card.

Figure 6.3 is a schematic diagram of the firm-
ware card. I prepared Figure 6.3 after analyzing an
Applesoft card with my eyes and an ohmmeter.
Please refer to this figure during the following
discussions.

Enabling the Firmware Card

The first thing to notice about the firmware card
schematic is that there are six ROM chips with en-
abling signals generated by a 741.8138, just like on
the motherboard. As on the motherboard, the LS138
is enabled when Al4 and A15 are high during
PHASE 0 todecode ROM ENABLE’ signals for the

six ROM chips. Unlike the LS138 on the mother-
board, the LS138on the firmware card is also gated
by R/W’, the DMA priority chain input, and the
output of a 7T4LS74 flip-flop. Any of the six ROM
ENABLE' signals at the output of the LS138 can
drop low only if all of the enabling criteria are met.
Again, these criteria are:

DMA priority chain input - high
R/W’ - high
Al4 - high
Al5 - high
PHASE 1 - high
flip-flop B2-B - reset

The reasons for some of these criteria are easy to
explain. A14 and A15 being high defines the address
range $C000-§ FFFF. LS138 outputs corresponding
to the $C000-$CFFF range are not connected. En-
abling firmware card ROM only when R/W' is high
prevents a fight for control of the data bus between
the firmware card and the MPU busdriverin casea
write to a ROM address is accidentally performed.
PHASE 1 low or PHASE 0 high defines the time
when all MPU access to Apple devices occurs.

The two other enabling criteria require more
detailed explanation. B2-B is the enable/disable flip-
flop for the firmware card. When B2-B is set, moth-
erboard ROM is enabled. B2-B gets set when a
RESET occurs and the switeh in the back of the card
isdown, or when the MPU accesses any odd address
between $C081 and $CO8F (assuming the firmware
card isin Slot 0). When B2-B is reset, firmware card
ROM is enabled. B2-B gets reset when a RESET
occurs and the switeh in the back of the card isup, or
when the MPU accesses any even address between
$C080 and $CO8E. Thus, the firmware card enable
function can be controlled from software or by the
position of the switch in the back when a RESET
occurs. When controlled from software, the switch-
ing is clocked by the trailing edge of DEVICE
SELECT' a few nanoseconds after PHASE 0 falls.
This insures that switching always occurs when all
the ROM ENABLE' signals are high. Switching in
the middle of a ROM access could cause a program
to crash.

The combination of DOS and the Autostart ROM
completely defeats the functions of the switch in the
back of the firmware card. When a power-up RE-
SET occurs, the firmware card is first enabled or
disabled as a function of the switch in the back, but
the DOS soon enables or disables the card based on
the language of the "THELLO"” program.If RESET

6-9

ROM in the Apple I

"PIDD SIDMULIH 8y :OHDWaYds 9 ainby

e |1 @

0L T
O les 1 ——ev
— : : =i] @
1 v ﬂ 9 7)1 8¥/ez % & (a3sn 1on v-2a)
= L SR ™ E Y[. PLSWLEI
90(Epr 8 N Z o 04 1 — r®w 2 -
@ . Lol)= RN ¢ 8 Wi auvy | A8
sa(rr i I . ol =w ov e MG |
r@)— v 9
1 S
ga(or
6
2 A30 13534
20z 7 LMS
E———< *Jﬁl- Dov Mol
00 (6v) 5 14
M Y
SRR (-
.QHYOBHIHLOW
<P
_ 318VN3 WOH QHVOBYIHLON |
preSwL I -
0
_L o 84 ,IAhvl_loA’ﬂl, — e
om ea [+ 84
_ — A\/_q ﬂoA“ — ——(v
AS 60570L Bl mﬁ OA 04 f
e
S - "RC ety | S
LIgIHNI (2> B e e B ea [6 : . : :
v —Tor
60STPZ ML 6osTL a0 — L ——————(80) 1 35VHd
. 81) M/Y
= — 1S
9 | 1 . L) SIY
g8 [t \ATM-
L er o @31
60SWL el om 8€1SPL ¥8

H 2_

._‘ () i WSIL 22)NI VWG
1o vwa®er—{ 8 [3

Ac (£2) 10 NI 30

[}
(82) NI LNI

610 Understanding the Apple |l

is pressed and the DOS is linked up, the firmware
card again is enabled or disabled as a function of the
switch in the back, but the DOS shortly reenters the
last BASIC that was active. The result of all this is
that the switch in the back usually serves no fune-
tion in a disk based Apple with an Autostart ROM.
In systems with no disk drive, it determines the
power-up BASIC and provides an inconvenient
method of switching back and forth between Integer
and Applesoft.

Even though any addresses between $C080 and
$CO8F may be used to control the Slot 0 firmware
card, the DOS always uses $C080 and $CO081 to
switch back and forth. The DOS doesn't care what
ROM is in the motherboard and what ROM is in the
firmware card. It checks both ROMs to see if the
BASIC it is looking for is available. The firmware
card will operate in any slot, but the DOS only sup-
ports it in Slot 0.

The DMA Priority Chain

The final enabling criteria for the LS138 is that the
DMA priority chain input be high. This is because
the firmware card was designed so that you can have
several of them in adjacent peripheral slots. It uses
the DMA priority chain to make sure that two or
more firmware cards do not accidentally become
enabled at the same time. This is accomplished as
follows:

1. When the DM A’ priority input is pulled low, all
ROM ENABLE' signals on a firmware card go
high and the firmware card is isolated from the
data bus. Also, the DMA priority output is
pulled low, so all lower priority firmware cards
are also inhibited.

2. If the DMA priority input is high and a firm-
ware card is enabled (B2-B reset), an MPU read
toa ROM address results in one of six firmware
card ROM ENABLE' signals going low. This
causes the DMA priority output to drop low,
disabling lower priority firmware cards. Also,
motherboard ROM is inhibited, and the data
from the addressed ROM chip is gated to the
data bus.

The firmware card does not perform DMA. It
implements bank switching of addresses between
$D000 and $FFFF. However, because of its use of
the DMA priority chain, the firmware card will
interfere with lower priority DM A cards, and it will
be interfered with by higher priority DMA cards.

This can be prevented by keeping an empty slot
between a firmware card chain and a DMA ecard
chain or by modifying the leadingor trailing card in
one of the chains so the lower priority chain ignores
its priority input.

By using the DM A’ priority chain to prioritize the
firmware card, Apple implicitly stated that there is
a priority by which the peripheral slots or the moth-
erboard may respond to addresses $D000-$FFFF.
Slot 0 has the highest priority, and the motherboard
has the lowest priority. Then, in violation of their
own implied guidelines, they produced the 16K
RAM card which steals ROM addressing without
supporting the DMA priority chain. This means
that if one elected toputa RAM Card in Slot0and a
firmware card in Slot 1, there would be no fail-safe
method of preventing accidental simultaneous en-
abling of the two cards. In any case, the DOS does
not support firmware cards anywhere but in Slot 0,
so one would have to pateh the DOS to achieve auto-
matic selection of firmware other than in Slot 0.
Hardware capabilities not supported by software
are of little use. Also, the concept of a priority chain
of 12K firmware cards is a bit obsolete. With today’s
ROM, you could easily put 64 kilobytes of firmware
on one card.

The ROM ENABLE' Signals

When one of the six ROM ENABLE' signals goes
low, it means that the firmware card is enabled and
the MPU is addressing ROM. These ROM EN-
ABLE'signals are each tied to the CS1’ input of one
of the six ROM chips. The ROM data from that chip
then becomes valid within 120 nanoseconds. The
data isrouted to the data busthrough a 74L.S244 line
driver, which is gated on by any ROM ENABLE'
signal dropping low.

The fact that one of the ROM ENABLE' signalsis
low is detected by a six input, low level OR gate
consisting of three open collector AND gates on B3.
This detected signal is labeled DE’ (Data Enable’) in
Figure 6.3. Besides gating the LS244 outputs to the
data bus, DE’ also causes INHIBIT' and the DMA
priority output to drop low. Dropping INHIBIT'
isolates the motherboard ROM from the data bus, so
the firmware card data is read by the MPU. Note
that DE" and INHIBIT' are not identical logic
terms. DE’ is the local “data enable” to the data bus,
but INHIBIT' is the low level wire-OR gate of the
pin 32 output of all eight peripheral slots.

ROMinthe Apple Il 6-11

The LS244 is not necessary for operation of the
firmware card. You could remove the L.S244 and
short all the outputs to their respective inputs on the
empty socket, and the firmware card would still
work. Apple probably included the LS244 in the
design to reduce data bus loading. A gated OFF
1.S244 loads the data bus less than six gated OFF
2316B ROMS. Notice that the address bus is not
treated with such tender respect. A0-A10 are con-
nected directly to the six ROM chips and A0 is addi-
tionally connected to the D-input of B2-B.

Firmware Card Jumpers

There are three solder pad jumperson a firmware
card. Two of these jumpers configure the firmware
card for Apple ROM or 2716 EPROM. Apple ROM
chip selects are not programmed to be compatible
with 2716 EPROM. By placing a touch of solder on
the two jumper pads labeled 2716, the owner can
remove the ROM and replace it with EPROM con-
taining programs of his choice. This is not a bad idea
for people who have replaced their firmware card
with a RAM Card. Put your utilities in EPROM in
an empty peripheral slot.* Note that the jumper
pads allow you to configure the firmware card as all
EPROM or all ROM. It is very easy, however, to
modify the card’s wiring so some of the sockets are
EPROM configured and some are ROM configured.

The third solder pad jumper on the firmware card
is labeled F8 on the card. If this jumper is soldered,
the F8 ROM on the firmware card will be enabled or
disabled with the other ROMs on the firmware card.
If this jumper is not soldered, the F8 ROM on the
firmware card will never be enabled. Instead, the
motherboard F8 ROM will remain active whether
the firmware card is enabled or not. Apple has de-
livered firmware cards in at least two configura-
tions: with F8 jumpered and the Autostart ROM
installed, and with F8 not jumpered and no F8 ROM
installed.

The F8 jumper gives the user some options for
configuring his Apple. If the owner has only one F'8
ROM, he should plug it into the motherboard F8
socket and leave the F8 pad on the firmware card
unsoldered. Suppose he has an Autostart ROM and
an old Monitor ROM. If he wants, he can plug one
into the firmware card and plug the other into the
motherboard. One such configuration would be that

*When a RAM card and firmware card are installed in an Apple
II at the same time, either the F8 jumper of the firmware card
should be unsoldered, or the RAM card should be modified as
described in the Application Note at the end of Chapter 5. See
“Hardware Application: Multiple RAM Card Configurations.”

any time the computer was in Applesoft, the Auto-
start ROM would be active; and any time the com-
puter was in Integer BASIC, the old Monitor ROM
would be active. This would be desirable in that the
best features of both ROMs would be available. It
would be undesirable in that the owner would have
to put up with the old cursor moves when in Integer
BASIC. An Application Note at the end of this chap-
ter shows how to modify the firmware card so that
the F8 ROM is selectable independently of the other
five ROMs. By an easy modification, the owner truly
gets full access to the best features of both ROMs.

Firmware Card Timing

Timing for reading from the firmware card is
very similar to reading from motherboard ROM.
The major difference is that the data bus acts differ-
ently when the firmware card is read because of the
LS244 buffering ROM from the data bus. The
important point is that the ROM data must still be
valid on the data bus when 6502 PHASE 2 falls if it
is to be correctly read by the MPU.

The timing of a read from ROM on the firmware
card is shown in Figure 6.4. The important events
that are different from a motherboard ROM read
are:

1. PHASE 0 rises, followed by a ROM ENABLE’
signal falling, LS244 DATA ENABLE' falling,
DMA priority output falling, INHIBIT' falling,
and RAM SELECT' rising. All of these events
are gated by PHASE 0, but they differ in time of
occurrence because of different propagation de-
lays. It is interesting that the LS244 ENABLE’
signal drops low about 20 nanoseconds before
RAM SELECT' rises, causing the L.S244 to com-
pete with the RAM/keyboard data multiplexor
for control of the data bus for a short period.

2. Within 120 nanoseconds of ROM ENABLE' fall-
ing, the ROM data becomes valid and is propa-
gated through the LL.S244 to the data bus. This
assumes that the 6502 address became valid
about 100 nanoseconds after PHASE 2 fell.

3. PHASE 0 falls, followed by ROM ENABLE'
rising, DATA ENABLE' rising, 6502 PHASE
2 falling, the DMA priority output rising, IN-
HIBIT' rising, and RAM SELECT’ falling.
Again, all these events are triggered by PHASE
0 falling. The data bus is floated by DATA
ENABLE’ rising approximately at the same
time PHASE 2 falls. As normal, the floating
data bus keeps the ROM data valid until after
RAM SELECT rises.

6-12 Understanding the Apple I

6502 PHASE 2

PHASE 0

RAM SELECT'

FIRMWARE CARD
FO ROM ENABLE'

FIRMWARE CARD
DATA ENABLE'

INHIBIT'

DMA PRIORITY
OUTPUT

DATA BUS

—

3

SCANNER ADDRESS

MPU ADDRESS

ISOLATE RAM FROM DATA BUS

FO ROM ENABLE'

GATE L5244 TO DATA BUS

ISOLATE MOTHERBOARD
ROM FROM DATA BUS

B7-15

B2-9 \
B3-4 \
B3-6 j
AB-12 \

DISABLE LOWER PRIORITY
FIRMWARE CARDS

IRE e

_X MPU DATA

|

VIDEO
DATA

ROM DATA VALID

SFF

~

ROM DATA becomes valid on the data bus
no more than 120 nanoseconds after
ROM ENABLE' falls plus the propagation

delay of a 74L5244.

Figure 64 Timing Example: A Read From Address $F000, Firmware Card Enabled.

ROMinthe Apple |l 6-13

HARDWARE APPLICATION

EPROM IN THE APPLE

EPROM is Erasable Programmable Read Only
Memory. It is like ROM except that it is user pro-
grammable and user erasable. The program in
ROM is placed there in the manufacturing process,
never to be altered. The program in EPROM is
placed there by an EPROM programming device,
never to be altered unless you shine ultraviolet light
through a little window in the top. Like ROM, it is
nonvolatile memory, and the programs stored there
are always ready to run the instant you turn your
computer on.

The 2316B ROMs used in the Apple II are physi-
cally and electrically compatible to 2716 EPROMs.
This means that the owner can burn his own firm-
ware and plug it into the ROM sockets of the
Apple—almost. It turns out that the Apple’s ROM
chip selects are incompatible with the 2716 chip
selects. Remember that the chip selects of the 2316 B
are specified as active high or active low by the
buyer (in this case, Apple Computer, Ine.). The chip
selects of the 2716 are not programmable. Pin 18 is
active low, pin 20 is active low, and pin 21 is active
high. Thus Apple’s ROM sockets are incompatible
with 2716 EPROM. Unfortunately the 2716 had just
come on the market when the Apple IT was first
designed, and the desirability of pin compatibility
with the 2716 was not forseen by the Apple designer.

You can still use the 2716 EPROM in the Apple
motherboard sockets if you plug them in through an
adapter. The adapter is made by taking two 24-pin
DIP sockets and modifying them asshown in Figure
6.5. This adapter is very cheap but will take about an
hour of your time to construct if you are as slow as
the author when working carefully. A ready made
adapter is available for about $10 from a company
named Microproducts, whose address is given at the
end of this Application Note. The adapter can be used
on the firmware card as well as on the motherboard.

Texas Instruments and Motorola make a 2716
EPROM which is not compatible with Apple ROM
or Intel type 2716 EPROM. The TMS2716 requires
+12 volts on pin 19. The correct 2048 x 8 EPROMs to
order from these companies are the Texas Instru-
ments TMS2516 and the Motorola MCM2716.

There is a new type of EPROM called the
EEPROM (Electrically Erasable and Program-
mable Read Only Memory). The EEPROM requires
no ultraviolet light source for erasure. Instead, it is
both programmed and erased with combinations of
+25 and +5 volts. These are the same voltages re-
quired for programming an ultraviolet EPROM,
and they are required on the same pins. For this
reason, some programmable 2716 PROM burners
used in the Apple should be able to program and
erase 2716 compatible EEPROM like the Hitachi
HN48016P. This appears to be the case with the
author’s PROM burner (made by John Bell Engi-
neering), judging from its schematic diagram. Of
course, the controlling software for burning and
erasing EEPROM must be different. With the com-
ing of EEPROM, we may soon see computers capable
of programming and erasing resident firmware.

2716 EPROM burners for the Apple are available
from several companies in the $100-$200 price
range. These EPROM burners dump a 2K block of
memory to EPROM in about a minute and a half.
Also available are inexpensive cards which have
multiple sockets for 2716 EPROMs and make use
of the $D000-$FFFF bank switching or $C800-
8CFFF "seventh ROM” capability. These cards
allow EPROM users to have the convenience of
permanently accessible user firmware. The Apple-
soft or Integer Card may also be configured to
accept 2716 EPROM instead of ROM. Another place
to use EPROM is in the text character generator
(socket A5 on the motherboard). The ROM at this soc-
ket contains the dot patterns for Apple screen text.
In Revision 7 or later Apple IIs the A5 socket is com-
patible with 2716 EPROM and the owner can install
his own upper case/lower case screen character set.

Jeffrey Mazur wrote a nice article about EPROM
and the Apple for his “Hardtalk” column in Softalk
magazine. The article, which appears in the July
and August 1982 Softalk issues, contains product
reviews and a thorough discussion of EPROM. This
article is recommended for Apple owners wishing to
learn more about EPROM.

6-14 Understanding the Apple II

Listed below are some companies which manufac-
ture products related to using EPROM in the Apple:

John Bell Engineering, Inc.
1014 Center St.

San Carlos, Ca. 94070
415-592-8411

Microproducts
24627 Watt Road
SDCE

Ramona, Ca. 92065
714-789-6510

Mountain Computer
300 El Pueblo

Scotts Valley, Ca. 95066
408-438-6650

Soft CTRL Systems

Box 599

West Milford, N.J. 07480
201-728-8750

Word Power
P.O. Box 736
El Toro, Ca. 92630

ROM in the Apple i

6-15

18 19 20 21

‘ UPPER SOCKET

[TTTT 1T/

LOWER SOCKET

[U1

18 19 20 21

_ Use two 24 pin DIP sockets. If pin 1is not clearly marked on the sockets, choose pin1and mark it

with fingernail polish or other permanent marking.

All pictured wiring is shown in phantom. Pins are bent inward, and wiring is routed on inside of
sockets. Use 30 gauge insulated wire and keep wire lengths as short as possible.

Remove pin 21 from lower socket. Save this pin as a spare.

. Bend pins 18 and 21 of the upper socket inward so they will not make contact with the lower

socket when the sockets are mated. This must be done carefully so the EPROM will still make
contact with the bent pins when it is inserted into the upper socket.

Solder a short jumper between bent pin 18 and the base of pin 20 in the upper socket. Carefully
dress the jumper at the base of pin20 so it will not interfere with the mating of the two sockets.
Solder a short jumper between bent pin 21 on the upper socket and the base of pin 18 on the
lower socket. Carefully dress the jumper at the base of pin 18 so it will not interfere with
plugging the completed adapter into a ROM socket.

. Push the upper socket into the lower socket. Inspect visually or with an ohmmeter to make

certain there is no contact between pins 18 on the upper and lower socket. With some sockets it
may be necessary to modify or insulate pin 18 on the lower socket so that it does not touch pin
18 on the upper socket. This must be done carefully so pin 18 is still firmly mounted in the lower
socket.

Figure 65 Construction of a Socket Adaptor, EPROM to ROM.

616 Understanding the Apple ||

HARDWARE/SOFTWARE APPLICATION

MODIFYING THE SYSTEM MONITOR

The system monitor determines many of the oper-
ational features of the Apple, and modifying the
system monitor is one way of enhancing the Apple.
The monitor resides in the F8 ROM and in the $F800
to$FFFF addressing spaceofa 16K RAM card. Itis
easily modified in RAM by the user and by commer-
cial programs, so modifying the monitor in RAM
will give you access to your personal utilities but
won’t necessarily help you investigate programs
written by others. If you want an unalterable modi-
fication, you must make itin EPROM and have your
Apple configured so that you can override software
control to enable your EPROM.

The Autostart ROM contains a fine system moni-
tor with some good utilities that you probably don't
want to delete. However, here are two parts of the
Autostart ROM which may not be too eritical to you:

1. Addresses$FCC9-$FDOB, $FECD-$FEF5, and
SFEFD-$§FF2C are cassette read/write rou-
tines. There is no reason to have these routines
in firmware if you own a disk drive and don’t
usually use cassette I/0. Modify the cassette
routines torunata RAM address and save them
on diskette. This generates 156 bytes for your
personal firmware. This can be increased to 164
by moving the control-Y jump statement to
$FEC2. This is accomplished by storing $4C,
$F8, and $03 at FEC2-$FEC4 and by storing
$C1 at SFFE4.

2. There are 14 consecutive unused bytes at
$FBB3-$§FBCO0. This can be increased to 18 by
storing $B0, $EC at SFBAD and $FBAE. This
makes $FBAF-$FBC0 unused and causes only
a minor operational change. The change is that
pressing L will not cause the Apple to leave the
ESCAPE mode. Even more space could be gen-
erated by rewriting the ESCAPE handler so
ESCAPE-A,B,C, and D were not recognized.
These old cursor moves are not needed because
far better cursor moves are included with Auto-
start ROM.

The idea in making a minor modification to the
Autostart ROM is to create an EPROM that is identi-
cal to the Autostart ROM except for small areas
which contain your data. One idea for modification is
to increase the command repertoire of the monitor.

The deletion of STEP and TRACE routines from
the system monitor opened space for two commands
in the command tables (CHRTBL and SUBTBL) of
the monitor. If you delete the cassette routines, that
will also open up two more command spaces since
the READ and WRITE commands will no longer
function.
What sort of commands can be installed? Here are
some possibilities:
1. Breakpoint insert and breakpoint remove com-
mands which facilitate the use of the 6502
BREAK instruction as a debugging breakpoint.
. Hex to decimal and decimal to hex commands.
. Commands that link to large routines in the
spare ROM space of Integer BASIC, even if
Integer BASIC is not currently enabled.
4. "Click on” and "click off” control of a keypress
click simulator.
5. Commands that enter Applesoft, Integer, Pas-
cal, or CP/M.
6. Commands that connect and disconnect the
DOS.
7. A command to transfer the DOS from EPROM
on a firmware card to RAM.
8. A dumpscreen to printer command that links to
your printer driver on the "seventh ROM.”

o o

The possibilities are endless.

You can modify the system monitor without chang-
ing the command table. One idea is to change the
ESCAPE handler torecognize special functions. For
example, you can assign ESCAPE-G to Graphics,
ESCAPE-T to Text, and so on to give yourself control
of the screen modes from BASIC, the monitor, and
many other keyboard polling programs.

Here is an example of a change to the Autostart
ROM that does not delete any routines or capabilities
but would still benefit the Apple user. It modifies the
RESET routine to begin by checking to see if the last
keyboard entry (not including the RESET key) was
"CONTROL-SHIFT-M.” If the last keypress was
not"CONTROL-SHIFT-M,” then the normal Auto-
start RESET is performed. If the last keypress was
"CONTROL-SHIFT-M,” then the old monitor RE-
SET is performed. "CONTROL-SHIFT-M" stands
for Monitor and is not likely to be pressed acci-
dentally. With this modification in firmware, the

ROMinthe Apple |l 647

user may cause a RESET entry to the monitor any-
time he wishes, but the normal RESET is still the
Autostart RESET. This modification works because
pressing RESET does not change the state of the
keyboard latch (read at $C00X) and because a pro-
gram cannot modify the contents of the keyboard
latch.

To create an EPROM with this modification, per-
form the following steps:

1. Using the monitor MOVE command, transfer
the Autostart ROM contents to the area of RAM
used as the 2K output buffer by your PROM
burner.

2. Store $AF and $F B at the addresses correspond-
ing to SFFFC and $FFFD. This changes the
6502 RESET vector to SFBAF.

3. Beginning at the address corresponding to
$FBAD, store this program:

As a final word of advice, you should tag your
modified monitor so you can recognize when it is
active. It can be tagged audibly by changing loca-
tion $FBES from $0C to $16. This noticeably lowers
the pitch of the Apple’s BELL so that you can verify
your EPROM is active by pressing CONTROL-G or
RESET. You can tag your EPROM visually at
power-up by changing the contentsof §FB09-§FB10
to an ASCII message of your choice. For example,
instead of "Apple II” you might have your screen
display "KAZOO II"” or some other pertinent title.

FBAD: B@ EC BCS SFB9B ;Save four bytes by not
;looking for ESCAPE-L.

FBAF: 8D 10 C¢ STA $C@1l0 ;Look for CONTROL-SHIFT-M

FBB2: AD @0 CO LDA S$SC@00

FBB5: C9 1D CMP #$1D ; CONTROL-SHIFT-M?

FBB7: D@ @3 BNE S$FBBC

FBB9: 4C 59 FF JMP SFF59 ;Do old monitor RESET

FBBC: 4C 62 FA JMP $FA62 ;Do Autostart RESET

6-18 Understanding the Apple |l

HARDWARE APPLICATION

MODIFYING THE FIRMWARE CARD FOR INDEPENDENT SELECTION OF THE F8 ROM

The importance of the F'8 Rom to the Apple should
be well understood by the reader. The RESET inter-
rupt and Non-Maskable Interrupt vectors reside
there and determine who has ultimate control of the
Apple, the owner or the author of the currently
operating program. Moreover, the system monitor
determines much of the personality of the Apple.
This becomes very apparent to people who owned
the Apple when the Autostart ROM came out. The
Autostart Monitor and the old monitor are 90% iden-
tical, but with the latter the Apple is more of a
hacker’s computer, and with the former it is more of
an appliance.

There are a good number of the old Monitor ROMs
lying around gathering dust, because standard
Apple hardware does not facilitate independent
switching of the F® ROM. Certainly this switching
is a capability of the Apple—they just haven't
designed the peripherals to do it. The purpose of this
Application Note is to show some schemes for modi-
fying your firmware card to add some versatility to
F& ROM switching. Figure 6.3 should be referred to
while reading this Note.

Remember from the firmware card discussion
that the F8 ROM on the firmware card can be dis-
abled or enabled via the F8 solder jumper. Suppose
you wired an on/off toggle switch across the F8
solder jumper as shown in Figure 6.6a. This is the
simplest way to achieve selectability between the
Autostart ROM on the motherboard and the old
Monitor ROM on a firmware card in Slot 0. The old
Monitor ROM is enabled when the firmware card is
enabled and the F8 switeh is on. Otherwise the
Autostart ROM is enabled. Normal operation with
this setup is with the F8 switch off, enabling the
Autostart ROM. To enter the old monitor, turn the
F8& switch on, lift the firmware card enable switch
and press RESET. For sure, this will get you an
asterisk and a blinking cursor on the screen, just
like the good old Apples. Youthen may do as you like
with the Apple, including initiation of STEP and
TRACE commands from the old monitor. You can
also force the Apple to power up in the old monitor
by having the F8 switch on and the firmware card
enable switch up.

There is one problem with this modification. Sup-
pose that the firmware card is enabled and you flip

the F8 enable switch just before PHASE 0 falls dur-
ing an MPU accesstoan F8 address. It is possible for
6502 PHASE 2 to fall while the data busisin an in-
valid state, causing a program crash. This would not
normally happen, but it will happen once in a while.
The crash occurrence rate will be inversely propor-
tional to the quality of yvour switch since there is no
debouncing circuitry. Because of switech bounce,
throwing the F8 enable switch while the firmware
card is selected can result in multiple toggles be-
tween the motherboard and firmware card F8 ROM.
This does no harm in itself, because the programs
that will be running when the switch is thrown are
identical in the Autostart Monitor and old monitor.
However, multiple toggles increase the probability
that F8 control will be switched during the eritical
period just before PHASE 0 falls.

If, in spite of the occasional erash, you elect to in-
stall this easy modification, here are some installa-
tion suggestions:

1. Mount the switch in the bottom of a cable slot in
the back of the Apple case. This gives reasonable
access toaswitech vou won't throw all that often.
It would be difficult to mount a second switch on
the back of the eard.

2. Connect the switch to the board using a two pin
jack/plug combination. This way you can easily
disconnect the switch and remove the firmware
card from its slot. One way to do this is to take
short speaker extension cable and cut it in half.
Solder the cut end of one eable half to the switch.
Solder the cut end of the other cable half to the
firmware card.

With a few extra wires, it is possible to synchronize
the switehing of the FR ENABLE' signal. Thisis ac-
complished by wiring up the unused half of the
741.S74 dual flip-flop at B2. The wiring is shown in
Figure 6.6b. This modification is functionally identi-
cal to the one shown in Figure 6.6a, but there is no
possibility of invalid ROM data being read by the
MPU. The flip-flop synchronizes the enabling and

*Please read the NOTE OF CAUTION at the beginning of the
book before making any modification to your hardware.

ROMinthe Applell 6-49

F8

al
s2_~

Figure 6.6a An Added Switch fo Control the F8 ROM on the Firmware Card.

F8

2 _~

™ @—p> B2A

O

PHASE 0

R3 4
3K

CLR
1

5V

Figure 6.6b This Circuit Syncronizes Switching to Prevent Possible Program Crashing.

disabling of F8 on the firmware card to the rising
edge of the TMHz clockpulse. This prevents switch-
ing of the F8 ENABLE' signal during the eritical
period before PHASE 0 falls. Switch bounce still
oceurs but any F8 ENABLE' bounce issynchronized
to TM rising.

Several hardware facts of life in the Apple are
involved in the operation of this circuit. ROM
enable/disable time is 120 nanoseconds maximum.
The 7MHz clockpulse is the only available rising
edge during PHASE 0 which can synchronize the
F8 ENABLE' signal. During the critical period, 7TM
rises 140 nanoseconds before PHASE 0 falls and at
the same time PHASE 0 falls. If you flip the F8
enable switch 140 nanoseconds before PHASE 0,
there is plenty of time to disable one ROM, enable
the other, and get the new data to the data input of
the 6502 before PHASE 2 falls. If you flip the F8

enable switch right before PHASE 0 falls, there is
no time, including propagation delays, for the newly
enabled ROM to take control of the data bus before
PHASE 2 falls.

The following is an installation procedure for
modification shown in Figure 6.6b:

The following is an installation procedure for
modification shown in Figure 6.6b:*

1. Use 30 gauge, solid, insulated wire to make con-
nections on the firmware card. Solder the wires
to the protruding ends of the pins of the IC
sockets. Glue long wires to the board using a hot
glue gun or other effective glue.

2. Desolder the F8 solder jumper.

*Please read the NOTE OF CAUTION at the beginning of the
book before making any modification to your hardware.

6-20 Understanding the Apple ||

3. Desolder and disconnect the end of R3 nearest
the F'8 solder jumper. R3 will be used to pull up
the D-input to the synchronizing flip-flop. Bend
the open lead of R3 away from the board so it
will not accidentally touch any conductors.
Remove all solder from the hole that was vacated
when the R3 lead was removed. An insulated
wire will be strung through this hole.

4. Connect the following points by soldering wires
between them: [insert 6-3]

LS74-1 to LS74-14

LS74-5 to LS09-1

LLS74-4 to pin 40 of the edge connector

LL.S74-3 to pin 36 of the edge connector

L.S74-2 to the disconnected lead of R3 (no solder)

The wire between LLS74-2 and the disconnected
lead of R3 should be strung through the hole
vacated by R3. Do not solder this connection yet
because another wire will be connected here.
When soldering a wire to an edge connector pin,
carefully solder the wire to the upper part of the
pin that does not actually make contact with the
motherboard socket pins. These connections can
be made more mechanically sound by drilling

RESET' SWITCH UP

PHASE 0

two small holes near the edge connector and
leading the wires in one hole and out the other
near the pin to which the wire will be soldered.

5. Connect a wire from one terminal of an on/off
switch to the disconnected lead of R3 and the
lead from L.S74, pin 2. Solder this connection
now. The connections to the switch should be via
twin lead through an easily disconnected plug/
jack connection.

6. Connect a wire between the other terminal of
the on/off switch and pin 7 of the 741LS138. This
connection can be made mechanically stronger
by looping the switch wires through the small
hole just above the DO ROM socket.

Figure 6.6 is far from the last word in modifying
the firmware card for versatile F8 selection. It's just
the simplest. Figure 6.7 shows another more versa-
tile scheme that does not require a second switch but
does require a new chip. Figure 6.7 uses the second
half of the LLS74 as a completely independent F8
ROM selector flip-flop, with F8 selectable under
program control. A 74LS30 is added to the firm-
ware card to detect F8 ROM addressing, even when
the main select flip-flop is in the motherboard
enabled state. The Slot 0 software control of the

F8

4

40

FROM B2-13
12
ROM ENABLE FROM B4-§ [—
4 ; 741830 Jo
A1 FROM B4.2
;\{:IJI\I;ROM 2 D PR a 5 A13 FROM B4-3
D8, PIN N
d 4 FIRMWARE CARD The 74LS30 is added
DEVICE SELECT’ 3k Eg}ﬁ F8 ENABLE at location B1
FROM B2-11 I
CK
Q LK NC
CLR

RESET' SWITCH DOWN
FROM B2-10

Figure 6.7 Circuit to Allow Independent Selection of the F8 ROM.

ROMin the Apple Il 6-21

firmware card modified to this configuration is as
follows:

$D000-$F7FF $F800-$FFFF
COMMAND LOCATION LOCATION
$C080 Firmware Card Motherboard
$C081 Motherboard Motherboard
$C082 Firmware Card Firmware Card
$C083 Motherboard Firmware Card

Since DOS only uses $C080 and $C081 for firmware
card manipulation, it will always disable the firm-
ware card F8 ROM. You can reverse this situation
by connecting pin 11 of the LS30 to pin 6 of the LS74
instead of pin 5. Another feature of operation is that
the switch in the back controls the F8 ROM flip-flop
in the event of RESET, but it is not necessarily
defeated by DOS in this function as it is in an
unmodified firmware card. DOS normally controls
the firmware card after an Autostart RESET. If
the RESET selects an F8 ROM containing a firm
RESET (like the Monitor ROM), program flow
never vectors to DOS.

There is actually room for two new chips below
the DO ROM socket of the firmware card. The way to
install a new chip is to mark and drill holes for the
pins of a DIP socket.* Then attach the socket to the
board using epoxy cement, carefully avoiding get-
ting any epoxy on the contact areas of the pins. Wire
can then be soldered to the protruding pins of the
socket. Choose the location of the new socket so that

Cut these
circuit traces
with a razor
knife.

0000

7

ﬁ

you do not drill through conductive traces on either
side of the board when drilling pin holes.

Here is one last modification suggestion for the
firmware card which many Apple owners could
use. This modification is to configure the card for
EPROM in the F8 socket and ROM in the other five
sockets. To make this modification, pull the F8 ROM
from its socket and look at the board through the top
of the socket. You can see conductive traces running
across to the other sockets. Counting down from the
top, the third and sixth traces from the top are the
CS3 and CS2 chip select lines (see Figure 6.8). Cut
these two traces with a razor knife and curl the
traces back slightly to insure the conductive path is
broken.* This isolates the chip selects on the F8
ROM from the chip selects on the other five ROMs.
Now solder the 2716 jumper pads. This configures
F8 for 2716 EPROMs. Finally, on any ROM socket
except F'8, solder wire jumpers between pins 24 and
18 and between pins 12 and 21, configuring the
remaining five sockets for ROM. The F8 socket is
now ready to accept your personal firmware in 2716
EPROM, but you can reconfigure it for ROM by
removing the solder from the 2716 jumper pads.

The modifications presented here may give you
other ideas on personalizing your firmware card.
Remember that control of the F8 ROM in a Slot 0
card is the secret to maintaining control of your
Apple.

*Please read the NOTE OF CAUTION at the beginning of the
book before making any modification to your hardware.

=== =i=}=}

j
-
[« -]

mls)sls]s)s{=]s]s}=]=)]s

Figure 68 Method for Isolating the F8 Chip Selects from Other ROM Chip Selects.

=
[

-

It bears repeating. MPU command of all devices
in the Apple computer is via signals decoded from
the address bus. All persons who program the Apple
become aware of this sooner or later, and all users of
the Apple can save themselves problems if they
understand command by addressing. The concept of
data transfer between the MPU and a memory loca-
tion is very easily grasped, but it must be understood
that the MPU also controls parts of the computer via
the address bus with no related transfer of data on
the data bus.

Now there is no "Control Address Bus” command
in the 6502's repertoire. The 6502 reads from or
writes to the data bus on every cycle. So what does
the programmer do when he wants to toggle the
speaker? He does a"LDA $C030" or a"CPX $C030"
or a "WHO GIVES A DARN $C030" and ignores
the meaningless data bus. This is why you can pro-
gram the speaker with a statement like "SOUND =
PEEK(-16336).” The object is not to "PEEK" into
memory. The object is to get $C030 on to the address
bus, commanding the speaker to toggle. Beneath the
lid of the Apple. on every cycle, whether memory or
a control function is being addressed, the state of the
address bus is decoded to tell the rest of the Apple

chapter 7

Address Decoding
and Input/Output

what the MPU is doing.

Address decoding in the Apple is the process of
selecting one of 65,536 addressed locations from a
16-bit address. It is one thing to say you can repre-
sent 65,536 different states with a 16-bit number,
and quite another thing to discern between all those
states in the space of half a microsecond. As was
mentioned in Chapter 2 (Bus Structure), much
address decoding goes on inside RAM and ROM
which we take for granted. In this chapter, we will
look at how Apple addressing is divided up into
major categories, such as ROM, I/O, and RAM. We
will also look at the subdivisions of I/O control, an
address area which is not conveniently carved up
into thousands of addresses by single chips as RAM
and ROM are.

In studying the details of I/O address decoding, it
is natural todiscuss all topics related to I/0O. For this
reason, address decoding and Apple Input/Output
are covered in this single chapter. Figure 7.1 is a
general block diagram showing the areas of discus-
sion. It can be readily seen that the majority of
address decoded signals are directly related to I/O
functions. Video output is not a topic of this chapter
but the sole subject of the next chapter.

7-2 Understanding the Apple ||

PHASE 0 —3»

AD —
Al —>
A2 —p
A3 —>
A4 —
A5 —»
A6 —I
A7 —
A8 —»
A9 —»1
A10 —»
A1l —
A12 —=
A13 —
A14 —
A15 —=

ADDRESS
DECODE

ROM
ENABLE'

110
SELECT

1’0
STROBE'

DEVICE
SELECT”

SERIAL
IN

TIMER
TRIGGER

ANO
AN1
AN2
AN3

STROBE'
CASSETTE

SPEAKER

KEYBOARD
ENABLE’

STROBE
RESET

SCREEN
MODE

NLE1£ 021 20021 2021

D8
n%su REUM ROM RgOM ROM
S
O CHXX
"’:J Caxx
NC 1
2 3 PERIPHERAL
20 20 20 SLOTS

® 0D
:)_@:FI
® CO6X
QUAD
nimer %
CO7X 1 > a1
° Iriceer a2
03 . A
RO R1 R2 R3 °
y - —— 341
 —— A2
CO58/9 LD PDL PDL PDL
N0 1 2 3
Lam S%%?{’ET PRO
| COSCID s
COSE/F =
AN3 STRB PB2
2l
. CoaxX = I cnsnsETTTE
- Co2x - maLE—@)—JU SPEAKER
008X .[_ T0GGLH
RAMC
e
RIW:
® CO0X
- COIX d stRosEFF Y SEL ENABLE
K6
KEYBOARD e Rawmy |——"=%
LATCH ke KEYBOARD |00
stvalgnnu i %JQ —
CONNECTOR [Xi E—
KO > =00

— = GRAPHICS/ TEXT | SCREEN MODE T fT T 1 1 1
- NOMIX/MIX TOVID. GEN E E {’ E' E' E E E
——=PAGE 1/PAGE 2 | AND RAM 76543210
——=| ORES/HIRES | ADDRESS MUX

LATCHED RAM DATA

Figure 74 Schematic: Address Decode.

07

Address Decoding and Input/Output 7-3

All of the decoded signals in Figure 7.1 are in the
address range $C000 through $FFFF, in other
words, everything except RAM. The decoding of
RAM addresses is covered in the chapter on RAM.
One way of looking at Figure 7.1 isas an illustration
of everything that happens in the Apple when RAM
is not being addressed. Here are two points about
Figure7.1. First, PHASE 0 and theaddressbusare
shown as the only inputs. PHASE 1 is actually used
at several active-low enabling inputs. The low state
of PHASE 1 is PHASE 0. Second, the little circles
on an output or input mean the signal is active low.
As an example, when $C060 is on the address bus
during PHASE 0, the C06X signal goes low. When
C06X goes low at the serial input multiplexor, the
multiplexor’s output is enabled to D7 of the data bus.

THE ADDRESS DECODED SIGNALS

The address decoded signals occur during PHASE
0, or more accurately, the address decoded signals
slightly lag PHASE 0. There is always some lagof a
logic term behind the signal that controls it. In the
Apple, PHASE 0 is a safe time to read the address
bus, because the 6502 address is always valid. This
way, the address decoded signals respond to 6502
generated addresses.

Some of the address decoded signals are data bus
management gates. The function of these signals is
to gate data to the data bus for reading by the MPU.
These signals and their functions are:

$C00X Gate keyboard data to data
bus.

$C06X Gate serial inputs to D7 of the
data bus.

$D000-$FFFF Gate ROM data to data bus.

Other signals control serial toggle outputs:

$C02X
$C03X

Toggle cassette output.
Toggle speaker.

The screen modes are controlled by off/on soft
switches.

$C050/$C051 GRAPHICS/TEXT
$C052/$C053 NOMIX/MIX
$C054/$C055 PAGE1/PAGE2
$CO56/$CO5T LORES/HIRES

The annunciator outputs are off/on switches like
the screen mode switches, but the annunciator sig-
nals are tied directly to output pins on the game I/0
connector:

$C058/$C059 ANNUNCIATOR 0 OFF/ON
$C05A/$C05B ANNUNCIATOR 1 OFF/ON
$C05C/$CO5D ANNUNCIATOR 2 OFF/ON
$CO5E/$CO5F ANNUNCIATOR 3 OFF/ON

The C040 STROBE' isasignal that goes low during
PHASE 0 while $C04X is on the address bus. It is
tied directly to an output pin on the game I/O
connector.

$C01X and $C07X perform special I/0 functions
as follows:

$C01X Reset keyboard strobe
flip-flop.
$CO7TX Trigger paddle timers.

The last category of signals controls the peripheral
slots:

$C080-3COFF DEVICE SELECTS'
$C100-3CTFF I/0 SELECTS’
$C800-$CFFF I[/0 STROBE’

The functions of these address decoded signals
were described at some length in previous chapters,
and some of the functions are pretty obvious from
Figure7.1. However, a little elaboration concerning
the signals won’t hurt.

The DEVICE SELECTS’, I/O SELECTS’, AND
1/0 STROBE' are connected to the peripheral slots
where they can control peripheral cards. Decoding
these signals on the motherboard, rather than on the
cards themselves, eliminates redundant hardware
on the peripheral cards. It also makes it easy to
design cards so they will operate in any slot.

Have a look at the game socket in Figure 7.1. The
pins on this socket are available to external devices
such as joysticks with pushbuttons. Additionally,
the four annunciator signals and the C040 STROBE’
are tied directly to pins of the game socket. The
three pushbutton inputs (PB0, PB1, and PB2) are
actually TTL inputs to the serial input multiplexor.

7-4 Understanding the Apple I

They could be used for all sorts of serial input but
are normally used for pushbuttons. The four paddle
inputs (PDLO, PDL1, PDL2, and PDL3) aretied toa
quad timer. These inputs are not high/low binary
voltage inputs like the pushbuttons. For that mat-
ter, the timers are not digital devices, although they
do have TTL compatible outputs to the serial input
multiplexor.

The way each timer works is this: first, the timers
are triggered by a $C0TX access. The outputs of the
four timers then go high and each one stays high for
a period of time determined by the position of the
paddle connected to its input pin. The paddles are
really variable resistors which vary the time con-
stant of the input circuits to the timers. The timer
outputs are connected to the serial input multi-
plexor so their high/low states can be read by a
program. The programming method is to trigger
the four timers, then poll the output of the pertinent
timer in a loop while counting the program loops
before the timer resets.

The eighth input to the serial input multiplexor is
the cassette input. The cassette input jack of the
Apple is connected to a high gain amplifier/shaper.
The amplifier takes the small signal from the ear-
phone jack of a cassette player and converts it to
high and low voltages which can be read correctly
by the serial input multiplexor. Of course, you can
still adjust the cassette player volume too high or too
low, but the amplifier gives you a very reasonable
chance of selecting a volume which works.

The serial input multiplexor selects one of its
eight inputs for output to D7 based on A0, A1, and
A2 from the address bus. This is a good example of
how things come in groups of eight or other powers
of two in digital computers. Three address lines can
be in eight different states, so 8 to 1 multiplexors
exist for computer designers to use. This naturally
leads toa computer with eight serial inputs. There is
an operational oddity in the Apple that there are
four paddle inputs but only three pushbutton inputs.
It becomes logical in the light of hardware conve-
nience. Eight serial inputs minus four timer inputs
minus one cassette input leaves room for three
pushbutton inputs.

Moving along, we come to some fairly obvious
signals at the bottom of Figure 7.1. The cassette
outputsimply toggles every time $C02X is accessed.
The toggling device is just a flip-flop whose output is
reduced to the level of a signal from a microphone
then routed to the cassette output jack. The speaker
output is also a toggled output, but the output of its
toggling flip-flop is routed to the speaker through an
amplifier. The amplifier is necessary because an

LSTTL flip-flop is not capable of driving a 2 1/4”
speaker. The sereen mode control signals are not
output signals, but they control the Apple’s primary
output, video. They do this by selecting screen
memory in the RAM address multiplexor and by
selecting the processing mode in the video generator.

The last thing to discuss in Figure 7.1 is the key-
board input. The 7-bit ASCII representation of
whatever key was last pressed is stored ina big ICon
the keyboard itself. This 7-bit latched keyboard data
is connected through a short DIP jumper to the
RAM/keyboard data multiplexor. Another out-
put from the big keyboard chip is the keyboard
STROBE, which goes high for about 20 micro-
seconds when any key is pressed. The leading edge
of the STROBE sets a flip-flop on the motherboard
whose output is connected to the most significant bit
input of the RAM/keyboard data multiplexor. When
a read to $C00X is performed, the keyboard word is
placed on the data bus for reading by the MPU. The
MPU reads the 7-bit latched keyboard ASCII and
the state of the keyboard strobe flip-flop.

The strobe flip-flop is reset on power up and by
any access to $C01X. This enables the programmer
to check for a keypress by resetting the strobe flip-
flop, then polling $C000 until he finds the most sig-
nificant bit set.

The I/O assignments of various addresses are
important information for Apple programmers.
Table 7.1 can serve as a reference for address
decoded software commands. It can also serve as a
memory map of the $C000-3FFFF address range in
the Apple. Figure 7.1 and Table 7.1 goa long way in
describing the particular programmable features
of the Apple II computer.

ADDRESS DECODE HARDWARE

Let’s look at the hardware which produces all
these signals by monitoring the address bus. The
circuitry is pictured in Figure 7.2. Would you
believe it? It’s done with just five LSTTL integrated
circuits, four LS138s and an LS259. The LS138 is
designed to do exactly this sort of task and make it
look easy. What it does is take a 3-bit address input
and bring one of eight lines low depending on the
state of the address inputs. Eight lines, eight slots,
two to the power of three: what a nice number of
slots to have in a digital computer.

Here’s the scheme for dividing up the $C000-
$FFFF address range. First, divide the range into
eight 2048 byte sections using the LS138 at F12 (see
Figures 7.2 and 7.3). These eight sections are ad-
dressing for the six ROM chips, the "seventh ROM”

Address Decoding and Input/Qutput 7-5

($C800-$CFFF), and the I/O Section ($C000-
$C7FF). Then divide the I/O Section into eight 256
byte sections using the LL.S138 at H12. These eight
sections are the seven I/O SELECT' ranges and the
rest of I/O control ($C000-$COFF). The $C000-
$COFF rangeisdivided in twogroupsby A7and A7’
gating. The A7 group is divided into eight 16 byte
sections by the LLS138 at H2. These are the eight
DEVICE SELECT’ ranges. The A7’ group is
divided into eight 16 byte sections by the L5138 at
F13. These are the motherboard control signals.

Most of these control signals are not broken down
any further. For example, the cassette output line
can be toggled by a reference to any of the 16
addresses in the $C02X range. The programming
convention is to address these 16-bit ranges by their
lowest address, $C030 for example. The $C05X
range is broken down into eight off/on soft switches
by the LS259 at F'14. These are the annunciators and
sereen mode control signals. The $C06X signal per-
forms the function of gating the serial input multi-
plexor (See Figure 7.5) to D7 of the data bus. One of

Table 74 Address Decoded Signals.

FUNCTION HEX RANGE DECIMAL RANGE DECIMAL
COMPLEMENT

RAM* $0000 to $BFFF 00000 to 49151 -65536 to -16385

READ KEYBOARD $C00X 49152 to 49167 -16384 to -16369

RESET KEYBOARD

STROBE $C01X 49168 to 49183 -16368 to -16353

TOGGLE CASSETTE

OUTPUT $C02X 49184 to 49199 -16352 to -16337

TOGGLE SPEAKER $C0O3X 49200 to 49215 -16336 to -16321

C040 STROBE $C04X 49216 to 49231 -16320 to -16305

GRAPHICS $C050 49232 -16304

TEXT $CO51 49233 -16303

NOMIX $CO52 49234 -16302

MIX $CO53 49235 -16301

PAGE 1 $C054 49236 -16300

PAGE 2 $CO55 49237 -16299

LORES $CO56 49238 -16298

HIRES $C057 49239 -16297

ANO LOW $C058 49240 -16296

ANO HIGH $C059 49241 -16295

AN1 LOW $CO5A 49242 -16294

AN1 HIGH $C05B 49243 -16293

AN2 LOW $CO5C 49244 -16292

AN2 HIGH $CO05D 49245 -16291

AN3 LOW $CO5E 49246 -16290

AN3 HIGH $CO5F 49247 -16289

READ CASSETTE INPUT | $C060/$C068 49248/49256 -16288/-16280

READ PUSHBUTTON 0 $C061/8CO69 49249/49257 -16287/-16279

READ PUSHBUTTON 1 $C062/$CO6A 49250/49258 -16286/-16278

READ PUSHBUTTON 2 $C063/$CO6B 49251/49259 -16285/-16277

READ TIMER 0 $C064/$C0O6C 49252/49260 -16284/-16276

READ TIMER 1 $C0O65/$C06D 49253/49261 -16283/-16275

READ TIMER 2 $C066/$CO6E 49254/49262 -16282/-16274

READ TIMER 3 $C067/$CO6F 49255/49263 -16281/-16273

TIMER TRIGGER $C07X 49264 to 49279 -16272 to -16257

DEVICE SELECTS’ $C080 to $COFF 49280 to 49407 -16256 to -16129

I/0 SELECTS' $C100 to $C7FF 49408 to 51199 -16128 to -14337

I/O STROBE' $C800 to $CFFF 51200 to 53247 -14336 to -12289

ROM ENABLES’ $D000 to $FFFF 53248 to 65535 -12288 to -00001

*RAMSELECT" is not decoded directly from the address bus. It is decoded from the screen mode during PHASE 1 and

from the address bus during PHASE 0.

7-6 Understanding the Apple I

(3.8)
PHASE 1
5 TALS08
A5 — 6
nk
s — 4 5
BB 2yl BOFFFF g pom enasLe)
M3 3 ve o2 _FOO-FTFE co poM ENABLE'
p——— 2w 10 EBOO-EFFF eg pom EnBLE" L
At 1], 7asis8 yylotEOOOETFF eopom enssLE! ROM ENABLE’
ol DECODER | 12 DBOO-DFFF g oo enapl
= Gﬁg v2lo 3 DOX-OTFE g powm EnABLE)
| v1 kot CBO-CFFF 1,0 STROBE" TO PIN 20 OF ALL
= 4 5 PERIPHERAL SLOTS (710)
Y0 C000-CTFF
USER 1 !ﬁ?m
g
ALL—O O -
PERIPHERAL SLOTS s] ‘4 %
(710) B8 o 0 seect 7
AD 2 ve foC%_ /0 sELECT” 6
2 10 CSXX ot
M—— 23 g Y5PO—R1/0 SELECT' 5
A8] D’:éggfn vaboCXX_ /0 seLect 4 3 (7.9) |/0 SELECT’
valo2E3¥X 10 seLecT 3
SU) YA 2l C2X_ 10 seLcT 2
oo v o C® 0 seLecr 1 J
= yo jor2COXX -
T
AT (38)
¢ I3 "CONTROL # DEVICE SELECT’
PHASE 0 6
@38 & 7_CO7X COFX Y
B3 ¥7 [o—=""_TIMER TRIGGER (7.5) DEVICE SELECT" 7
A6 e v6 [o2—COX_seRiAL IN (75) A6 DEVICE SELECT' 6
s—— 2 my v comsrose(rs) AS e DEVICE SELECT' 5
i 1 718 o |12 GO qpeacen 75) Ad el DEVICE SELECT" 4
DECODER '~ °r3 copx S DECODER ——— (7.9
v2 I3-C02X_eassETTE OUT (75) DEVICE SELECT' 3
vi fo-COX_pESET KEYBOARD STROBE (77) DEVICE SELECT"2
15 COOX :
sv_ 16]vce 1o o SE-AERD EHAD gy g DEVICE SELECT" 1
GND sl ' DEVICE SELECT' 0,/
HL
15T = £050/C051
Vet £ Qo ’ GRAPHICS/TEXT (86)
3 5 C052/C053
A3 C]l NOMIX/MIX (8.6) SOFT SWITCHES
R 2 pe S pugepage2 510
et Us Anrz;géiiu a3l CO/C07___) pes/iRes (86)
RESSBLE (lo COSBICORO pni e/
A0 13 DATA qsl0__COSM/COSB sy off/ON o
o 1 COSCIO00 o orrion [
(39) 12 COSE/COSF 4ns oFF/oN

Figure 72 Schematic: Generation of Address Decoded Signals.

Address Decoding and Input/Output 7-7

ROM ENABLE' F12
1/0 SELECT' H12
/0 CONTROL F13 [’T!!f!y__‘; (IITIITTd H2 DEVICE SELECT'
SERIALINMUX H14 e oo F14 SOFT SWITCH
C7XX
CeXX
C5XX
F8 FO E8 EO D8 DO C8 Caxx
C3XX
C2XX
C1XX

Figure 73 Address Decoding in the Apple is an Exercise in Division by Eight.

COXX

7-8 Understanding the Apple I

eight serial inputs are selected by this multiplexor
based on A0, A1, and A2 from the address bus. This
divides the $C06X range into two identical octets,
$C060-$C067 and $C068-3CO6F. The programming
convention is to address the lower octet when read-
ing a serial input. Therefore $C064 should be read
when checking Timer 0, not $C06C.

There are several interesting subtleties of the
connections in Figure 7.2:

1. F12, H12, F13/H2, and F14 are connected in a
chain. F14 must be enabled before any of the
other ICs in the chain can be enabled. Thus, a
single AND gate connection to F'12 detects the
$C000-$FFFF range for all these ICs from Al4
and A15.

2. PHASE 1 is connected to an active low enable
inputto F12,s0 PHASE 0 high is a prerequisite
for any address decoded action above $BFFF.
Then why is PHASE 0/PHASE 1 gating also
connected to F13 and H2? It takes a long time to
bring the F13 and H2 outputs high or low when
the enabling term is propagated through three
1.S138s. Connecting PHASE 1 and PHASE 0
directly to F13 and H2 results in a quicker
cutoff of outputs of these chips after PHASE 0
falls. Apparently, the Apple designers did not
wantthe DEVICE SELECTS’ and C06X to lin-
ger past PHASE 0.*

3. If the USER1 jumper is connected and a peri-
pheral card brings pin 39 low, all address de-
coding between $C000 and $C7FF is inhibited.
This 2K of addressing then becomes available
for any sort of peripheral card response. The six
ROM ENABLE' signals and I/O STROBE' are
not affected by USERI.

4. R/W' gating is not connected to the address
decode chain. Therefore command of Apple fea-
tures can be via read or write access. However,
if you write to a ROM address or a serial input
address, the ROM or serial input multiplexor
will compete with the MPU bidirectional data
bus driver for control of the data bus. This is an
undesirable situation which should be avoided.

5. Thedivision of $C000-$FFFF addressing in the
Apple is a very admirable example of design
efficiency and creativity. It is a real work of art,
considering how usable the Apple turned out to
be. The decoding layout results in operational
features of the Apple which we take for granted:

*Steve Wozniak gives Alan Baum much of the credit for the
design of this area. I feel that they would have been better off to
let DEVICE SELECT' linger a bit past PHASE 0, and I suspect
that Wozniak and Baum wouldn’t argue the point too vigorously.

there are eight peripheral slots; there are only
seven [/O SELECT’ signals; the I/O addressing
range is the same size as a 2K ROM; six I/O
control address ranges are 16 bytes wide, result-
ing in a wastage of 90 bytes; there is only one
trigger for the four timers instead of a separate
trigger for each timer, and there is no timer
reset signal.

I/O TIMING

I/O timing is the timing of the address decoded
signals. All motherboard I/0 and most peripheral
slot I/0 is controlled by these signals. An access to a
DEVICE SELECT’ address is sufficient to illus-
trate timing for all the address decoded signals
because of the enabling chain which winds through
the LS138s. For example, before any DEVICE
SELECT’ signal can drop low, the COXX signal
must drop low. The COXX signal is identical in tim-
ing to the I/0 SELECT signals, so I/0 SELECT’
timing is also illustrated.

Figure 7.4 shows the read and write timing for an
access to $C080. The read and write are identical
except for data bus management. Data bus man-
agement in a write to $C080 is identical to that of
RAM in a write cycle, because R/W’ dropping
always isolates the data bus for control by the MPU.
The read cycle data bus management is different
from that of a RAM read cycle, because RAM
SELECT’ rises during PHASE 0 when reading
from an address above $COOF.

When accessing $C080, the C000-C7FF, COXX,
and CO8X signals fall in succession after PHASE 0
rises. The LS138 chain is ready to be controlled by
PHASE 0 since the MPU address has long since
been valid on the address bus. The typical high to
low propagation time of an active low enable signal
through a LS138 is 21 nanoseconds, so the DEVICE
SELECT' signal falls about 63 nanoseconds after
PHASE 0 rises. This is true of any signal in the
$COXX range, $C06X for example. This means that
the DEVICE SELECTS' areidentical to the mother-
board serial input data bus gate. The implication is
that the DEVICE SELECT' is a valid data bus
management signal for peripheral cards. In fact,
the /0 SELECTS’, the DEVICE SELECTS', and
the I/0 STROBE' all work very nicely for data bus
management. This is in spite of the fact that they all
rise before 6502 PHASE 2 falls. The reason they
work is because of the slow bleed off of data from the
floating data bus.

Address Decoding and Input/Output 7-9

6502 PHASE 2

—

P

PHASE 0 SCANNER ADDRESS

=

/

C000-C7FF F12-15
(ROM ENABLE' EQUIVALENT

COXX H12-15
(1/0 SELECT' EQUIVALENT)

L
)
\[

G08X H2-15
(DEVICE SELECT")
-
RAM SELECT'
|, READ
_______________ P CYCLE
VIDEO FLOATING BUS IS AVAILABLE FOR
R] MES OATA_|_ CONTROL BY PERPHERAL CARD_ _| | *)
\
R/W'
WRITE
RAM SELECT' 6502 Phase 1 controls the . CYCLE
direction of the MPU
bi-directional bus driver
DATA BUS MPU DATA JZELOATING BUS STORES MPUOATA\ = /Yics waite pATA VALID ON DATA BUS SFF |
Floating data bus stores
write data until after R/W' rises
Figure 74 Timing Example: 6502 Access to $C080.
SERIAL I/O HARDWARE The standard paddle set has two pushbuttons, one

Figure 7.5 is a schematic of Apple’s serial I/0
devices. The only connection to the outside world for
most of these I/O devices is through the game I/0
socket, and the inputs are connected to D7 of the
data bus through the serial input multiplexor. Fig-
ure 7.5 shows a standard joystick or paddle set con-
nected to the game I/O socket. This illustrates the
fact that plugging a standard paddle set into the
game I/0O socket makes eight serial input or output
ports inaccessible.

for each paddle. These pushbuttons are designed to
bring the input of an LLS251 (the serial input multi-
plexor) high or low for transfer to D7 of the data bus.
When a button is pushed, 5 volts is applied to the
L.S251 input. When the button is released, the LLS251
input is pulled to ground through a 560 ohm resistor.
The two pull-down resistors in a paddle set are
installed in the plug which is inserted in the game
I/0 socket. They are well hidden to confuse hard-
ware investigators who are trying to figure out how
the Apple works. Just kidding. Apple, do you know

"sedjAeq O/| IDpes :oypweyds ¢/ einby
A
ONLLLIS 3100¥d NO INIONI3
SONOD3ISOHOIA 00EE 0L 2 ST HLOIM 3S1Nd
ASLE HA
Em%
0 (0 3NIL S 3VS) 7
8 £ HINIL ¢ woomil— _ ool
9 = 24
|||||||||||||||||||||||||||||| sz L
0T
@ (0 HINIL SV FWS) E0HIo;
6 ¢ HINIL 2 H399IHL _ Do
m = 724
|||||||||||||||||||||||||||||| qm.mu_..:
s onigm o
| H309L &zw
||||||||||||||||||||||||||| A
(22)
439911
o= - NI
X200
= ol
&5 yovvanon_ &T
o [
L
5.8% 1
100 44
0 H399H1| €
0 HINIL
I .. o'y < X A N S S S ——
= SHINILTIVOL 9ol of 4 u
> m_ﬁt% ASLE = DIAXEY = WA 00d 1i0d| 2104 €104
ol HINIL OVND
85635 Y0SIS Host
m. 1353 ELH N9 20N
; 7l 3 5
o il UL 9 LL iy
.-.m la ES AS = u_i@m._ N 1 = d 9 "
2 o o T m sl
5 wiEs O - o3 [3 X¥00
& uzlmo.So _nmm_.hﬁ #a - NV 3 473500
La = ;
..M 10<—g10 s il T1° ONV == 01500 3(z1)
()] za & INV - 850
o) 14 E]18d DNV |- 6/8509
c I M [284 Gl
U L
o 2 . G3LD3NNOD
% n_VIA]xms.m_ 135 3700vd VN HO
o NOUSAOR HLIM NMOHS
< S 134905 0/1 INY9
~ e

Address Decoding and Input/Output 7-44

how much production cost you could have saved on
750,000 Apple IIs by mounting pull-down resistors
on the motherboard instead of wiring them into that
tiny little DIP plug?

The paddle knobs are attached to 150,000 ohm
potentiometers (variable resistors). Each of these
potentiometers is part of an R/C (Resistance/Capac-
itance) network which determines the pulse width
of one of the outputs of a quad timer. They are
designed so that the pulse width in microseconds
will be equal to (RP +100) X .022 where RP is the
resistance of a paddle. Since the paddles are 150,000
ohm pots, the timer outputs can be varied from 2
(100 X .022) to 3300 (150100 X .022) microseconds.
The four timer outputs are connected to the serial
input multiplexor so their duration can be counted
in a polling loop by the controlling program. Of
course, a standard paddle set uses only two of the
four available timers.

The NE558/SE558 quad timer has a RESET
input which brings all four outputs low and inhibits
triggering. This feature is not utilized in the Apple.
Each timer has its own input trigger, but in the
Apple, all four triggers are tied to the CO7X line. To
achieve the reset and individual trigger capabilities
would have required extra address decoding circuit-
ry and possibly would have decreased the perfor-
mance/cost ratio of the Apple. As it is, the common
trigger gives the capability of simultaneously read-
ing two or more paddles, and the lack of reset merely
requires waiting for timer reset at the beginning of
timer polling routines. Unfortunately, neither or
these realities is supported by Apple firmware.

The timer set up in the Apple is an astonishingly
cheap way toachieve a four channel analog todigital
input capability. Variable resistors exist whose re-
sistance is proportional to light, heat, linear motion,
rotational motion, chemical composition, and prob-
ably a lot of other pertinent things. This means that
you can monitor all these qualities with an Apple
computer via the quad timer. Of course, it takes a
while to read these resistances, 22 microseconds per
thousand ohms. On the other hand, how much is the
temperature going to change in a thousand
microseconds?

The one thing the timers are the least suited to do
is the thing they are used quite often for, game
controllers for real time arcade type games. A
sophisticated HIRES arcade game on the Apple
requires all of a programmer’s skill if the result is
fast paced realistic action. The 6502 in the Apple
executes an instruction every three or four microsec-
onds. It takes about 500 times as long to perform a

typical timer polling routine. Needless to say, pro-
gram speed is inversely proportional to the time
spent polling the timers. Were the Apple designed
today one would suspect that modern multichannel
quick response analog to digital converters would be
used for paddle input rather than timers.

A final interesting feature of the Apple timer
connections are the open-collector outputs. What is
interesting is that there are no pull-up resistors con-
nected to them. One would have to walk all the way
to Omaha to find another successful commercial
design with open collectors driving LSTTL inputs
without pull-up resistors. It works without pull-up
resistors, but the conventional wisdom says to pull
up open collector outputs to achieve satisfactory
noise immunity. I wonder why they didn’t bother in
the case of the Apple timer inputs to the serial input
multiplexor.

After the timers and pushbuttons, the remaining
serial input is the cassette input. What we have here
is an electronic circuit which answers the question,
"when is an operational amplifier not an operational
amplifier?” The answer is that an LM741 opera-
tional amplifier is not an operational amplifier
when there is no degenerative feedback. It then
becomes a saturated amplifier and, in the case of the
Apple cassette input, a threshold detector/signal
shaper. Mild apologies for all that electronic lan-
guage, but this is an electronic circuit. What it does
is this:

1. Blocking capacitor C10 removes any DC com-
ponent of the input voltage and makes the pin 2
input to the LM741 vary above and below 0
volts.

2. The LM741 acts like a threshold detector. If the
voltage at pin 2 rises above .15 volt (very
approximately), the voltage at pin 6 will go as
negative as an LS741 can bring it (about -4.3V)
operating from a -5 volt negative supply. If the
voltage at pin 2 lowers below -.15 volt (very
approximately), the voltage at pin 6 will go as
positive as an LM741 can bring it (about +4.3V)
operating from a +5 volt positive supply. Thus,
as long as the cassette input exceeds the input
threshold, the voltage at pin 6 will be an 8.6 volt
p-p squared signal that switches high or low as
the input crosses the low threshold or high
threshold.

3. Pin 6 of the LM741 is connected to the serial
input multiplexor through a 12 thousand ohm
resistor. While K13-6 is at +4.3 volts, 4.1 voltsar
so is felt at H14-4. While K13-6 is at -4.3 volts,
the negative input clamp of the LS251 holds the

742 Understanding the Apple I

Square wave which stored digital
information to cassette recorder

Distorted playback signal is present

4
4

HIGH THRESHOLD

at cassette input jack

S

LOW THRESHOLD

p—— +4.3V

Originally stored square
/— wave is reproduced at
pin 6 of the LM741.

-4.3V

Figure 76 Cassefte Input Wave Shaping.

voltage at pin 4 very close to zero volts, and the
12 thousand ohm resistor limits input current to
about .36 milliamps.

The neat thing about the cassette input circuit is
that even when your cheap tape recorder distorts a
digital square wave, a square wave of correct pulse
width is presented to the input of the serial input
multiplexor. Figure 7.6 shows what happens when a
$30 tape player makes a sine wave out of your square
wave. The LM741 still switches at points separated
in time by multiples of the period of the program
loop that stored the information to cassette. Of
course, there are limits to the distortion which an
Apple can work with.

The Apple II Reference Manual states that the
nominal voltage required at the cassette input is 1
volt peak to peak. This is a voltage one would rea-
sonably expect to find at the earphone output of a
cassette recorder. The cassette output of the Appleis
amuch smaller voltage, comparable in amplitude to
the signal out of a microphone. This voltage is the
output of a 74L.S74 flip-flop reduced by a factor of
121. The flip-flop toggles once every access to
$C02X. Its output swings back and forth between 0
and 3 volts while it is being toggled, so the cassette
output jack swings between 0 and .025 volts (3/121 =
.025).

The audio output is also controlled via a toggling
flip-flop. The output of the audio flip-flop controls a
simple amplifier which drives the Apple’s speaker.
Current flow through the speaker is in only one
direction so the speaker action is tension/relax
rather than push/pull. Alternate references to
$C03X tension the speaker diaphragm thenrelax it,
but the program cannot determine whether a $C03X
reference causes tension or relaxation. This damp-
ens the possibilities of complex program control of
the speaker tension. In any case, an audio cycle con-
sists of a tension half eycle and a relaxation half
cycle, so two $C03X references are required per
audio cycle. For example, to program a 1000 Hz
tone, you reference $C03X 2000 times a second.

THE APPLE Il KEYBOARD

Considering the stature of the Apple Il computer,
its keyboard has rather modest features. In particu-
lar, the ability to enter only upper case from the
keyboard has always been a serious drawback to the
Apple in sophisticated text handling applications. It
was a disappointment to many users for years that
Apple did not upgrade the overall text handling
capability of the Apple II via improvements to the

Address Decoding and Input/Qutput 7-43

keyvboard, screen display, and firmware. It is a bit of
a nuisance to resort to peripheral cards and modifi-
cations just to make a computer acceptable for word
processing.*

Actually, Apple did significantly upgrade their
keyboard (cirea 1979). They cured an old headache
by requiring the CTRL key to be pressed before the
RESET key can function. They also gave the key-
board an upper/lower case capability, but they
didn’t tell owners how to take advantage of itor even
that it was there, This upgraded keyboard came out
at approximately the same time as the Apple II
Plus, so we will be referring to it as the II Plus
keyboard. Apple has never published the II Plus
keyboard schematic for the general public. The
schematic in the Apple II Reference Manual is the
schematic of the old keyboard.

Figure 7.7 is a schematic diagram of the old key-
board. It is based on the National Semiconductor
MM5740 keyboard encoder ROM, which is no
longer manufactured. The MM5740 supports up to
90 keys in a 9 x 10 matrix, and it works by scanning
through its X-drivers while checking its Y-sensors.
The code that is generated from each keypress is
specified by the buyer of the encoder ROM (Apple
Computer Inc.). The code is latched every time a key
in the matrix is pressed and it is gated to nine output
pins through tri-state outputs. The fact that the out-
puts are latched means that you can press a key and
its 7-bit ASCII can be checked anytime before
another key is pressed. In the Apple, two of the
outputs are not connected (B8 and B9), and the tri-
state outputs are always enabled by a ground at pin
15. The B1-B7 outputs, which are active low, are
inverted and routed through the 16-line keyboard
jumper to the tri-state RAM/keyboard data
multiplexor.

The MM5740 is capable of producing different
code at outputs B5, B6, B7, and B8 for ALONE,
CTRL, SHIFT, and CTRL-SHIFT input modes.
This means that the Apple could have come with
upper and lower case alphabetic character input
from the keyboard at no extra manufacturing cost.
Rather than doing this, they specified that the
encoder output code for all alphabetic keys except
M, N, and P would be the same whether SHIFT was
pressed or not. The MM5740 also has a SHIFT
LOCK input which is not connected in the Apple. No

*Most readers are probably aware that the text handling capabil-
ity of the Apple Ile is greatly superior to that of the Apple IL
Please remember that these discussions apply to the Apple II
only as it was before the introduction of the Apple Ile in early
1983.

doubt about it, they really didn’t want to fool with
lower case alphabetics.

I looked at the states of unconnected B8 and B9
with an oscilloscope just to see what was pro-
grammed in there. B8 is a parity bit for B1-B7.Ifan
even number of lines B1 through B7 are low, B8 goes
low. If an odd number of lines B1 through B7 are
low, B8 goes high. This means you could do a parity
check on the keyboard input by connecting up a
little hardware, but it would serve no useful pur-
pose. I could make no sense of B9. Outputs B1-B4
and B9 are not affected by the SHIFT or CONTROL
inputs to an MM5740. In the Apple, B9 is pro-
grammed to drop low if RETURN, N, left arrow,
period, dash, colon, zero, or space is pressed. It goes
high on all other matrix keypresses.

The keys on the Apple keyboard are spring
loaded, normally open switches with plastic covers
which can be pried off if a switch fails and needs to
be replaced. The keys are labeled 1 through 55 with
no #27 or #41 key. The power-on indicator is labeled
#54 even though it is not aswitch. Forty-seven of the
keys are in the MM5740 input matrix. All keys on
the matrix perform no function except to produce
code which must be interpreted by a program. The
RESET key is connected directly to the system
RESET line. The left SHIFT, right SHIFT, and
CONTROL keys are addressing inputs to the
MM5740 which select among four possible sets of
output code. The SHIFT line is also active at power
up although I am baffled as to why the encoder
should be up-SHIFTED at power up. The REPT
key enables a 10 Hz oscillator which feeds the
MM5740 REPEAT input. When REPT and a matrix
key are pressed simultaneously, the 5740 puts out a
STROBE 10 times a second to simulate 10 key-
presses per second. This REPEAT rate can be
increased by reducing the value of R3 or vice versa.

The MM5740 requires an input clock between 10
KHz and 200 KHz. The Apple supplies this from a
ring oscillator which runs at 50 KHz in the author’s
Apple. The frequency of this type of oscillator is very
unpredictable, but it is perfectly adequate for this
purpose.

Pin 1 on the MM5740 is a keybounce mask input.
The MM5740 data sheet shows that the encoder will
mask keybounces for 8 milliseconds if pin 17 is con-
nected to ground through a .001 microfarad capaci-
tor. In the Apple, pin 17 is connected to +5 Volts
through a .001 microfarad capacitor. Apparently
this works. If you often get two letters on the sereen
from one keypress, you can experiment with in-
creasing the value of C4, and you might try connect-
ing C4 to ground instead of +5 volts.

744 Understanding the Apple |l

"pIDOgAe) || olddy ey) :oyoweyss /'L einby

47100
= Jasw g i i
| u%mﬁm
TR | gy
» : ww._m r %0155 1
|o >
v
oz (s2) ﬁ\wn‘_m,_
£ AS
%9012
W L ——f IUERE
i .
T ZHolL o T %
e AS T0HLNOD (2 oI +u_hw
> o T JELLFLRE UL s
3 < b,
(€1)713534 14IHS L p = 84 143
‘Hdli3d ONY 04.1NOD 1
nawoy o 380M1S _E\QM Y
: 38018 a8
o = iy 6 %00 1fgz-ON WES (en TaHs 1
f w@wﬂlﬂos '
M N 0072
IN— N LA : :
wﬁﬁ“u e ot SRS S
Ty L 6A
~on . g E o.A__r R A » o A
(2s) e 51
XN Y1YQ ‘ ! e B d
QHYO0BAIN Y 3 i OAIF wq . T
ot : i e e
. : — 1 o _||.n y <
sl o i ol T A Wiz 52 x50 .w_.., S|, I
GA ;
= R = | S IoA\jo ¢ = oo | W
vAbs
i A G LI > S
.l.ﬂ —— i ™ £l 9 A\ll e eA - 3
58 pos3 I L ﬂw
i i w T e o g §OA:_|= Lo Woe 5o im0 o o A | B
1A
¢ N b
— A \
s 5 i 4 ¢ 9 4 4 /W of f af
= = 0T X 8% L X X X
T He ||_~1 T o N9
" 4
T os 8T NOH ¥300ON3 QHY08AI
NG+ = SSA OPLSWIN - SN
i HOLVIIONI 318YN3
¥IMOd 1ndLno
3 s i
auvosyIHlON SR auvosAd Erde s

Address Decoding and Input/Output 7-15

The encoder outputs a positive STROBE one time
when a matrix key is pressed, and 10 times per
second if a matrix key is held simultaneously with
the REPT key. When pin 13 is tied to pin 14, as itisin
the Apple, the STROBE stays high for one period of
the input clock. This is 20 microseconds with a 50
KHz clock. The Apple II Reference Manual says the
STROBE lastsa maximum of 10 microseconds. This
is probably a safe number they arrived at, figuring
the ring oscillator would never get above 100 KHz.
The STROBE output of the MM5740 is routed
through two inverting stages to the motherboard
where its rising edge sets the keyboard strobe flip-
flop. The strobe flip-flop is reset under program
control by a $C01X access.

Figure 7.7 alsoshows the Apple’s power-up reset
generator which is installed on all Revision 1 or later
motherboards. This is a 555 timer which outputsa .3
second pulse when the Apple is turned on. This pulse
resets the keyboard strobe flip-flop and also forces
the RESET line low. The 6502 reset sequence actu-
ally begins when RESET’ rises. The .3 second
RESET pulse at turn on gives the Apple power
supply voltages time to stabilize before the 6502 and
the rest of the Apple are off and running. Next time
you turn an Apple on, listen carefully. There is a
perceptible .3 second delay before the BELL sounds
and the disk starts running. If you have a Revision 0
board and a Disk II controller, the controller will
generate a .1 second power-up reset. If you have a
Revision 0 board and no Disk II controller, your
unmodified Apple will not automatically reset at
power up.

This, then, was the Apple keyboard before the
Apple II Plus modifications: 52 keys, uppercase
alphabetics only, no numeric keypad, no SHIFT
LOCK switch, no user programmable function keys,
no automatic repeat, no dedicated cursor move keys,
no dedicated screen mode selection keys, teletype
style placement of symbolic characters, latched
output flagged by a program resettable strobe flip-
flop whose state is read in the MSB of the keyboard
input word. After the II Plus? Pretty much the same
operationally but quite different in hardware
mechanization with some unadvertised attainable
capabilities. Take a look.

The Apple |l Plus Keyboard

Figure 7.8 is a schematic diagram of the Apple I1
Plus keyboard. I drew the schematic after studying
an actual keyboard. The II Plus keyboard has an
underlying similarity to the old keyboard with some
obvious changes. Most obviously it uses a different

encoder ROM, a General Instrument AY-5-3600
instead of the MM5740. This encoder is very similar
to the MM 5740 with a9 x 10 switch matrix, nine low
level outputs and, +5V/-12V power supply require-
ments. As anoption, Apple could have specified that
the encoder would have an output enable pin like the
MM5740, but they chose not to since the Apple
design doesn’t utilize this feature.

A major difference in the mechanical package in
the II Plus keyboard is that all electronics are
removed to a small card, physically separate from
the main card. The big card contains only key
switches and the power indicator. The small card,
called the encoder board, is connected to the big
card via a 25-pin connector with exposed pins. The
pins of this connector, PLUG 1 on the encoder board,
are shown in Figure 7.8 as numbers in circles.

The keyboard/motherboard jumper is connected
to a 16-pin DIP socket, JACK 1, on the encoder
board. The pin assignments are identical to the key-
board connector on the old keyboard. It may not be
possible, but try not to confuse JACK 1 with PLUG 1
on the small board. They are not the same, but are
considered part of two separate PLUG 1/JACK 1
combinations following some perverse engineering
logic.

A third connector on the encoder board, JACK 2,
is not actually there. There are mounting holes for
JACK 2, and they are fully wired so you can solder a
jack in and plug a numeric keypad into it. The four
matrix scanners X5 through X8 are used only by the
numeric keypad, which is shown installed in Figure
7.8. The pins of JACK 2 are represented by little
squares with numbers in them in Figure 7.8. The
dedication of four X-drivers to a numeric keypad is
possible because the keyboard has only 47 matrix
switches and can operate with just a 5 by 10 switch
matrix. Apple has never sold a keypad that supports
JACK 2, but at least one has been built by an outside
source. Yet a 16-key numeric keypad for the Apple
11 Plus would be very cheap to manufacture, because
the capability is built in. Also, it would be easy to
build your own 16-key keypad from a surplus calcu-
lator entry panel. A 24-key keypad requires elec-
tronic circuitry to decode a 4 x 6 matrix and switch
between the keypad and the keyboard at the key-
board connector.

The SHIFT keys and CTRL key are connected up
very much as in the old keyboard, except there is no
forced SHIFT-up at power on. The RESET key is
different though. There is a slide switch, S1, by
which the owner can select CTRL required or CTRL
not required for RESET. Believe it or not, I knew an

7-46 Understanding the Apple I

U5 AY-5-3600
KEYBOARD ENCODER ROM
R) S < xs X6 X1 X8 J
a] %] 3] a7 EEIE ki
1) (4) (13 4] [s][9] [8 MOTHERBND
5v -
+ 4~ - CR-SPCe_ m__ \."CE |ND1CATOH 1 +5V
J_cn
A]Tl -|-1|.|.F TMF
= ono2 -
dh S B T m_ sy
mF i P
Ty VGGer)] v
=l @l ? 2] vy
e PR 3 100 2 @111 ravg . b U4 7404 o
- . (16 G
(i UL |'?-2-.. +-3-'-?:_ d"ﬁ. 72N 24 32'\13 . DO o =K
9 Q 36)47 @ §
b v L T — () 3N B3> 2 Do—lf' .
~
8 vj2 kg 6 gp 52 » LATCHED
(0)y——=rs EAE" g D ol I ks [EYBOARD
ptl THE g g 4B : al, a - W
1 REEL e fMpsoylt ® af, a&Dm—Szqu['s—DO B P
b S L S S @ 9, b “DCZ 3 | .
P WS AL i 2 S—2k EM o
) NC
NC L
T, 0. o 7p¥ 548 ;400 ne B n
8 -3 7
D B > K6
L. SHIFT. (40)
o— RESETFROM_ 3 RESET
R. SHIFL (51) Pz = SEE
C/ o 4 7400 ;'}9
CONTROL . (27)
St
@ RESET
L CONTROL
7400
)
NC
75F T
1
(O)Pus1ps Cki
(KEYBOARD/ENCODER BOARD) al s
7msec
[] JAcK 2 PINS (NUMERIC PAD) @ MK

Figure 78 Schematic: The Apple Il Plus Keyboard and Encoder Board.

Address Decoding and Input/OQutput 7-47

owner inJapan who left this switch in the CTRL not
required position. However, that person was quirky
by nature.

The clock circuitry is mostly contained in the AY-
5-3600. External components R1 and C5 set the
operating frequency at approximately 80 KHz.
Similarly C2 sets the keybounce mask period at 7
milliseconds.

The STROBE output works as it does in the
MM5740 with a high level, one clock strobe output
(12 microseconds) any time a matrix key is pressed.
The REPEAT operation is different though. In the
MM5740 a REPEAT input clock triggers the
STROBE output if a matrix key is being held down.
The AY-5-3600 is less sophisticated in this regard. It
has an ANY KEY DOWN output which goes high
when any key is held down. This is used in the Apple
to enable a 15 Hz REPEAT oscillator when REPT
and a matrix key are held. The REPEAT oscillator
output is capacitively coupled to a circuit which
generates a strobe of very roughly 45 microseconds
when the REPEAT clock drops.

Capacitor C8 in the REPEAT oscillator circuit
was apparently an afterthought. It is wired between
pins 20 and 23 of PLUG 1 rather than being
installed on the encoder board. It looks as though C8
is there to cause a short delay after REPT is held
before the REPEAT oscillator is enabled.

The B1-B7 outputs of the II Plus encoder are
routed to the keyboard/motherboard connector
through inverters, just as on the old keyboard. There
is a very important possibility incorporated, though.
There are wired holes for mounting a slide switch
which can select B9 and BR instead of B5 and B6 as
the K4 and K5 outputs. The B9 and B6 outputs are
programmed for alphabetic shifting. This means
that you can cut the two bow tie solder jumpers,
install a slide switch, and have the option of enabling
or disabling alphabetic shifting of the keyboard
input. Table 7.2 shows the normal ASCII from the
Apple keyboard and the ASCII from the II plus
keyboard with alphabetic shifting enabled.

PERIPHERAL SLOT CONNECTIONS

[t is hard to know where to start talking about
peripheral slot I/0. You can do so much from the
slots. They are as versatile as modern microcomput-
er architecture with full connection to the address
bus and data bus. It’s like someone designed a really
neat computer but on the blueprints drew eight
empty squares with the message, "user, please fill in
the blanks.” One never knows what lurks beneath
the lid of an innocent looking Apple.

The capabilities of the peripheral slots seem more
clear when you look at the connected signals in
groups. Figure 7.9 illustrates the peripheral slot
connections and groups the signals functionally.

Table 72 Relation of ASCII to Keypress. (1 of 2)

APPLE 11 APPLE II Plus
APPLE II| Plus NORMAL LOWER CASE ENABLED
KEY | SWITCH# | SWITCH# [ALONE CONTROL SHIFT BOTH|ALONE CONTROL SHIFT BOTH
space 55 52 SAQ SAG SAG SAG | SA0 SAU SAG SAQ
i € 50 48 SAC SAC SBC S$BC | sac SAC SBC SBC
= 12 12 SAD SAD SBD SBD | $AD SAD SBD SBD
. > 51 49 SAE SAE SBE SBE | SAE SAE SBE SBE
/2 52 50 SAF SAF SBF SBF | SAF SAF SBF SBF
g 10 10 $BO SBO SBG SBO | SBO SBY SBO SBO
1! 1 1 SB1 $B1 $Al S$Al | SBl SB1 $Al SAlL
2" 2 23 SB2 $B2 SA2 SA2 | $B2 SB2 SA2 SA2
34 3 3 $B3 S$B3 SA3 SA3 | SB3 SB3 SA3 SA3
4 s 4 4 SB4 SB4 SA4 SA4 | sB4 SB4 SA4 SA4
5% 5 5 $B5 $B5 SA5 SA5 | SB5 SB5 SA5 SAS5
6 & 6 6 SB6 $B6 SA6 SA6 | $B6 SB6 SA6 SA6
7 7 7 SB7 SB7 SA7 SA7 | $B7 SB7 SA7 SA7
8 (8 8 SBS SB8 SA8 $A8 | sB8 SBS SA8 SA8
9) 9 9 SB9 $SB9 SA9 SA9 | SB9 SB9 SA9 SA9
s * 11 171 SBA SBA SAA SAA | SBA SBA SAA SAA
s+ 38 37 SBB $BB SAB SAB | SBB SBB SAB SAB
a 29 28 $C1 $81 SCl $81 | SE1 $81 SCl s8l
B 47 45 SC2 $82 SC2 $82 | SE2 $82 $C2 $82
C 45 43 $C3 $83 SC3 $83 | SE3 $83 $C3 $83

718

Understanding the Apple I

Table 72 Relation of ASCII to Keypress. (2 of 2)

APPLE 1II APPLE II Plus

APPLE II| Plus NORMAL LOWER CASE ENABLED
KEY |SWITCH# |SWITCH# |JALONE CONTROL SHIFT BOTH [ALONE CONTROL SHIFT BOTH
D 31 30 SC4 S84 SC4 S84| SE4 S84 SC4 S84
E 17 17 SC5 $85 SC5 $85| SES5 $85 SC5 885
F 32 31 SCé6 $86 SC6 $86| SE6 586 SCé6 586
G 33 32 SC7 $87 $C7 $87| SE7 $87 SC7 $87
H 34 33 $C8 $88 $C8 $88| SE8 $88 SC8 $88
1 arrow | 39 38 $88 $88 S88 $88| 9$88 $88 S88 $88
I 22 22 $C9 $89 SC9 $89| SE9 $89 SC9 $89
J 35 34 ScCa $S8A SCA SBA| SEA S8A SCA SBA
K 36 35 SCB $8B SCB S$8B| SEB $8B SCB S$8B
L 37 36 $QC $8C SOC $8C| SEC $8C SCC $8C
M] 49 47 $CD $8D SDD $9D| SED $8D SCD $9D
RETURN 26 26 $8D $8D S8D $8D| $8D $S8D $8D $8D
N 7 48 46 SCE S8E SDE S9E| SEE S8E SCE S9E
0 23 23 SCF S8F SCF S8F| SEF S8F SCF S8F
P @ 24 24 $D@ $90 SCO $80| SF@ $90 SDg S$80
Q 15 15 SD1 $91 $D1 $91| SF1 $91 SD1 $91
R 18 18 $D2 $92 SD2 $92| SF2 $92 SD2 $92
S 30 29 SD3 $93 SD3 S$93| SF3 $93 SD3 $93
i 19 19 5D4 $94 SD4 S94| SF4 $94 $D4 $94
U 21 21 SD5 $95 $D5 $95| SF5 $95 $D5 $95
r arrow 40 39 $95 $95 $95 895 $95 $95 $95 $95
v 46 44 SD6 596 sD6 596 SF6 $96 SDe S96
] 16 16 SD7 $97 SD7 $97| SF7 $97 SD7 $97
X 44 42 SD8 $98 SD8 $98 | SF8 $98 SD8 $98
Y 20 20 SD9 599 SD9 S99 | SF9 $99 SD9 $99
7 43 41 SDA S9A SDA S$9A | SFA S9A SDA S$9A
ESC 14 14 S9B $9B S9B S9B| S$9B S9B S9B S9B
RESET 13 13
REPT 25 25
CTRL 28 27
SHIFT,1 | 42 40
SHIFT,r | 53 51
II Plus
KEYPAD
g SB@ SBO SBO SBO | SBO SBO SBG SBO
1 SB1 SBl SBl SBl | $Bl SB1 SB1 SBl
2 SB2 SB2 SB2 SB2 | SB2 SB2 SB2 SB2
3 $B3 SB3 SB3 S$B3 | SB3 SB3 SB3 SB3
4 SB4 SB4 SB4 SB4 | SB4 SB4 SB4 SB4
5 SB5 SB5 SB5 SBS | SB5 SBS $B5 $B5
6 SB6 SB6 SB6 S$B6 | SB6 SB6 $B6 SB6
7 SB7 SB7 $B7 SB7 | $B7 SB7 $B7 SB7
8 SB8 SB8 SB8 SB8 | SBS SB8 SB8 SB8
9 SB9 SB9 SB9 S$B9 | SB9 SB9 SBY SB9
space SA@ SAQ SAO SAO | SAQ SAQ SAQ SAU
+ $AB SAB SAB SAB | $AB SAB SAB S$AB
. SAC SAC SAC SAC | SAC SAC SAC SAC
= SAD SAD SAD SAD | SAD SAD SAD SAD
. SAE SAE SAE SAE | SAE SAE SAE SAE
RETURN $8D $8D $8D $8D | S8D $8D S8D S8D

Address Decoding and Input/Output 7-19

- RIW
T4L832
PHASE 1

1.1.18)
3] KEYBOARD
CONNECTOR
1
3
POWER-UP
= 21 29 {30 Y31
L 2w RDY NMI' IRQ' RESET'
H RIW
A15
— 18 a14
— B3 g; 9 SR
-~ —aAr b
—a o
= EIGHT 2 |
02
AoB0S™ pe PERIPHERAL ot
AB SLOTS
| v
.—ﬁ- u
— A
A0
— -
817 40 byaseo
TIMING [BL8——T prinse 1
GENERATION [§TiE——3¢13
{33} = ® Sltg¥ ?%i\m USER1
: DEVICE SELECT' il _ ADDRESS
110 STROBE' w2 ———F12141 DECODE
— 1/0 SELECT" [(7.2)
VIDEO ; (SLOTS 1-7 ONLY) ;
C138 19}
GENERATION ,‘é‘f&ﬁ-"&‘,‘}m l
[Bs} RAOT
1K
27
IMA IN
o £ 7 18 ROM
%ﬁ:ﬂ%ﬂﬂ IN INHIBIT I:E 1]
INTERRUPT OUT

REV 1 & LATER

-——=VIDED SYNC (8.6, 8.7)

bl REV7 & LATER
GRAPHICS TIME + 3 RAS'
| S JUMPERS

aa i{:mﬂﬂ REF (3.8)
REV 1 & LATER

DMA PRIDRITY CHAIN nc
INTERRUPT PRIORITY CHAIN NC

Figure 79 Peripheral Slot Connections.

7-20 Understanding the Apple I

The power supply voltages, for instance, are all
grouped together. One quickly sees that all the
power supply voltages available in the Apple are
also available at the peripheral slots.

Paramount in importance among the peripheral
slotsignals are the address bus with R/W’, thedata
bus, and the timing inputs. Consider what we know
about MPU control of the Apple. All data transfer is
over the data bus under control of the address bus
during PHASE 0. All I/O control is via the address
bus. The correct inference is that you ean duplicate
any motherboard action with a peripheral card
design. This gives you an idea of the variety of tasks
that can be accomplished. Of course, most of the
things people are going to stuff into Apple peri-
pheral slots haven’t even been dreamed of yet.

Other timing signals besides PHASE 0 are avail-
able at the peripheral slots. You can’t have too many
of these signals at hand to help synchronize peri-
pheral card functions to the motherboard. PHASE
1, Q3, "M, COLOR REFERENCE (Slot 7), and
video SYNC (Slot 7) are present. Notably absent are
14M, RAS’, CAS’, AX, video scanner signals (like
V5), and 6502 SYNC. With signals like these beg-
ging to be connected, it's surprising that pins 19 and
35 of Slots 0 through 6 have no signal connected to
them. Pins 19 on these slots are all tied together, and
so are pins 35, yet Apple has not defined any fune-
tion for these connections.

Important 6502 control inputs are connected to
the peripheral slots. Theseare IRQ’, NMI’, RESET’,
and RDY. They are connected in a wire-OR config-
uration with one thousand ohm pull-up resistors so
any card can cause an interrupt, reset the Apple, or
stop the 6502 viathe READY line. The RESET' line
is also connected to the keyboard and the power-up
reset circuit which generates a RESET’ when the
Apple is first turned on.

Other wire-OR lines from the peripheral slots are
the DMA’ line, the INHIBIT' line, and the USER1
line. DM A’ allows a peripheral card to isolate the
MPU from the address bus and data bus so it can
gain control of the Apple for fast I/O or other pur-
pose. INHIBIT' disables motherboard ROM and
opens up $D000-$FFFF addressing for any sort of
response. If the USER1 jumperis installed, USER1
disables all address decoded signals in the $C000-
$CTFF range and opens that range for peripheral
card response. Note that between INHIBIT',
USERI, and the I/0 STROBE’ disable protocol
(reference to $CFFF disables all /0 STROBE'
response), provisions exist for stealing the entire
$C000-$FFFF address range from the motherboard.

No signal exists, however, which allows a peri-
pheral card to steal the $0000-$BFFF range. This s
unfortunate since we now have 64K RAM chips and
would like to bank switch RAM in banks of 64K. An
Application Note at the end of the chapter on RAM
(Chapter 5) shows how to steal the $0000-3BFFF
address range with a DIP jumper to a motherboard
chip socket (see Figure 5.16).

The USERI inhibit signal represents a poten-
tially powerful control feature that is rarely if ever
used. As an example of how it could be used, suppose
you had a peripheral eard which needed to lock out
the $C08X DEVICE SELECT' signal. The card
could look for $C08X on the address bus during the
last part of PHASE 1. A $C08X detection causes a
USER1 flip-flop to flip, bringing USER1 low.
PHASE 0 falling causes the flip-flop to flop return-
ing USERI to its normal high state. USER1 stays
low for about three quarters of a cycle and inhibits
the normal DEVICE SELECT' generated by $C08X
on the address bus during PHASE 0. This is really
pretty neat stuff, creating far ranging peripheral
design possibilities.

The DEVICE SELECT’, I/O SELECT’, and I/0
STROBE' are address decoded signals which iden-
tify addresses on the address bus in the ranges
assigned to the peripheral slots. These address
ranges could have been assigned by convention only.
For example, a Slot 0 peripheral card could easily
decode the $C08X address range without the aid of
its DEVICE SELECT' input, but then how could
vouoperate that card in a slot other than Slot 0? The
card would have to have switches to configure it for
different slots. Also, having DEVICE SELECT’
decoded on the motherboard lends the force of
hardware reality to the convention that $C08X
belongs to Slot 0. This is fairly important consider-
ing the diversity of sources for Apple peripheral
cards. Needless to say, decoding the address ranges
on the motherboard also reduces the chip count of
most peripheral cards.

The DEVICE SELECT" input to each peripheral
slot identifies a 16-bit address range assigned spe-
cifically to that slot. This range is normally used to
command a peripheral to do things like gate data to
the data bus or disable one of its functions. A card
design may require only one programmed com-
mand like a speech synthesis board which says a
word when you store a value to its only address. This
type of card can use the DEVICE SELECT’ to
trigger itsaction and it requires noon board address
decoding circuitry. The Apple Firmware card has
only two commands, enable and disable. It uses A0
todifferentiate between the two possible commands.

Address Decoding and Input/Output 7-24

A card can distinguish between 32 possible com-
mands in the DEVICE SELECT' range by decod-
ing the states of A0, A1, A2, A3, and R/W".

The I/O SELECT' signal identifies a 256 byte
addressing range uniquely assigned to each of Slots
1 through 7. This address range is normally used by
a 256 byte program in ROM or PROM. It has to be
taken up by a 256 byte program if the card is to be
capable of response to BASIC "PR#” and "IN#"
commands. What these commands do is cause pro-
gram flow to vector to the first address of the I/0
SELECT' range, so there must be a program stored
there if PR# and IN# are going to work. PR#0 and
IN#0 are different. They cause program flow to vec-
tor to the video output and keyboard input routines
rather than to a nonexistent program in Slot 0.
There is no I/0 SELECT for Slot 0 so the card in
Slot 0 will not normally be the type of card which is
capable of replacing the keyboard and television as
the Apple’s primary input and outputdevices. Slot 0
normally contains a memory expansion card of one
sort or another which steals the $D000-$FFFF
addressing range from motherboard ROM.

The I/O STROBE’ identifies $C800-3CFFF
addressing for all eight peripheral slots. This ad-
dress range could have been taken up by a seventh
ROM on the motherboard, but the Apple designer
elected to make it available to all of the peripheral
slots. The idea is to store a big I/0 handling program
on a 2K ROM or PROM on a peripheral card and
then give that card sole access to $C800-3CFFF
when it is active for input or output. As is deseribed
in detail in Chapter 6, the peripheral cards utilizing
this "seventh ROM” must deactivate response to
the I/0 STROBE’ when $CFFF is detected on the
data bus during PHASE 0. This protocol prevents
two ROMs from simultaneously trying to control the
data bus when I/0 STROBE' goes low. The “seventh
ROM” capability makes possible such peripherals
as smart printers, smart 80-column cards, and
smart EPROM programmers with driving pro-
grams stored in firmware.

The remaining four peripheral signals are DMA
IN, DMA OUT, INTERRUPT IN, and INTER-
RUPT OUT. These are the DMA and interrupt
priority chain connections described in great detail
in the 6502 chapter. They are there to keep two or
more cards from trying to simultaneously perform
similar functions. Only one card can perform DMA
or interrupt the MPU at a time. The priority chains
can be used to keep order by giving high priority to
lower numbered slots. When Apple designed their
firmware card, they realized that what they needed
but didn’t have was an INHIBIT' priority chain.

Their solution was to steal the DM A priority chain
and hang the consequences. Then they changed
their minds with the 16K RAM cards and decided
they didn’t need an INHIBIT' priority chain after
all: so they jumpered the DMA IN pin to the DMA
OUT pin. With no published usage guide, and
Apple’s inconsistent example, the DMA and inter-
rupt priority chains are really available for any sort
of serial communication between slots.

Some changes were made in Revision 7 which did
not get into the schematic diagram in the Adden-
dum to the Reference Manual. I traced theseoutona
"dash C,” RFI Revision Apple II. Figure 7.10 is the
result. Basically, some video timing signals were
made available to Slot 7 and to a 4-pin connector
mounted between B2 and C2 on the motherboard.
Also, there are mounting holes for a switch and
resistor at the E1/E2 position on the motherboard.
A reasonable guess is that these changes support
some real or planned Slot 7 peripheral card.

THE APPLE I/O SYSTEM: KSW AND CSW

The peripheral slot capabilities are determined
by the signals connected to them, but our perception
of how they work is very much colored by the operat-
ing systems that normally control them. The prece-
dents for I/O control in the Apple were established
by the old Monitor ROM. The main precedent is
that memory locations $36 and $37 always contain
the address of the Apple’s primary output routine,
and locations $38 and $39 always contain the
address of the Apple’s primary input routine. $36
and $37 are referred to in the monitor listing as
CSW (Character output SWitch), and $38 and $39
are referred to as KSW (Keyboard input SWitch).

The way the Apple presented itself to us with the
old monitor was this: at power up, KSW was set to
the address of a firmware routine (KEYIN) which
waits for a keypress while it flashes a cursor; CSW
was set to the address of a firmware routine
(COUT1) which stores the accumulator in TEXT
memory while keeping track of the next screen
memory address. Then the monitor command inter-
preter was entered. This program, as well as BASIC,
talks to humans through the GETLN (GET LiNe)
routine. GETLN gets a series of characters from the
primary input device which it finds by doing a
JUMP INDIRECT to KSWL ($38). After it gets
each character, it stores it in an Input Buffer
(memory locations $200-$2FF) and sends it to the
primary output device by doing a JUMP INDI-
RECT to CSWL ($36). GETLN continues to input
and output characters until it receives a carriage

7-22 Understanding the Apple I

5V

MOUNTING HOLES FOR A
SWITCH AND RESISTOR REPLACE
THE RAM JUMPER PLUG AT E1
AND THE IC AT E2

! :
SLOT7 f (38 ~—o° SOLDER HOLES
' AVAILABLE
23 GRAPHICS TIME —o
(8.6:813-13
2
U ls
i T VERTICAL PRESET' (39.C11-9
: GRAPHIX TIME
PLUS 3 RAS'
(8.6:88-2) i
\
14M
(3.8

Figure 710 Some Revision-7 Additions.

return code from the input device. The program
which called GETLN is then able to examine the
"line” of data in the input buffer and take action
based on its contents. The GETLN roytine is largely
responsible for our impression of how the Apple
talks to us.

The Autostart ROM utilizes the same GETLN
routine with its JUMP INDIRECTSs to KSW and
CSW for input and output. The main difference is
that if a disk drive is installed, the Autostart ROM
boots the DOS at power up, and the DOS connects
itself to KSW and CSW. In both monitors, the same
system is in effect where every input is followed
immediately by output, and the input and output
routines are determined by KSW and CSW.

CSW and KSW are the I/0O links. You can link the
driving program for any device to the Apple and
make it the primary input or output device. This is
because most programs perform input or output by
jumping to the address contained in KSW or CSW.
As an example, you can connect a serial output
device to one of the annunciator ports and place a
control program in RAM. You then make thisdevice
the Apple’s primary output by placing the entry
address of your control program at CSW. If your
program is typical, after it outputs each character to
your device, it jumps to the COUT1 routine so the

character is also output to the screen.

Any peripheral slot can be assigned as the Apple’s
primary input or output device. Slots 1 through 7
can be so assigned by doing a "PR#n” or "IN#n"”
from BASIC or a "n CONTROL-P” or "n CON-
TROL-K"” from the monitor. When a PR#1 is per-
formed, $00 and $C1 are stored at locations $36 and
$37. This means that if you do a PR#1, the card in
Slot 1 had better respond to $C1XX addressing with
aprogram, because the 6502 is going to be executing
at that address real soon.

To assign the card in Slot 0 as the primary inputor
output, you must link a Slot 0 driving routine to the
Apple via KSW or CSW. In normal practice, Slot 0
will not contain a card that is capable of being the
Apple’s primary input or output device.

In disk based systems KSW and CSW are nor-
mally set to addresses $9F81 and $9EBD in the
DOS. Then all input/output passes through the
DOS, which checks to see if it is disk related. For
example, "CATALOG" is not a valid BASIC com-
mand, but it can be executed from BASIC while the
DOS is connected, because it is a valid DOS com-
mand. While you are entering BASIC code from the
keyboard with DOS connected, entries are checked
for DOS validity before control is passed to the
BASIC interpreter for command processing. If a

Address Decoding and Input/Output 7-23

BASIC program is actually running, the DOS does
little processing of input or output data except to
check output data for a leading "CONTROL-D"
character. The "CONTROL-D" is a flag which tells
the DOS that a disk related command follows.

Entering PR#2 while the DOS is connected does
not make Slot 2 the primary output slot. KSW and
CSW still will contain $9E81 and $9EBD. The DOS
intercepts the PR#2 and does its own output setting
routine. DOS maintains its own I/O links—we will
call them DOSKSW and DOSCSW. DOSKSW is
$AA55 and $AA56, and DOSCSW is $AA53 and
$AA54. The PR#2 with DOS connected results in
$AA53 and $AA54 being set to $00 and $C2. Slot 2
becomes the secondary output behind the DOS. Ifa
PR#2 is performed from a running program, Slot 2
will probably actually become the primary input
and output device, or it may not become connected at
all, dependingon its $C2XX firmware. If the $C2XX
firmware automatically sets both CSW and KSW to
some value, then DOS will be disconnected and Slot
2 will be connected as primary input and output. If
the $C2XX firmware leaves DOS connected at
KSW, then the first time an input is performed, the
DOS will disconnect Slot 2 and reset CSW to
$9EBD. The way to do a PR#2 from a running
BASIC program and leave the DOS connected is to
doa PRINT CHR$(4); "PR#2". The CHR$(4), CON-
TROL-D, flags the DOS that a disk related com-
mand is following. The DOS type PR#2 is performed,
making Slot 2 the secondary output behind the DOS.

Similar steps must be taken in assembly language
programs. If you change CSW to $9000, then the
first time a character input is called for, DOS will
change CSW back to $9EBD. You can doone of three
things to get around this. You can change CSW to
$9000 and change KSW to $FD1B, disconnecting
the DOS entirely and connecting the keyboard as
primary input. You can modify DOSCSW (AA53/4)
to $9000, leaving DOS connected. You can also store
$9000 at CSW and doa ”"JSR $3EA.” This isa DOS
routine which takes the value you stored at CSW or
KSW and transfers it to DOSCSW or DOSKSW,
then restores CSW and KSW to $9EBD and $9E81.
$3EA is easy to remember if you remember "3
EACH.”

The various peripheral cards can be divided into
three categories: those with onboard firmware at

$CnXX, those capable of being the Apple’s primary
input or output device which have no $CnXX firm-
ware, and those which would normally not be the
Apple’s primary input or output device. The first
category includes such cards as 80-column cards,
smart printer interfaces, remote terminal inter-
faces, and the disk controller. The presence of
onboard firmware with response to the simple PR#n
and IN#n commands should be an important factor
in an Apple owner’s choice among 51mllar commer-
cial products.

The second category of cards is like the first
except the user must load the driving software from
disk or other medium. This driving software will
typically bury itself above "HIMEM" and link itself
to the Apple via CSW and KSW or DOSCSW and
DOSKSW. This is a definite step down in conve-
nience from smart cards with firmware at $CnXX
and possibly $C800-§CFFF. The program at §CnXX
goes a little beyond offering the convenience of
PR#n and IN#n commands. Commercial programs
such as word processors, assemblers, and data base
managers allow records to be output to any slot, if
the slot has a $CnXX driver. These programs usu-
ally make no provision for lmkmg output toa RAM
address.

The third category of cards is not normally linked
tothe Apple via KSW and CSW. A 16K RAM card is
not a conventional I/0 device but simple memory
expansion. A 128K card, however, may come with
an associated disk emulator program which does get
linked. The DM A based manual controller shown in
Figure 4.8 is a device which would not be thought of
in connection with the links. A secondary MPU card
would not be linked. A speech synthesis card might
be linked, but it would just as often be driven by
special purpose subroutines in a larger program.

Understanding which of the three categories the
cards in a given Apple fall into is a big step in
understanding what is going on in that Apple. The
concept of peripheral slots integrated with the bus
structure of the motherboard is so powerful that the
"spirit” of the Apple may be under the control of any
card or associated control program. When the con-
trol breaks down and things do not function as they
should, the owner has only his own intellect to fall
back on to sort things out. Know your peripheral
cards; know your motherboard; know your operat-
ing systems; know your Apple.

7-24 Understanding the Apple i

SOFTWARE APPLICATION

PROGRAMMING THE GAME PADDLES

The PREAD routine of the monitor is pointed out
by the Apple II Reference Manual as a convenient
subroutine for reading any of the four paddle inputs
to the Apple. Actually, PREAD is used by the
Applesoft and Integer BASIC PDI(n) expressions,
and it is called by many programs you might pur-
chase for the Apple. There are some limitations to
PREAD which are not irreversible limitations of
the Apple. They’re just weaknesses in a program.
This Application Note explores the PREAD routine
and illustrates some alternate programming
methods for reading the timers.

PREAD is designed to read the paddle whose
number (0-3) is contained in the X-register. For
instance, if you want to read Paddle 1, you place 1 in
the X-register and doa"JSR$FBI1E.” PREAD will
return with the Accumulator serambled and a
number from 0 to 255 in the Y-register which
represents the position of the paddle. The way
PREAD works is this:

1. It begins by triggering the four timers (LDA
$C070).

2. After 10 cycles, it begins polling the pertinent
timer ($C064,X) in an eleven cycle loop. The
Y-register is incremented in the loop and thus
accumulates the number of loop executions.
Program flow exits from PREAD when the per-
tinent timer is found to be reset.

3. If the polling loop is executed 256 times, the
routine is exited immediately with 255 in the
Y-register.

The PREAD comment in the monitor listing says
"COUNT Y-REG EVERY 12 USEC.” This is not
true; the Y-register counts approximately every 11
microseconds. Possibly the programmer made an
error when computing the execution eycles of the
instructions involved, and possibly the comment is
the only error. The routine may have originally been
written for 12 cycle loops then changed to 11 eycle
loops because some marginal tolerance components
would not work with 12 eycles. Perhaps they forgot
to change the comment.

The basis of the workings of PREAD is this: you
want a number between 0 and 255 returned. The
timer duration will vary between 2 and 3302 micro-
seconds with a 150000 ohm paddle and a .022 micro-
farad input capacitor. However if the values of both
of these components are 10% low, the timer duration
will vary between 2 and 2673 microseconds. The 256
loops of 11 cycles take 2760 microseconds in the

Apple. 256 loops of 12 cyeles take 3011 microsec-
onds. Eleven cycle loops are a good duration to use
with plus or minus 10% tolerance components, but a
very small number of resistance/capacitance com-
binations might never allow the PREAD routine to
reach a count of 255. It is possible that Apple speci-
fies plus or minus 5% on the capacitors or the poten-
tiometers. Most Apple paddles have a large slack
area on the clockwise side where PREAD returns
255 no matter where you set the paddle. This is
because PREAD allows for component tolerance.
An improved Apple would have a large resistance
trimmer pot across each paddle which would let the
owner calibrate his paddle set to eleven cycle polling
loops.

So the PREAD routine polls the timer in a loop
which takes into account realistic possibilities of
component variation. That is all to the good, and
PREAD is an adequate utility for many purposes.
There are, however, some weaknesses in PREAD.
Try running the following Applesoft program:

13 FOR A = @ TO 500 :
A = PDL(@)
20 B = PDL(1l) :

PRINT A;"---";B :

NEXT :

HOME :
GO TO 10

It simply reads the paddle inputs and prints them.
The FOR/NEXT loop is a short delay to minimize
screen flicker. With the program running, leave
Paddle 1 fully clockwise and change Paddle 0 to
some low setting. The result is that Paddle 0 inter-
feres with Paddle 1. This is because all four timers
are triggered every time $C07X is accessed. In the
Applesoft program, the ”A=PDL(0)” causes PREAD
to be called with 0 in the X-register. This triggersall
four timers, and when the Timer 0 pulse is short, the
PREAD routine is exited in a relatively short period
of time. However Timer 1 will still be set if Paddle 1
is further clockwise than Paddle 0. When the
"B=PDIL(1)" statement is executed, PREAD is
entered with X=1, and the timers are triggered
again. However the timer pulse may still be high
from the previous PREAD routine which read
Timer 0, and the timers are not retriggered by
CO07X if they have not yet reset from the previous
trigger. This means that the Timer 1 pulse will be
dropping after a short period of time after PREAD
is entered, even though Paddle 1 is a long ways
clockwise.

Address Decoding and Input/Qutput 7-25

There are two ways which this sort of interference
may be avoided in BASIC programs. One is to
always insure there is a time delay between reading
different paddles. It does not take much in BASIC.
"15 FORC=0TO0: NEXT” in the above program
does the trick, or just insert a few instructions
between PDL(n) expressions. The second way is to
poll the timer in BASIC to make sure it is reset
before trying to read it. In the above program: 15
IF PEEK(-16283) > 127 THEN 15.” Actually, the
delay in this last cure is probably long enough to
ensure that Timer 1 is reset by the time -16283 is
actually examined, but you will be sure if you use it.

The interference between timers is more pro-
nounced when calling PREAD from assembly lan-
guage programs. This is because machine language
is so fast that hundreds of instructions can be exe-
cuted after a PREAD routine, and some of the
timers may still be set. It is also possible for a
PREAD to a timer to interfere with a subsequent
PREAD to the same timer. Consider the following
program sequence:

LDX #0

JSR PREAD
JSR PREAD
STY SAVEP®O

You may have wanted to cause a paddle variable
delay with this sequence. Now if Paddle 0 is fully
clockwise, the first PREAD is done normally, but
the second one returns a low value instead of 255.
This is because the first PREAD is exited as soon as
256 polling loops have been performed. Timer 0 is
still set though, and it is therefore already set when
the second PREAD isentered. Theresultisa return
value in the Y-register of 70 or so instead of the
expected 255.

Misreading a timer due to a previous call to
PREAD can be avoided by preceding all calls to
PREAD with a check like this:

LDX
NOTRDY LDA
BMI
JSR

PDLNUM
PDL@,X
NOTRDY
PREAD

This simply waits until a timer is reset before
attempting to trigger and read it. Of course, there
would have been no problem in BASIC or assembly
language if this check had been included at the
beginning of PREAD.

An aspect of PREAD that should be well under-
stood is that it takes a long time and that the time it
takes gets longer as you turn the paddle clockwise.
This can be used to advantage in a paddle variable
delay routine which allows the user to vary execu-
tion speed by adjusting a paddle. More often, the
time delay is a nuisance, causing unwanted time
delays in a computer that can’t afford them. One
way tospeed programs calling PREAD is toonly use
counts 0-63. The paddle tweaker becomes aware
that there is no control when he goes too far clock-
wise and controls his Formula-1 racer with less
paddle range. Average paddle reading time is
reduced by 75% and the sensitivity of the computer
action to the paddle tweaker’s touch becomes greater.
This is tolerable with a paddle set but less tolerable
with a one inch joystick which is already very sensi-
tive to the touch.

Assembly language programmers should not feel
tied to PREAD. PREAD is handy and often ade-
quate, but it’s not the last word in reading paddles.
Figure 7.11 is a program which reads Paddle 0 and
Paddle 1 simultaneously, an obvious capability since
all timers are triggered simultaneously. This paired
paddle poller polls the pair of paddles precisely in 22
cycle loops and therefore returns values equal toone
half of what they would have been if read by
PREAD. The Paddle 0 value is returned in the Y-
register and the Paddle 1 value is returned in the
X-register. The values can each be shifted left for
compatibility with PREAD if this is desirable. The
advantage of reading the two paddles together is
that paddle reading time is cut in half. The full
mechanical range of each paddle is used and the
number returned is 0 to approximately 160. It can
be argued that no resolution is lost since 1/256 reso-
lution exceeds the practical resolution of a 3/4”
diameter carbon potentiometer and possibly the
stability of a 558 timer. In other words, it's hard to
find a point on the pot where the PREAD routine
returns a single value that does not jump back and
forth between readings. It is alsovery hard toadjust
the paddle so as to increase or decrease the returned
value by one. Resolution of 1/160 is easily good
enough for this hardware.

A final recommendation for speeding paddle
reading is to integrate the timer polling with other
program execution. The time delay problem exists
as long as normal program flow must wait thou-
sands of microseconds for a timer to reset. When the
paddles must be read often and speed is important,
it may be necessary to arrange routines so that they
can check the timer states occasionally, only inter-
rupting program flow momentarily. For example,

7-26 Understanding the Apple |

SOURCE FILE:

o009 :
0000
bo0ao:
0000 :
0000 :
o0a:
0200 :
PO0GO -
0eao:
PO00:
0000 :
Peag:
Q006 :
0eae:
eooo:
0000 :
0oea:
00e0:
0goeo:
Ueeo:
0oo0:
co64:
C@65:
ce7a:
o000
0oea:

~mm== NEXT

1F@a:

1F@@:AD
1F@3:A2
1F@5:A0
1F@7:48
1F@8:68
1F@9:24
1F@B:AD
lF@GE: 1@
1F10:EA
1F11:C8
1F12:AD
1F15: 30
1F17:10
1F19:E8
1F1A:4C
1F1D:

1F1D:

1F1D: 24
1F1F:AD
1F22:30
1F24:60

*** SUCCESSFUL ASSEMBLY:

70
00
1]

a0
64
@D

65
@2
F@

@B
6o

65
F5

ce

ce

co

co

SIMULREAD

1_ AhkAhhkhkhkhkhhkhkhkhhkhkhkdhkhkhhhkhkhrhbhhhhrhbhkbhhhkhhbhhhhrhkhhrhbhhhhbhhkhhkkk
2 * *
3 % *
4 * SIMULTANEOUS READ OF PADDLE-@ AND PADDLE-~1 *
5 * *
6 * BY JIM SATHER *
7 - %
g8 * 1/24/83 ®
9 * .
16 * *
l]_ khhkhkhkhkhkhkhkhhkhkhkhbhkhkhhhbhbhhhhbhkhkkhkhrhbhhkhrhhkhkhhhkhbhkhhbhhbhhkhthkhhkhkhhk
12 * '

13 *

14 * PADDLE-@ DIVIDED BY 2 IN Y-REG

15 * PADDLE-1 DIVIDED BY 2 IN X-~REG

16 *

17 * SIMULTANEOUS READ PROGRAM LOOP IS 22 CLOCKPULSES.

18 *

19 * MONITOR PREAD ROUTINE PROGRAM LOOP IS 11 CLOCKPULSES.

20 *

21 *

22 PDL@ EQU $C064

23 PDL1 EQU SC@65

24 PTRIG EQU $C@7¢

25 *

26 *

OBJECT FILE NAME IS SIMULREAD.OBJO

27 ORG S1F@Q

28 DOIT LDA PTRIG

29 LDX #0

30 LDY #0

31 PHA GIVE SOME SPACE FOR COUNT = @
32 PLA

33 GOTPDL1 BIT S0

34 CHKPDL@ LDA PDL®

35 BPL GOTPDL®

36 NOP

37 INY

38 LDA PDL1

39 BMI NOGOTS

40 BPL. GOTPDL1

41 NOGOTS INX

42 JMP CHKPDL®

43 *

44 *

45 GOTPDL@ BIT S0

46 LDA PDL1

47 BMI NOGOTS

48 RTS

NO ERRORS

Figure 7.41 Assembler Listing: A Paddle Read Program.

Address Decoding and Input/Output 7-27

suppose that you are computing HIRES plot coordi- ~ about 1/33 which really is sufficient for many tasks.
nates in a 100 cycle loop. At the end of each loop, you Of course, this would be a complicated program, but
can check the previously triggered timer tosee if it the results would be rewarding. Complicated pro-
has reset yet and increment a counter if it hasn’t. grams are within the capabilities of any reader of
You wind up reading the timer with a resolution of this book who has the time and the urge.

7-28 Understanding the Apple I

HARDWARE APPLICATION

EXTENDING THE GAME |/O SOCKET

Have you ever seen an Apple with two joysticks
plugged in? Why not? It's a capability of the Apple.
The answer is that when a standard joystick or pad-
dle set is plugged in to the game I/0 socket, the pins
for one pushbutton input, two paddle inputs, four
annunciator outputs, and the C040 STROBE’ be-
come inaccessible. Several game I/0 extenders are
available commercially. This Application Note
shows two extension circuits you can build yourself.
One is simple, allowing you to plug a joystick or
paddle set in and still have a 16-pin DIP socket
available with the remaining I/O pins accessible.
The other is more complex, allowing you to have two
paddle sets and two joysticks simultaneously con-
nected with switched control between paddles or
joysticks. This game I/0 extender also contains an
extension socket for connection to other devices.

Let's look at the simpler circuit first. It is pictured
in the photos of Figure 7.12. What this is is a paddle
set with an extension socket soldered on top of its
16-pin plug. Pins 6 and 10 are removed from the
upper socket because these are the PADDLE 0 and
PADDLE 1 inputs which are being used by the
paddle set. PUSHBUTTON 0 and PUSHBUTTON
1 are fed to the extension socket even though they

are used by the paddle sets. Switch inputs can be
paralleled, so one of several switches can operate a
given pushbutton input. Potentiometers, however,
cannot be connected simultaneously to a timer
input. They would interfere with each other.

The benefits of the extension socket are obvious,
but the modification must be performed carefully to
ensure mechanical strength. The first step is to buy
a high quality 16-pin DIP socket. You will also need
to buy a 16-pin plug and cover like the one used on
Apple paddle sets. We assume that the plug to be
modified on the paddle set or joystick is so thor-
oughly glued and sealed that you cannot hope to
solder a socket to it. Here is the procedure to mount
the extender socket on vour paddle set:

1. Separate the cover from the plug on your paddle
set. If you think you can solder a socket to this
mess, proceed to step 6.

2. If you cannot salvage the old plug, remove the
two 560 ohm resistors from it and cut the wires
from it which lead to the paddles.

3. Strip one inch of the outer insulation from the
wire bundle going to each paddle. This exposes
three insulated wires in each bundle. If Appleis
consistent, the green wire goes to+5V, the white

Figure 742 A Modified Game I/O Plug.

Address Decoding and Input/Qutput 7-29

5V WIRES 1

BUTTON-0 WIRE |2

BUTTON-1WIRE |3

PADDLE-0 WIRE |

!

T0

s
B

h
I
ﬂﬁ
ﬂ

0| PADDLE-1 WIRE
9

(]

l

T0

PADDLE PADDLE

0

1

Figure 7.43 Wiring a Paddie Set Plug.

wire is the pushbutton wire, and the black wire
is the paddle wire. This should be verified with
an ohmmeter. With the ohmmeter, find the two
wires connected to the pot. The resistance across
them will vary between 0 and 150,000 ohms as
the paddle is turned. The wire left over is the
pushbutton wire. Now find which wire is shorted
to the pushbutton wire when the pushbutton is
pressed. This is the 5 Volt wire, and the other
wire is the paddle wire.

. Cut the paddle wires for each paddle back 1/2
inch. Leave the other four wires at their present
length. Strip 1/8 inch of insulation off the end of
all six wires.

. Figure 7.13shows the wiring of the plug. Install
the two 560 ohm resistors first, making sure the
leads do not extend very far beyond the solder
posts. Connect the wires and solder. Use a low
wattage iron and do not overheat the pins or the
plastic base will be damaged. Insert the plug
into a spare socket while soldering to keep the
pins aligned if the plastic becomes soft from
overheating.

6.

10.

If necessary sand down the corner of your socket
so the plug cover will slip over it. Pull pins 6 and
10 out of the socket or cut them off if the plastic
is molded around the pins.

Fit the socket over the paddle set plug and hold
this assembly lightly together in a soft jawed
vise. All wires should be dressed inside the pins
of the socket and the socket pins should be out-
side of the plug pins. Solder the fourteen pins of
the socket to the appropriate pins on the plug.

. Check out the operation of your paddle set and

extension socket.

. If you desire, fill the area between the plug and

expansion socket with epoxy or a sealant like
RTV. This will give your assembly more mechan-
ical strength. Do not seal the assembly until you
are certain it works correctly.

Cut the top off the plug cover so the topless plug
cover is 5/16” high. Cut out a small notch for the
wires to pass through. Slip the cover over your
assembly and glue it on with a small amount of
epoxy cement. Remember that you may want to
get back in there some day.

7-30 Understanding the Apple Il

Figure 7.14 This Game I/O Extender Can Support Two Sets of Paddles and Two Joysticks Simultaneously.

PADDLE A PADDLE B

| ® @ ®

JOYSTICK CONFIGURATION 1 JOYSTICK CONFIGURATION 2
JOYSTICK A JOYSTICK B JOYSTICK A JOYSTICK B

© 0O |©® O ©@ o |©TO

Figure 715 Game I/O Extender Configurations.

Address Decoding and Input/Output 7-31

INPUT EXTND PDLA PDLB " JSTKA JSTKB
5V 1 0 —O- O —O0— O 0
C040 5 o———o0 —O -0 O -0
GROUND 8 O— O O- -O- -O —0
NC 9 O—D— —D— o "
AN3 12 O- -0 O —0 0 —0
AN2 13 O o— - 0 —0= 0
ANt 140 —5— o o 0 —o
ANO 15 O 5 S -
PBO 2 (O
PB1 3 0———0
PB2 g 63 85

SHIFT KEY MOD

SHIFT 16 o—;\c = &
PDLO §O—O0———<1" ' O 0 P
ppL1 10 O———O0—4" | © / A -
pPDL2 7 o————o———wrﬂ—_t/ / 0 , o] o]
POL3 11 O— 0 e i v’ o 0 o}

S1

S2

Figure 7.46 Schematic: Game |/O Extender.

Figures 7.14 and 7.16 are photos and a schematic
diagram of the more ambitious game I/0 extender.
This unit is meant to sit outside of the computer case,
connected to the game I/0 socket via a 16-pin DIP
jumper. It is basically six 16-pin sockets wired
together with some configuration switches. The
scheme is this: two of the sockets are meant for
paddle sets. One of the paddle sockets is connected
normally but the other is connected so a standard
paddle set will control Timers 2 and 3. Two of the
sockets are meant for joysticks. The joystick sockets
are wired so all four timers are utilized by two joy-
sticks. Switch S2 places the joysticks in one of two
possible configurations as shown in Figure 7.15. The
paddles and joysticks may be connected at the same

time. Switch S1 enables either the joystick or the
paddles.

A third switch is necessary if you have a button
connected to PUSHBUTTON 2 and the SHIFT key
mod is installed. The SHIFT key mod works by
connecting the SHIFT key to PUSHBUTTON 2,
but neither the SHIFT key mod nor a pulled down
pushbutton will work if both are connected to
PUSHBUTTON 2 at the same time. The game /O
extender allows you to have both installed by select-
ing between them via S3. The normal SHIFT key
mod is to connect one of the SHIFT keys to pin 4 of
the game I/0 socket. With the game I/O extender
the SHIFT key should be connected to pin 16 (nor-
mally not connected) of the game I/O socket. Then

7-32 Understanding the Apple I

switch S3 can select between pin 16 and a paddle or
joystick pushbutton for routing to the PUSHBUT-
TON 2 input.

The construction technique is to mount the six
sockets on a general purpose IC board. Use the type
with feed through solder holes so wires can be con-
nected on both sides of the board. The board is
mounted in a case with six holes which the sockets fit

through. A nibbling tool is good for cutting the
holes. The installation procedure is: install the
sockets in the board; wire the board and switches as
shown in Figure 7.16; mount the board and switches
in the case. The appearance of your extender will
vary with your selection of switch styles and enclo-
sure. Enjoy your extender. It's really pretty handy.

Address Decoding and Input/Output 7-33

HARDWARE APPLICATION

USING PADDLES AND JOYSTICKS NOT DESIGNED FOR THE APPLE

Suppose you see a special on 100,000 ohm joysticks
at your local electronics store and wanted to plug
one into your Apple. Could you do it? Sure you could,
but you'd need to make a little modification to your
Apple so the nonstandard joystick would work with
PREAD.

The modification is to change capacitors C7 and
C8, the Timer 0 and Timer 1 input capacitors so the
two timers will output 2760 microseconds pulses or
greater when the joystick is against the high resis-
tance stop. This will allow PREAD to return a value
in the range from 0 to 255. If your joysticks are
exactly 100,000 ohms, the required capacitance
value is 2760/100000 = .027 microfarad. The closest
standard capacitor value higher than .027 is .033
mierofarad so this is the value you would install.
This would give the identical time constant that is
found in a standard paddle set with unmodified
motherboard (150000 x .022 = 100000 x .033).

You can buy 16-pin DIP plugs with covers just like
they use on the Apple paddle sets. One mail order
supplier that carries them is Jameco Electronics,
1355 Shoreway Road, Belmont, CA., 94022. You can
wire your joystick to this plug and glue the cover on
for a clean installation. The paddle schematic in
Figure 7.5 should be your guide to connecting the
joystick (see also Figure 7.13). The vertical pot
should be connected between pin 10 and pin 1. The
horizontal pot should be connected between pin 6
and pin 1. Pushbutton connections will depend upon
what type of switches your joystick has. It will most
commonly have normally open, on/off, momentary
switches just like the Apple paddle set. These
require a 560 ohm pull down resistor to pin 8 which
can be installed on the DIP plug.

You may also wish to install small calibration
potentiometers across the main pots so you can
exactly calibrate your joystick to PREAD. A good
calibration pot, in the case of 100,000 ohm paddles
and .033 microfarad capacitors, would be a one
megohm pot. You could calibrate a given Apple/
joystick combination with a calibration pot, then
measure the pot to get a calibration resistance. Then
you buy a fixed resistor of this value and solder it
across your main joystick potentiometers. Your cali-
bration program, written in BASIC, simply reads
the joystick and prints the values on the screen. You

push the joystick into the vertical or horizontal stop
as appropriate and adjust the calibration pot so the
screen just reads 255.

You can also calibrate a standard Apple paddle
set so there is no unused 255 slack at the clockwise
end. This is done by taking the paddle apart and
connecting a 1.5 megohm calibration pot across the
two connected terminals of the 150,000 ohm pot.
Run a paddle read and display program and adjust
the calibration pot so 255 is just displayed when the
paddle is fully clockwise. Then measure the calibra-
tion pot with a high resistance ohmmeter (a digital
volt/ohm meter works) and solder the equivalent
fixed resistor across the 150,000 ohm pot.

Here's another suggestion for a modification to a
paddle set or joystick. If Timer 2 and Timer 3 are not
connected to anything in your Apple, why not con-
nect fixed resistors from their input pins to 5 Volts.
This will give you two fixed timing references for
programming use, a poor man’s real time clock. For
example, a 4700 ohm resistor would give a 100
microsecond time reference, and a 47,000 ohm resis-
tor would give a 1000 microsecond reference. The
exact duration of the fixed time references in any
machine could be determined by PREAD.

To install these fixed resistors, buy a new 16-pin
DIP plug and cover like the ones already connected
to the paddle set. Then pry the cover off the old
paddleset plug. If the old plug is full of glue or if you
damage it prying it apart, you will have to use your
new plug, wiring it identically to the old plug.
Solder a4700 ohm resistor between pins 7 and 1 and
solder a 47,000 ohm resistor between pins 11 and 1.
This makes Timer 2 the 100 microsecond reference
and Timer 3 the 1000 microsecond reference. Glue
the cover back on and you're on the road.

Rebuilding the plug is also a cheap way of extend-
ing the game I/0 socket. If you've got an input or
output you wish to connect in addition to a paddle
set, pry or cut the cover off the paddle set plug and
solder your add-on device directly to the appro-
priate pin. Your paddle set is now a combination
paddle set/light pen or whatever. Reiterating, be
sure you have a spare plug before you start prying
apart the old one. You may well destroy the old plug
because of the big glob of glue they use when they
put the plug together.

7-34 Understanding the Apple |l

HARDWARE APPLICATION -

MODIFYING THE KEYBOARD SO CTRL AND RESET MUST BE PRESSED

TO CAUSE A RESET

A notorious foible of the original Apple II was the
location and shape of the RESET key. It sits next to
the dash/equal key and the RETURN key where it is
often accidentally pressed by the operator causing
aggravation, crashes, and fear of equal signs. Addi-
tionally every one year old offspring of a thousand
home enthusiasts learned where the button was that
caused all the commotion. It was bad enough that
various RESET lockout schemes were sold com-
mercially, and Apple competitors advertised that
you couldn’t hit their RESET key accidentally. The
author used to keep a cardboard cover over his
RESET key and, to this day, does not reach for the
upper right hand corner of the keyvboard without
second thoughts.

Apple pretty well solved the problem in the Apple
IT Plus by installing the CTRL-required slide switch
on the keyboard. If this switch is in the correct posi-
tion, both CTRL and RESET must be held down
simultaneously to make RESET’ go low. This nicely
prevents accidental RESETSs and takes little get-
ting used to. The purpose of this Application Note is
to show how to modify older keyboards so CTRL will
be required to make the RESET key function.

As Figure 7.7 shows, both the CTRL switch and
RESET switch operate by placing aground onaline
pulled up by a resistor. The modification consists of
removing the ground connection from the RESET
switch and connecting the RESET switch to the
CTRL line. After this, the RESET switch causes the
RESET' line to go low only if the CTRL line is low.

The ground is removed from the RESET switch
by eutting current traces on the keyboard PC card
and wire jumping the broken ground path around
the RESET key. Then another wire jumper con-
nects the CTRL line to the RESET switch. The
ground connection should be made with a heavier

gauge wire since ground for the entire keyboard
will flow through this wire. 22 gauge wire is heavy
enough. The wire jumpers can be connected to pins
extending through the PC board, and they should be
soldered. Keep wire length as short as possible so
wires will not hang loosely. The following is an
installation procedure:*

1. Separate the bottom assembly from the white
case following the procedure in Appendix J.

2. Remove the keyboard from the case by remov-
ing the three serews on either end.

3. There are two ground traces which must be cut,
one on each side of the PC board. Their location
is shown in Figure 7.17. Cut these two traces
with a pocket knife, verifving discontinuity. As
shown in Figure 7.17, one trace must be peeled
back slightly to form a little tail to which a wire
can be connected and soldered.

4. Solder a jumper between pin 8 of the 16-pin DIP
jumper socket and the peeled back ground
trace. This wire should be 22 gauge.

5. Solder a jumper between the right terminal of
switeh 13 and pin 13 of U1 as shown in Figure
7.17.

6. The installation is complete. Operation can be
verified by setting the keyboard on an insulated
surface next to the base assembly, connecting
the keyboard jumper to the motherboard, and
applving power. After verification, disconnect
the keyboard from the motherboard, install the
keyboard in the white case, and install the base
assembly on the white case. Don't forget to
reconnect all wires, including the kevboard
jumper.

*Please read the NOTE OF CAUTION at the beginning of the
book before making any modification to your hardware.

Address Decoding and Input/Output 7-35

CONDUCTOR SIDE

Jumper wires

A
0000QC0000

o) o}

o}
o) 0
o (@]
o o]
0 o]
o} (@]

Keyboafd Cut trace
jumper
socket /
U1
SN7400

Figure 7.47 The CTRL-RESET Modification, for Older Keyboards.

COMPONENT SIDE

Cut trace

Keyboard
jumper
socket

7-36 Understanding the Apple |l

HARDWARE APPLICATION

MAKING THE SHIFT KEY MODIFICATION

When the Apple was first put together, its designer
could hardly have envisioned the variety of purposes
for which his ereation would be used. He obviously
did not envision word processing as an Apple task,
or he would have included an upper/lower case key-
board and an 80 column text display. Undaunted,
thousands of people use the Apple for word process-
ing anyway, and make the Apple an acceptable
word processing computer by installing an 80
column video board and the SHIFT key modifica-
tion.

The SHIFT key mod was the bright idea of some
forgotten soul who noted that the PUSHBUTTON 2
input to the game I/0 socket was rarely used. He
connected the SHIFT key output to pin 4 of the game
I/0 socket and interpreted PUSHBUTTON 2 as
determining upper or lower case for alphabetic
input from the keyboard. This modification has
become significant because most word processing
programs support it, allowing persons to enter
upper and lower case to word processors via the
SHIFT keys. The monitor GETLN routine, of course,
does not support the SHIFT key mod, so BASIC still
will communicate with the keyboard only in upper
case.

The SHIFT key mod will not work if a pulled
down pushbutton is also connected to the PUSH-
BUTTON 2 input. This is because the SHIFT key
line is pulled up, and you cannot wire-OR a pulled up
line and a pulled down line. For this reason, some
joysticks with three buttons will be incompatible
with the SHIFT key mod.

The SHIFT key mod is most easily installed on the
Apple II Plus. This is because the SHIFT' line is
highly accessible on the exposed pins of PLUG 1,
which connects the main keyboard PC card to the
keyboard encoder card . This plug can be seen by
removing the Apple’s cover and looking in from the
rear. The SHIFT' line is pin 24, the second pin from
the left. Take a wire which is terminated on both
ends with a spring loaded clip. With the computer
turned off, clip one end to pin 24 of PLUG 1. Remove
your joystick or paddle set from the game I/0 socket
and clip the other end of the jumper to pin 4 on the
joystick plug. Reinsert the joystick or paddle set
with the clip attached and you're finished.

Here is a method which takes a little more work
but is more usable. Take a wire which is terminated
on one end with a spring loaded clip. Solder the

other end to the base of pin 4 on a high quality 16-pin
DIP socket. Clip the spring elip to pin 24 of PLUG 1
and insert the socket into the game I/O connector.
Other devices may then be inserted into the socket.
The SHIFT key mod is more difficult to install on
the older keyboards predating the Apple II Plus.
There is no convenient exposed pointon the SHIFT’
line to which a spring loaded clip can be attached.
You may solder a wire directly to Key 42 or Key 53
and connect the other end to pin 4 of the game [/O
socket. Whatever connection method is used should
allow the jumper to be easily disconnected in case
the white enclosure needs to be separated from the
base assembly. The method shown here is to connect
the SHIFT' line to the game I/O socket using a spare
line on the 16-pin keyboard connector. This takes a
little effort, but when you're finished the SHIFT key
mod is fully integrated with the Apple mechanical
package with no loose wires to be connected or dis-
connected. Here is the installation procedure:*

1. Separate the bottom assembly from the white
case following the procedure in Appendix J.

2. Remove the keyboard from the white case by
removing the three secrews on either end.

3. Lay the keyboard face down and solder an insu-
lated wire jumper between Key 53 and pin 4 of
the keyboard connector as shown in Figure 7.18.

4. Remove the motherboard from the base assem-
bly following the procedure in Appendix J.

5. Place the motherboard bottom side up and
solder an insulated wire jumper between pin 4
of the game I/0 socket and pin 4 of the keyboard
socket asshown in Figure 7.18. This wire can be
held tightly to the motherboard with spots of
glue. A hot glue gun works well for this purpose.

6. Reinstall the motherboard on the base assembly.

7. The installation is complete. Operation can be
verified by setting the keyboard on an insulated
surface next to the base assembly, connecting
the keyboard jumper to the motherboard, and
applying power. After verification, disconnect
the keyboard from the motherboard, install the
keyboard in the white case, and install the base
assembly in the white case. Don’t forget to
reconnect all cards and wires, including the
keyboard jumper.

*Please read the NOTE OF CAUTION at the beginning of the
book before making any modification to your hardware.

Address Decoding and Input/Qutput 7-37

CONDUCTOR SIDE OF
KEYBOARD PC CARD Awe
© VIDEO 4 CASSETTE
oocooooo KEYBOARD OuT I'IN
4 JUMPER CASSETTE CONDUCTOR SIDE OF
O ocoooqooo SOCKET ouT MOTHERBOARD
5 (BOTTOM SIDE UP)
e 3 JI4
/ 48 § GAMEI/O
¢ SOCKET
O Wire
Jumper % Long wire jumper
. D /

Wire jumper is held
close to the
motherboard with
beads of glue.

A7
KEYBOARD
4E JUMPER
g SOCKET

Figure 7.18

There is an alternate method to the SHIFT key
mod for obtaining the upper/lower case alphabet
from the keyboard in the Apple II Plus. The key-
board encoder ROM is fully programmed for upper
and lower case in the II Plus, and thereare holes and
connections for a slide switch to enable or disable
alphabetic shifting. The switch connections are
normally jumpered so alphabetic shifting is dis-
abled. You can change the configuration so that
alphabetic shifting is enabled, or you can mount a
slide switch and disable or enable alphabetic shift-

Installation of SHIFT Key Mod, for Older Keyboards.

ing at your pleasure. Even though the keyboard will
output upper and lower case ASCII tothe MPU, the
monitor GETLN routine assumes everything is
upper case only. The keyboard will communicate in
upper and lower case only to the limited number of
programs written for the Apple which look for
lower case alphabetic ASCII in the keyboard input.
Your word processor may or may not support this
capability in addition to the more prevalent SHIFT
key mod.

7-38 Understanding the Apple I

2. o lhefe
5
i

Cut here

Install side-mounted,
2 pole, 2 throw switch

Figure 749 Enabling Lower Case, Apple Il Plus.

A drawback to consider when enabling alpha-
betic shifting this way is that you will have to press
SHIFT in addition to I, J, M, and K to make CUR-
SOR moves in the ESCAPE mode. This is another
case of a hardware capability being minimized by
lack of program support. Of course, you can easily
install the switch then disable alphabetic shifting if
you find its use is not convenient in your system.
Here is a procedure for enabling alphabetic shifting
on the Apple II Plus keyboard:*

1. Separate the base assembly from the white case
following the procedure in Appendix J.

*Please read the NOTE OF CAUTION at the beginning of the
book before making any modification to your hardware.

. Lay the white case upside down on a soft sur-

face. Remove the small electronic assembly
board from the main keyboard PC card by
pinching the two white plastic retainers while
working the board off.

. Orient the small board so the holes marked S2

are as shown in Figure 7.19.

. Cut the two bow tie solder jumpers with a pocket

knife. Verify discontinuity.

. Install a miniature double pole, double throw

slide switch in the holes and solder.

. Reinstall the small board on the main keyboard

PC card. Install the motherboard base assembly
back on the white case. Be sure to connect all
cards and wires including the 16-pin keyboard
jumper.

Address Decoding and Input/Qutput 7-39

HARDWARE APPLICATION

INSTALLING A VOLUME CONTROL ON THE APPLE’S SPEAKER

Did you ever wish you could turn down the com-
puter tooter on your Apple when the family was
sleeping, but you were being a midnight computer
fool? How did I guess? Here are two suggestions on
how to silence your Apple. They are illustrated in
Figure 7.20.

First, you can connect a 2500 ohm or greater
potentiometer in series with the speaker. This
potentiometer should be mounted on the case where
you can reach it, in a slot in the back or in a hole you
drill near the keyboard perhaps. You need to con-
nect the pot to one of the two speaker wires using
some sort of plug/jack rig. Don’t solder wires directly
from case mounted components to base assembly
components. Make it so the pot can be easily un-
plugged. Buy any sort of two wire plug jack connec-
tion. Break one of the speaker wires at a convenient
place, and connect the two resulting wire ends to the
terminals of your jack. Your jack may be perma-
nently attached to the base assembly. Connect two
wires to your plug, then connect the other ends to the
center terminal and one side terminal of the potenti-
ometer. Make certain volume increases as the pot is
turned clockwise. If necessary reverse the pot con-
nections. Mount the pot, put a knob on it, join your
plug and jack together, and you're done.

Aneasier alternative isavailable if your television
or monitor has an audio input jack to an ampli-
fier/speaker associated with a front mounted volume
control. You can disconnect the Apple’s speaker and
rig a connection between the Apple audiosignal and
the audio input to your external amplifier. Unfortu-
nately, the speaker jack mounted on the mother-
board is unsuitable for connection to most audio
amps, because one pin is connected to 5 Volts. The
circuit is not meant to drive an audio amplifier.

A suitable signal for connection toan audioamp is
the signal at the cathode of CR1. You can tap into
this signal as follows:*

1. Remove power from the Apple.

2. Cut a length of twin lead wire long enough to
reach from the motherboard to your amplifier
input. This wire should be terminated on one
end with a plug which will fit into your ampli-
fier input jack.

3. Locate CR1, which is marked IN914 or CR1 on
the motherboard. It is situated between the
game I/O socket and the cassette output jack
close to integrated circuit J13 (see Figure 7.20).

4. You have two cut wire ends on your connecting
lead. One is a ground lead which goes to the
grounded portion of your audio input plug.
Wrap the ground lead around the anode of CR1
and solder. The anode is the end of CR1 which is
away from the game I/0 socket.

5. Wrap the other lead around the cathode of CR1
and solder. The cathode is toward the game I/0
socket.

6. Disconnect the Apple speaker from the mother-
board, wind the wire up in a coil, and tape it to
the base assembly.

. Plug vour connecting lead into the audio amp,
turn the Apple and audio amp on, and verify
operation. If the Apple won't turn on, turn the
power switch off immediately. You probably
have the leads in backwards, or you may have
the Apple connected to another grounded device
with the wires backwards. Determine which
leads are reversed and swap them out in the
most convenient place.

*Please read the NOTE OF CAUTION at the beginning of the
book before making any modification to your hardware.

-J

7-40 Understanding the Apple Il

CASSETTE
ouT
a
2500 potentiometer
mounted near
keyboard
CONNECTOR TO
User supplied plug & jack . AUDIO AMP
J13 |2 E '
LS74|"

J14
Motherboard % GAME

speaker 1/0
connector

Figure 720 Two Volume Control Methods.

The marriage of data processing and video dis-
play technology has been one of the most important
developments in the advance of computers. Com-
bined with the keyboard, the video display provides
a direct communication link between people and
computers that makes the old, expensive, physically
large computers seem to be just machines. Imagine
communication with your Apple using a teletype
terminal with no video display. How would that
affect important applications like word processing,
spread sheet accounting, data base management,
graphies display, and Donkey Kong? Without video,
the Apple wouldn’t be worth owning.

Of course, the Apple does have a video display
capability, and a large portion of the motherboard
hardware is related to the generation of video. We
have seen in other chapters that many features of
bus structure, timing, and RAM addressing in the
Apple II are dictated by the fact that the dissimilar
tasks of stored program execution and videodisplay
generation are performed simultaneously in this
computer. Additionally, the video scanner and
video generator are functional areas that exist for
the sole purpose of making up the video display. All
of these functional areas are interconnected in a

chapter 8

Video' Generation

scheme which allows Apple programs to control the
video output.

Figure 8.1 is a simplified diagram of the video
display control processes of the Apple. As Figure 8.1
shows, the MPU controls the output of video in a
very indirect way. Under direction of the control-
ling program, the MPU sets the screen mode, com-
putes a correct address in memory, and stores
selected code at that memory address. In so doing,
the MPU is setting up a small area of the screen
map. The extent of MPU, and, by extension, pro-
grammer involvement in outputting video consists
entirely of setting up this screen map. The actual
output of video is controlled by the video scanner
which scans memory and drives out the map, and by
the video generator which processes the map to pro-
duce the VIDEO signal. You can actually stop the
MPU by pulling READY or DMA'’ low, and the
Apple will continue to output the video to the screen
under the control of the map which was set up by the
MPU before you stopped it.

Compare this indirect MPU involvement to a
printer output port where the MPU—under pro-
gram control as always—actually stores coded data
at a special address to output it to the printer. The

8-2 Understanding the Apple ||

MPU
(Chapter 4)
PHASE 0 MAP
ADDRESS DATA
IN
PHASE 1
VIDEO ADDRESS | SUAECH
SCANNER
(Chapter 3) RAM
(Chapter 5)

MAP DATA FROM

SCANNER ACCESS
TO RAM
VIDED VIDEO SIGNAL D
GENERATOR
(Chapter 8) VIDED
DISPLAY

Figure8.1 The MPU,Video Scanner,RAM,and Video Generator All Playa Part in Creating the Video Display.

sneaking access to RAM by the video scanner is an
example of DMA, which is like some one else sleep-
ing with your spouse. RAM in the Apple is very
promiscuous. It goes to bed with the video scanner
every other night. Then on most off nights, it goes to
bed with the MPU. The MPU has no idea what
unfaithful RAM is up to during PHASE 1.

The video generator must take the offspring of the
scanner/RAM affair and interpret it as text, LORES
graphics, or HIRES graphics to produce a signal
which causes a television or monitor to produce the
computer display. This signal is referred to as the
VIDEO signal, and it is one of the more complex
signals in the Apple. The purpose of this chapter is

to discuss the nature of the VIDEO signal, how it is
produced in the video generator, and operational
features of the Apple II resulting from the way the
VIDEO signal is produced. Other chapters of the
book contain detailed descriptions which are impor-
tant in achieving a broad understanding of how the
tasks of video generation and program execution
are intergrated in the Apple II. These include des-
criptions of overall video generation (Chapter 1),
video scanning within the context of bus structure
(Chapter 2), the video scanner (Chapter 3), and
RAM addressing (Chapter4). The subject at hand is
the video generator, and we begin our discussion
with a description of the Apple II VIDEO signal.

Video Generation 8-3

THE APPLE VIDEO OUTPUT SIGNAL

Let's watch a television show for a minute; how
about...Taxi? That Louie is really something. The
picture we see originates with a camera which out-
puts composite video, a signal composed of picture,
synchronization, and color information. This signal
is routed to a transmitter which modulates a radio
frequency signal with the composite video and with
audio from a microphone. The radio frequency sig-
nal is distributed nationwide to local stations which
transmit the signal to receivers in their area. The
television in your home is a receiver/processor
which extracts the audio and composite video from
the radio frequency signal and processes it to form
the picture we see and the sound we hear.

The previous paragraph could be describing tele-
vision in any number of countries or continents in
the world which broadcast television signals based
on similar principles. The exact details of various
signals vary, however, among several standard sys-
tems used in various areas of the world. The Ameri-
can standards were formulated by the NTSC
(National Television System Committee) and adopt-
ed by the FCC, which allowed black and white tele-
vision broadecasting after July 1, 1941. Updated
NTSC standards for color television broadecasting
were adopted by the FCC on December 17, 1953.
The American television must be designed to receive
and process NTSC standard signals.

When the Apple was built, the FCC frowned on
the idea of computers outputting radio frequency
signals to a television because it is possible for a tiny
amount of the computer signal to be radiated and
cause interference with television reception in the
neighborhood. Please note that this level of radia-
tion leakage is not a health hazard and is smaller
than the man-made electromagnetic fields we all
live in. To avoid conflict with FCC regulations, the
Apple was designed to output composite video which
will drive an NTSC standard composite video moni-
tor. If you modulate a radio frequency signal with
the Apple’s VIDEO signal, that radio frequency
signal will drive an NTSC standard television
receiver. Of course, your thirty dollar RF modulator
may tend to leak RF radiation and interfere with
neighborhood television reception. The television
front end takes the radio frequency signal and con-
verts it back to the same VIDEO signal that left the
Apple’s video output jack. From this point in its
circuitry, the television is identical to a composite
video monitor.

Figure 8.2 shows the characteristics of the Apple
VIDEO signal. It is made up of three components:
the PICTURE signal, SYNC, and the COLOR
REFERENCE BURST. The signals are added
together insuch a way that a television can tell them
apart. The television can separate the SYNC from
the VIDEO signal because, during SYNC pulses,
the VIDEO signal is at a lower voltage than at any
other time. It also can detect the COLOR BURST,
because it knows where to look for it—right behind
the horizontal sync pulse on the “back porch” of the
horizontal blanking gate.

There is a voltage point on the VIDEO signal
called the black reference. Voltages above the
black reference cause the picture tube electron
beam to strike the interior face of the tube with
enough velocity for light emission to result. The
VIDEO signal goes above the black reference only
when it is time to paint, and it stays below the black
reference the rest of the time. The SYNC pulses are
blacker than black, extending below the blanking
signal to a point where they are detected as syne, not
a picture signal, by the television. We thus have
three signal levels, the white level, the black level,
and the syne level. The Apple signal is immensely
less complicated than normal television composite
video in this regard. The level of the picture signal in
composite video ecan be any voltage between the
black level and white level at any instant. This is the
way television reproduces the remarkable variety of
lighting shades found in a normal television picture.
Even black and white television is really black and
white and innumerable shades of gray. The Apple
video, when color information is not present, is truly
black and white.

The horizontal and vertical syne pulses both de-
scend below the black level. Any sharp negative
edge in the sync level is interpreted by the television
as horizontal syne. Any long duration negative pulse
in the sync level is interpreted as vertical sync. The
vertical syne pulse in the Apple lasts for four com-
plete horizontal scans. As in normal television video,
there are sharp serrations in the vertical syne pulse
so that horizontal syne can be detected, even in the
middle of the vertical sync pulse.

There are 262 horizontal sync pulses for every
vertical syne pulse in the Apple. The horizontal syne
pulses occur in the middle of HBL, the 25 cycle
horizontal blanking gate. During HBL, the
VIDEO signal is held below the black reference
level, ereating the right and left black margins on
the screen. The picture signal occurs between the

8-4 Understanding the Apple Il

VERTICAL
BLANKING
PERIOD
A
' \
WHITE LEVEL 18V
VERTICAL
BLACK SYNC
REFERENCE — M
BLACK LEVEL v
Y -
\ L
\
A A
' N r N
SHORT LONG
HORIZONTAL HORIZONTAL
LINE oo LINE
WHITE _ / {
~—HBL = HBL BOTTOM TOP
HORIZONTAL HORIZONTAL MARGIN [+ VERTICAL SYNC MARGIN
BLACK .| BLANKING BLANKING (REV 1 THROUGH REV 6
REFERENCE HORIZONTAL SYNC AND RFI REV)
BLACK ; \ " ﬂ "
LEFT RIGHT ” it M ”
MARGIN MARGIN
HUEI(;".DNTAL
SY COLOR S,
REFERENCE A
WHITE BURST (1
REV 7 AND LATER PRIOR TO REV 7
BLACK W
HOR. HORIZONTAL UNWANTED
SYNC SYNC | BURST SYNC BURST SPIKE

Figure 82 The Apple Il Video Signal.

horizontal blanking gates, naturally, creating the
screen display between the left margin and right
margin. The vertical syne pulse occurs in the middle
of VBL, the 4550 cycle (70 horizontal seans) vertical
blanking gate. The VIDEO signal is held below the
black reference level during the entire VBL period,
creating the lower and upper black margins on the
screen.

Assume the electron beam is at the top left corner
of the screen, and that the Apple display window on
your television is 10 inches across. The beam is mov-
ing left toright as you look at the screen, at about 10
inches per 40 microseconds or about 14,000 miles an
hour. Since we are at the top, the vertical syne pulse
has just occurred and it is the second half of VBL.
The beam scans across to the right side of the screen,
but we don’t see light on the screen because VBL

holds the VIDEO signal in the black. The horizontal
sync pulse causes the beam to retrace very rapidly to
the left side (none of this slow poke 14,000 MPH
stuff) so it can scan across left-to-right again. This
cycle continues as the beam moves across again and
again and less speedily down the screen to the first
displayed line, about an inch from the top of the
screen.

In the last undisplayed line, VBL ends about an
inch from the right side, but HBL begins at the same
time, so the screen is still blanked. After the beam
scans past the right edge, horizontal sync oceurs,
causing retrace, and the beam begins the first dis-
played line. When the beam gets about an inch from
the left side of the sereen, HBL ends and the VIDEO
signal begins switching back and forth between the
black level and the white level, decreasing and

Video Generation 8-5

increasing the energy in the electron beam to cause
bright spots and lines on the screen interspersed
with black spots and lines.

About an inch from the right side of the screen,
HBL forces the VIDEO signal into the black where
it remains until the beam has scanned past the left
margin of the next line. This cycle continues for 192
displayed horizontal scans. Attheend of the display
period of the last displayed line, VBL and HBL
begin together, marking the start of the bottom
margin. The beam scans the rest of the way to the
bottom in the black, then the vertical sync pulse
causes a rapid retrace to the top of the screen, where
we began our description of the continuous eycle of
the electron beam.

In NTSC standard television scanning, a process
known as interlacing takes place. In interlacing,
alternate vertical scans are displaced vertically by
half the distance between two horizontal scans. This
means it takes two vertical scans to actually paint
the complete television picture, and it is a tricky way
of increasing vertical resolution without increasing
flicker. In NTSC scanning, there are 262.5 horizon-
tal scans in each vertical scan for a picture com-
posed effectively of 525 lines. The Apple SYNC is
not set up to cause interlacing. It causes a straight-
forward vertical scan of 262 lines, 192 of which are
displayed.

Inearlier Apples, there isa little negative spikeon
the VIDEO signal at the end of HBL, about a
microsecond before the first display spot on the
sereen. This spike is an undesirable switching glitch
generated in the logic which produces the horizontal
syne pulse. The spike causes a vertical black line in
the left margin of the screen about one text charac-
ter width before the first displayed dot. It is espe-
cially noticeable when television brightness is turned
up so there is some brightness level in the margins.
Under some circumstances the line appears to be
reddish, and it can be a little distracting. It’s no big
deal, but you've probably noticed it and now you
know what causes it.

There are differences in sync generation among
the various revisions of the Apple II. In.Revision 0,
vertical syne lasted 16 horizontal scans and had no
horizontal serrations. Horizontal sync lasted
through eight states of the video scanner. In Revi-
sion 1, the 50 Hz Eurapple jumpers were added,
vertical syne was reduced to four horizontal scans
with horizontal serrations as is shown in Figure 8.2.
In Revision 7, the horizontal sync pulse was reduced
in width to four states of the video scanner. Also,
possibly through oversight, the horizontal serra-

tions in the vertical sync were changed to double
pulses. In the RFI Revision, the double pulse serra-
tions were converted back to single pulse serrations
as they were prior to Revision 7. Through all of these
syne changes, the Apple was able to sync most tele-
visions and monitors. Presumably the changes were
made to offset problems found in certain types of
videodisplay equipment. Also, a side effect of reduc-
ing the horizontal sync width in Revision 7 was that
the little voltage spike at the end of HBL was
eliminated.

COLOR SIGNALS

The COLOR REFERENCE BURST is a 14 cycle
sample of the COLOR REFERENCE signal from
the timing generator. Color television sets are
designed to look for a 3.58 MHz signal after the
horizontal syne pulse. From this short burst, the
television is capable of reconstructing the whole
COLOR REFERENCE signal. It does this by “phase
locking” an oscillator to the COLOR BURST. By
this method, the COLOR REFERENCE is trans-
mitted to the television, but it is not present at the
same time as picture information, so it does not
interfere with the picture. Since the COLOR BURST
occursduring HBL, it is not displayed on the screen.
On some television sets, with Apples prior to Revi-
sion 7, you can actually see the COLOR BURST on
the sereen if you turn the brightness and contrast
way up. It appears as a series of vertical lines at the
far left side of the screen.

In the oldest Apple IIs (Revision 0), the COLOR
BURST was always present on the VIDEO signal.
This resulted in distracting green and violet text
characters. A Color Burst Killer was added in Revi-
sion 1 to eliminate the COLOR BURST in TEXT
MODE. This removed the colors from the text
because the television uses the presence of the
COLOR BURST to determine whether an incoming
signal is a color signal or a monochrome signal.
When no COLOR BURST is present, it completely
inhibits color generation in the television so the pic-
ture is black and white with no color noise. In
MIXED mode, the four lines of text at the bottom of
the screen are still green and violet because the
COLOR BURST is present.

Picture information in an NTSC standard televi-
sion signal is divided into two components, the color
component and the brightness component. The
chrominance signal contains the color information
of the picture, and the luminance signal contains
the brightness information of the picture. The two

8-6 Understanding the Apple |l

signals are transmitted simultaneously and pro-
cessed together in the radio frequency and interme-
diate frequency stages of a television set. Once the
television signal has been converted from radio fre-
quency to composite video, the television separates
the chrominance signal from the luminance signal
and processes them individually.

The chrominance signal is a highly complex com-
bination of two 3.58 MHz signals 90 degrees out of
phase with each other. In an amazing mathematical/
electronic manipulacion, the chrominance signal
contains the color information of each spot on the
sereen while the luminance signal contains the
brightness information of each spot. Part of this
mathematical manipulation is that the chrominance
and luminance signals are present together in over-
lapping frequencies, yet do not interfere with each
other. In television video processing, the chromi-
nance signal is separated from the composite video,
then red, blue, and green color signals are extracted
from the chrominance signal by comparing it to the
color reference.

In Apple video, the PICTURE signal takes the
place of the luminance and chrominance signals of
normal broadcast NTSC composite video. The PIC-
TURE signal is a simple binary signal that goes
high or low in accordance with text or graphics
patterns produced from the sereen map during dis-
play periods.

In television processing, the Apple VIDEO signal
is recovered from the modulated carrier wave and is
present at the output of the "second detector.” The
higher frequency components will, however, look
different than they did at the video output jack of the
Apple. This is because the square waves of the
VIDEO signal are converted to their sine wave
components that are within the bandwidth of the
television signal paths. In televisions with the nor-
mal 4.2 MHz IF bandwidth, those square waves
greater than about 1.37 MHz are converted to sine
waves of the square wave frequency. This includes
the COLOR REFERENCE BURST and higher
frequency PICTURE signals, such as those which
produce color in the Apple’s display. This modified
Apple video is present at the input to the luminance
and chrominance amplifiers, as well as other sec-
tions of the television.

The modified PICTURE signal (a high frequency
sine wave, a low frequency square wave, or medium
frequency combination) is passed by the luminance
amplifier and ultimately controls the brightness of
the display. If the modified picture signal is oscillat-
ing at3.58 MHz, it will also be passed by the chromi-

nance amplifier to the synchronous demodulator
where it is compared with the reconstructed COLOR
REFERNCE to produce red, green, and blue color
signals. Thus, the Apple VIDEO signals which pro-
duce colored displays on the screen are those with a
3.58 MHz PICTURE signal.*

Processing in a composite video monitor is similar
to that in the video sections of a television, but the
high frequency square waves may or may not have
been converted to sine waves by the time they reach
the chrominance and luminance amplifier inputs. If
they are not already sine waves, the high frequency
square waves will be converted to sine waves in the
luminance and chrominance amplifiers. In high
frequency response, monochrome monitors, there is
no chrominance amplifier. The video amplifiers of
these monitors will pass the square waves of the
Apple VIDEO signal with little distortion. An
exception is LORES gray PICTURE signals, which
will be converted to sine waves by monitors of less
than 21 MHz frequency response.

The features of Apple graphics are largely
dependent on the way the Apple passes color intelli-
gence to the television. There is no need to store
HIRES color information in memory. The color
information is part of dot positioning. Dot position
determines color. Think of the savings in memory
over a system where the color information of dots is
stored as separate intelligence. The flip side of this
coin is: think of the elaborate programs required to
produce colored displays dependent on dot position.

There are four classes of Apple video concerning
color. One is black, the absence of luminance. Two is
white, the absence of color caused by PICTURE
signals less than 3.58 MHz. This occurs when adja-
cent HIRES dots are turned on, increasing signal
pulse width and decreasing frequency so there is no
3.58 MHz signal for the TV to interpret as chromi-
nance. Additionally, white occurs in a “"COLOR =
15” LORES block, which is identical to seven adja-
cent HIRES dots in four adjacent horizontal scans.
White also oceurs in TEXT mode where there is no
COLOR BURST. Three is gray, the absence of color
caused by 7 MHz PICTURE signals. This occurs in
"COLOR = 5" and "COLOR = 10" LORES Blocks.
LORES colors 5 and 10 are identical to each other in
shade and intensity and are the same as white
except less bright. White horizontal lines are caused
by long periods of white level VIDEO signal. Gray is
caused by 7 MHz oscillation of the VIDEO signal
*Some exceptions to this rule and further discussion on television

processing are contained in a Technical Note at the end of this
chapter.

Video Generation 8-7

between white level and black level. The alternating
black level causes gray to be less bright than white.
Fourth is colored video. This video is 3.58 MHz
whether it is HIRES or LORES. There are four such
HIRES colors and twelve such LORES colors. Four
of the LORES colors are identical to HIRES colors:
green, violet, orange, and blue. The remaining eight
colors come in four tones: light and dark blue, light
and dark magenta, light and dark blue-green, and
light and dark brown. Of these eight colors, seven
can be produced in HIRES as interference between
adjacent bytes of graphics data with DL7 set on one
byte and reset on the other.

This explanation of Apple color is based on anal-
ysis of the hardware and timing of the video genera-
tor. The details are a little involved, but tread thou
in my footsteps, tenacious reader, and thy tootsies
will not freeze.

VIDEO GENERATOR HARDWARE
OVERVIEW

A block diagram of the video generator is shown
in Figure 8.3. The upper part is video scanner logic
gating and the lower part is PICTURE signal
generation. Video scanner logic gating produces
television SYNC, the VIDEO BLANKING gate,
and HBL from the states of the video scanner. It also
uses the scanner states to gate the COLOR BURST
in GRAPHICS modes and to determine GRAPHICS
time and TEXT time in MIXED mode. The PIC-
TURE signal generation circuitry monitors latched
data from RAM and the screen mode to produce the
part of the VIDEO signal which controls the dis-
played picture. The PICTURE signal is added to the
SYNC and COLOR BURST to produce the Apple
VIDEO signal.

The heart of screen mode selection is the PIC-
TURE signal selection multiplexor at A9. It
selects one of seven possible patterns for the PIC-
TURE signal based on its three select inputs. There
are four LORES inputs, two HIRES inputs, and one
TEXT input to the picture MUX. The selection of
inputs depends on current screen mode, DL7 in
HIRES, and VC and HO in LORES. The nature of
the seven inputs will become apparent as we
progress.

PICTURE signal generation is a load and shift
process. Video patterns are loaded every cycle,
based on the data resulting from the video scanner
access to RAM. Then the patterns are shifted to the
PICTURE signal line. There are two shift registers,

one for GRAPHICS and one for TEXT. In a fairly
complex scheme, the GRAPHICS shifter can be
configured for HIRES shifting (an 8-bit shift regis-
ter) or for LORES shifting (two 4-bit end around
shift registers). The two configurations are shown
separately in Figure 8.3 for illustration, but there is
only one GRAPHICS shift register, and it is con-
tained on chips B4 and B9.

The GRAPHICS patterns are loaded directly
from the RAM data latch. In HIRES, the lower
seven bits of the loaded data are shifted to the PIC-
TURE signal where they control the white and
black level of seven dot positions. In LORES only
half of the loaded data is used in a given video cycle.
Remember that in TEXT/LORES scanning, each
displayed memory line is scanned eight times con-
secutively. During the first four scan lines, the lower
four bits of RAM data are used to create the upper
block. The upper four bits are used during the
second four sean lines, creating the lower block. The
first four scan lines are identified by VC’, and the
second four are identified by VC. In the LORES
shift the 4-bit patterns are circulated 3.5 times per
block width. This creates colored patterns which
seem like solid color blocks on the screen.

The TEXT patterns are not loaded directly from
the RAM latch to the TEXT shifter. Rather, the
latched RAM output addresses a ROM which con-
tains TEXT dot patterns (see Figure 8.4). Recall
that the data stored in TEXT screen memory is
ASCIL In TEXT scanning, the ASCII for a given
character position is driven out in eight consecutive
scans. VA, VB, and VC contain the information as to
which of these eight lines is currently being scanned,
and are therefore part of the TEXT ROM address-
ing. Suppose the code for "A"”, $C1, has been latched
at the RAM output and VA, VB, and VC are all high.
The TEXT ROM is programmed to output the
eighth row of the "A" dot pattern when it is
addressed this way. A dot pattern is loaded to the
TEXT shifter every cycle and shifted out similarly
to a HIRES dot pattern.

The two upper bits of secreen TEXT ASCII do not
addressthe TEXT ROM in earlier Apples. They are
connected instead to some circuits which interpret
them to cause NORMAL, INVERSE, or FLASH-
ING dot patterns to be shifted out. DL7 high forces a
NORMAL character (white on black). If DL7 is low,
DL6 low forces an INVERSE character (black on
white), and DL6 high forces the character to alter-
nate between NORMAL and INVERSE at about
four alternations per second. This scheme was
changed slightly in Revision 7. A much larger

8-8 Understanding the Apple ||

. SYNC AAN—
o COLOR BURST A
COLOR REF ———» VIDEO = HBL TO RAM ADDRESS MUX
E{(}Ié\llé = VIDEO BLANKING GATE
VIDEO SCANNER y _ GRAPHICS TIME
HO-H5, VA-V5 GATING B9 B4 SOFT
HIRES TIME TO OUTOUT 7M VC DL7 HO
™ RAM ADDRESS MUX ; l l 1 l 1 ;
A
TEXT C050/1 ——» AB LS257
SRR ELECT PICTURE
HIRES:E0RSIT - Do—— SEL SERIACINPUT AND
MIX C052/3 —» CONFIGURE GRAPHICS

SHIFT REGISTER

DLO-DL7 IS LATCHED

'

T0 GRAPHICS
SHIFT REG. LD194—>

RAM DATA OUTPUT
AL bl LORES GRAPHICS TIME i
oL —7 1 vy
¢] S2 ST S0 E
oL8 - LORES GRAPHICS « VC « HO 07
DLS— 5 | _ out
o o ; LORES GRAPHICS « VC « HO ~106
=
£ ~
e 0 ~L) B4
=S T LORES GRAPHICS » VC' » HO
E@E; DL2 2 D5
EI:EG o d RES GRAPHICS VC' « HO'
%EEEE bt s LORES GRAPHICS « VG’ » 04
BuT[ex < B9
T RSZH HIRES
% 32 L7 — SHIFT A9
caiis DL6—— L PICTURE
écig DL5—— 14M CK T SIGNAL
SO < SELECTOR
wn=g DLa— (870 1 MUX)
= &
B4
DL3— NOT LORES « GRAPHICS + DL7' |)
pL2—
DL1 ——
D= 14N
_ M |NOT LORES - GRAPHICS + DL7 | g
DELAY
\T: VB VA ?M—i_ LOPS
HMﬁ .
A3 A2 A1 TK2 CK1 LOAD ——
- jou—as 45 gg) 00
T TEXT A3
& JOL2—1A6 pom 03
k) DL—A7 02
|"'—" DL4——AB 01 1 pL7{0L6| TEXT
DLS——A9 _é‘_ L] L | INvVERSE
[_ L|H FLASH
DLE |IIWERT 4 H|L| NORMAL
TEXT
L7 — H | H | NORMAL

Figure 8.3 Video Generator Functional Fliow Diagram.

PICTURE
SIGNAL

L5194
SYCHRONIZES
PICTURE SIGNAL
SELECTION

APPLE
VIDEO
SIGNAL

Video Generation 8-9

DL3IDLZ DL DLO

1100 1101 110 | 1111

0110 ‘ 0111 | 1000 1001 | 1010 1011

DL5 DL4

1 " | n B]
i [5 B 5l o =
00 - Suns H HTTH H H E
anams] i i 8 " o n
L] -] L]] []] L] L] L] "
¢ = i EmEE § § uEm noo u
L] a] |] L [] |] EEEER
s 0= = s & 8§ 8§ ® [] s
01 H- - Ems
aEEan L] amn
== == =
- - | | |
10

Figure 84 Apple Text Patterns.

TEXT ROM is used and DL6 and DL7 are address-
ing inputs to it. These later Apples function the
same way as the older ones when you buy them, but
the TEXT ROM can be replaced by your personal
EPROM with alternate screen character sets con-
trolled by DL6 and DL7.

VIDEO SCANNER LOGIC GATING

The video scanner logic gating is pretty straight-
forward. COLOR BURST, television SYNC, and
video blanking gates are generated by simple logic
gates with modifications possible via "Eurapple”
jumpers. The Revision 1 schematic diagram of this
logic gating is shown, along with the rest of the video
generator, in Figure 8.6. The parts of the video gen-
erator which are different in later revisions are
shown in Figure 8.7.

VBL (Vertical BLanking) is V4 ¢ V3, true during
70 states of the vertical portion of the video scanner.
HBL (Horizontal BLanking) is H5' (H3" + H4),
true for 25 cycles starting with HPE'. The VIDEO
BLANKING gate is VBL+HBL, and it is connected
to the enabling input of the PICTURE signal MUX
via a flip-flop which synchronizes it to LD194, an
important video output timing signal. When the
synchronized VIDEO BLANKING gate goes high,
the VIDEO signal is forced into the black. The
1.D194 synchronization results in blanking starting
and ending just as PICTURE signal generation
ends and begins.

The television SYNC signal goes low for short
periods of time (horizontal syne) in the middle of
HBL and for long periods of time (vertical sync) in

the middle of VBL. The television SYNC in the
middle of long blanking gates creates the Apple
displayed window, surrounded by black marginson
all sides (see Figure 8.5). It is normal to think of
horizontal scan lines as beginning with horizontal
syne, butin the Apple it is logical to think of horizon-
tal scan lines as beginning with HPE', the first cycle
of HBL. This is because HPE' is the preset of the
horizontal portion of the video scanner, and it is the
point where the vertical portion increments. Inside
the Apple, video related signals tend to switch just
after the display period ends. So as not to confuse it
with the television horizontal scan, we will refer to
the 65 eycle period beginning with HPE' as the
horizontal PERIOD.

Generation of the video SYNC signal was changed
in every major revision to the AppleII, so it'salittle
difficult not to get confused. The HIRES memory
scanning map of Figure 5.9 shows very clearly when
SYNC occurs in the RFI Revision Apple. SYNC
generation in the other revisions differs slightly.
Reference to Figures 5.9, 8.2, 8.6, and 8.7 should
help clarify the points of the following discussion.

In Revision 0, horizontal sync is HBL e H3. This
makes SYNC go low for eight cycles beginning on
the tenth cyele of HBL. The Revision 0 horizontal
sync pulse is shown in detail in the lower right
corner of Figure 8.2. The vertical sync in Revision 0
is V4 e V3 @ V2 e V1'. This makes SYNC go low
during the 16 vertical scanner states 111100000~
111101111 (horizontal PERIODs 224-239 assuming
the top displayed line isseanned during PERIOD0).
The Revision 0 vertical syne pulse would be illus-
trated in Figure 5.9 as solid rows of #s in lines
224-239.

|BJ11I8A JO LIRS
SasSNed uo1109)ap
JuAs |eoILIap

Bunjuelq
[ZRIIVELN
uibsg

Figure 8.5 Blanking During Television Scanning Causes the Black Margin Around the Apple Display.

——————— —— ———————— — —— - — ——
i 78H Bunnp
4/ ERLFET!
[eluozII0H
Buryue|q
|ejuoziioy 4/
uibag
e ueos
= |ejuoziioy sy} uo
0 pajelabbexa Ajybiy
w S| paads piemumo(
0]
£
[®)]
£
Lo}
5
i3
O
©
C
>
o
> M= = = = = = J7eNy ageujal
|ed134aA pu3

- aoel|

Video Generation 8-14

In Revision 1, the vertical sync equation was
changedtoV4eV3eV2eV1 e V(' e V('e(H5+H4).
Adding V0’ e VC' to the equation reduces vertical
syne to four horizontal PERIODS. Adding (Hb +
H4) puts little positive pulses or serrations in the
vertical syne, so a negative edge occurs right where
horizontal syne would normally cause a negative
edge to occur. These serrations are a feature of an
NTSC standard signal, and Apple probably added
them in Revision 1 to improve horizontal stability.
The Revision 1 vertical sync isaccurately illustrated
in Figure 8.2 and in lines 224-227 of Figure5.9. The
horizontal sync in Figure 5.9 is not accurate for
Revision 1, because it shows only four #s. Eight #s
would accurately portray the eight cycle pulse
width of horizontal sync in Apples prior to Revision
T

In Revision 7, the horizontal syne equation was
changed from HBL o H3 to HBL « H3 ¢ H2". This
reduced the pulse width of the horizontal sync from
eight cyeles to four cycles as is shown in the lower
left corner of Figure 8.2. A change was also neces-
sary to the COLOR BURST gating logic so it would
still be positioned correctly. The COLOR BURST
equation was changed from COLOR REFERENCE'
e HBL e H4 ¢« H2' to COLOR REFERENCE’ « HBL
e H3 ¢ H2. In either equation, the COLOR BURST is
a sample of fourteen COLOR REFERENCE cycles
occuring immediately after the horizontal sync.

Prior to Revision 7, the horizontal sync held the
SYNC signal low during the first eight cycles of the
vertical sync period. When the horizontal sync pulse
was reduced in width in Revision 7, a four cycle gap
was created in the vertical syne. This would be illus-
trated in Figure 5.9 by changing the fifth through
eighth #s in lines 224-227 to +s. This effectively
makes the horizontal serrations into double pulses
and probably detracts from sync stability. Some
digital video monitors which interpret every nega-
tive edge on the SYNC signal as a horizontal sync
pulse would not be able to operate with this double
pulse. This situation was corrected in the RFI
Revision.

The author isn’t certain why the horizontal syne
pulse width was reduced in Revision 7, but he does
know of one effect. It eliminates the little switching
spike that causes the vertical black line in the left
margin of older Apples. The spike is present on the
SYNC signal at C13-8 of the older Apples. Itis there
because HBL and H3 do not switch simultaneously.
Since HBL is generated from the video scanner out-
puts, it goes low a few nanoseconds after H3 goes
high at start display time of every scan. The

unwanted spike could have been eliminated by
routing H3 through a couple of LSTTL devices
before connection to pins 10 and 11 of C13. In Revi-
sion 7, H2” became part of the horizontal sync logic.
Its propagation delay through Q7 (A1l4 in RFI
Apples) is sufficient to mask the unwanted spike at
C18.

A new IC was added to the motherboard at A14 in
Revision 8 or Revision 9. The purpose of A14 was to
add logic gating to the COLOR BURST generation
circuitry to cure a problem in the Color Burst Killer.
The Q6 Color Burst Killer was added to the Apple in
Revision 1 toeliminate color from the screen charac-
ters in text mode. This is good, but Q6 lets a small
residual amount of the COLOR BURST get through
to the video signal. Some televisions and monitors
occasionally lock up on this residual COLOR BURST
and create an unreadable display of white text with
colored ghosts. The Revision 8/9 change causes the
COLOR BURST to be gated off in TEXT mode
using LSTTL logic before the signal ever gets to Q6.
This cures the unreadable text problem.

The RFI Revision eliminated the double serration
that was introduced to the vertical sync in Revision
7. It also eliminated transistor Q7, which is present
only in Revisions 7, 8, and 9. The double serration
was removed by changing the (H5 + H4) portion of
the vertical sync equation to(H5 + H4 + H3). Q7 was
eliminated by performing its functions in A14. The
new gating logic caused an inversion in the COLOR
REFERENCE sample used for generation of
COLOR BURST. This was countered by distribut-
ing COLOR REFERENCE' to the video generator
rather than the COLOR REFERENCE signal of
earlier Apples.

Video scanner logic gating is also used in switch-
ing between GRAPHICS and TEXT in the Apple’s
MIXED screen mode. In MIXED mode, V2 e V4
identifies TEXT time. It is true during the last 32
displayed horizontal PERIODS and during the last
38 undisplayed horizontal PERIODS of VBL. This
means that in MIXED mode the Apple switches to
GRAPHICS then back to TEXT during VBL, but it
is not significant because the screen is blank during
VBL. Any time the screen mode is switched between
GRAPHICS and TEXT, including a MIXED mode
switching, the switchover is delayed until the third
time RAS' rises after the switch logic changes. The
purpose of this is to delay the MIXED mode switch
from HIRES to TEXT until the last HIRES pattern
is shifted out. The fact that RAS’ is used for syn-
chronizing mode switching is coincidental. There
are four RAS’ clocked flip-flops not used by the

842 Understanding the Apple ll

FROM
38)

$———>»=RAM ADDR. M
(5.10)

DLO-7 FROM RAM LATCH
HO-S ‘d'l -V5 FROM NDED SCANNER

W', LPDS', LD154 FROM TIMING
TEX‘I M-IK HIRES FROM ADDRESS DECODE

(7.2) TE

139) v2
(3.9) va

XT C-D.'JDH

(7.2) MIX ——=
co52/3

GRAPHICS SHIFT

15.2)

(3.9) SOFT 5-11

3.8) (38
14M LD194

RAS’
(3.8)

COLOR
TONE
2 3
12 1% 4TpF 5-50 oF COLOR BURST
Ra7
w3 L] RN~ s
HBLTOCIM 27uH T 72
5 L GATE
Jon § VIDEOBLANK _ —
:sa?
swcTo SLOT7.
1 —=-PIN 19 (7.9).

GRAPHICS TIME = 1 RAS

VBL V2V1 VI
VI (H4+HS)

REV 1& LATER

Re
2K

8 Y
SYNG .\ &

PICTURE SIGNAL

VIDED BLANKING

7.2
HIRES
COs6/7

WS 184
174
14 53 2

GRAPHICS TIME
«JRAS

(3.8) TM-

52)

HIRES TIME (38) 1/2L574

TO RAM ADDA SIJFT INVERTER

MUX (510 1

13.8)
TM 14M LDPS'
6l 7 15

L
OH

52)

A
74166

G ERIGE S

SERIAL
N

SOFT
SHIFT
REG. LR

1/4 A0
T4LS194

(521039
DL7 HO

]
]
L5194 OPERATION i
51 [s0 [AcTION -
T|T | Wor | i
L [H[SAFTR 1
H [L |SHFT L I
H | W | LOAD "
3
s
re
rd
rd
. LORES
Mo l/ TIME
TIME >
g M
o 12 or
13
> 06
14] s { LOFES
15 A9
D4 7418151
2 101
> D2 HIRES PICTURE
MUX
1] . HIRES
> ——103 peLaveD

O rexr
00

38)

NC

Y

SOFT S
139)

PICTURE
FF

2513

TALS1T4

INVERT
TEXT
(LATCHED)
NORMAL /INVERSE
oL7|oLe| TEXT
TIC[
T [W [FLASH]
A | T | NORM |
A [/ [WORM |

Figure 86 Schematic: Video Generation.

TALST4

TaLS257

T4L5151
TALS194

Video Generation 8-43

fit cosor

™ c2 ca
1 47pF 550 pF COLOR BURST
J__ 06 TEXT
L1 2N3904 CO50/1
H5 HBLTOC12-14 2TuH RT (T2
= RAM ADDA. MUX 47K
(5.10)
) — COLOR
9 6 VIDEO BLANK BURST
va T 8 VBL 44 GATE
FROM V4 1532

(3.9)

REVZ: RFIREV:
VBLVZVIVO: VBLW2VT-VO'
VC(H4 = HS) VC(H4 + H5 + H3)

2“ =
SINC AANH

=

| »- SYNCTOSLOT?. A7
PIN 19(7.9) 15K

R10

5
39) Hilll _______ .
m"mms 5 FROM 07 (REVT)

s02 L REIBRY______ . = OR AT3 (RF) zn
i PICTURE
RFl ! SIGNAL
REV) 11.g) Ha 0_2 L7
{39} HS = e s
C16 VIDED
aTpF out
23168 ROM USED FOR TEXT @9) =
GENERATION (REV 7 & LATER) o SOFT 58
5 JUMPER5IN
REV 7 BUT NOT
RFI REVISION

K1 CK2 LD CLR
A3 74166
N L] I onl—118 13y y TEXT
werrpororsx7Text 12 = 5 D peTuRe
4
| I - 74586
ool I
5 Ip
LATCHED
RIGHTDOTOFSx7TEXT 4] [o |
3 Is
FLASH 2 A
'SER
N
8 1
8 ps 12
14M I u e 1/4 MO
(38) 7415194
LD184 S
(38 1

Figure 8.7 Schematic: Revision-7 and RFl Version Changes to Video Generation.

8-144 Understanding the Apple I

RAM data lateh at B5 and B8. Three of these flip-
flops are connected as a shift register to produce the
modeswitching delay required by the Apple design.

Eurapple Scanning

The discussions have been assuming the Apple
would be driving an NTSC standard TV, just as the
original Apple designer assumed it would be. In the
Revision-1 board, Apple changed this by adding
"Eurapple” jumpers which change the scanning
features of the Apple to be compatible with Euro-
pean TV. This is accomplished by adding 50 horiz-
ontal scans to the video seanner and by shifting the
vertical sync to maintain approximately equal black
margins at the top and bottom of the sereen. The
horizontal scanning is not affected by the Eurapple
jumpers.

European television has 625 horizontal scans in
two interlaced fields as compared to NTSC stan-
dard 525 scans. Also, European TV scans vertically
about 50 times per second as opposed to NTSC stan-
dard 60 vertical scans per seconds. The Eurapple
jumpers in the Apple cause the vertical portion of
the video scanner to preset to 011001000, fifty less
than the normal 011111010. This adds 50 scans to
the normal 262 for 312 horizontal scans in a Eurap-
ple. All 50 of these scans are added to VBL so that
VBL is 120 scans long instead of 70.

Inthe video generator, Eurapple jumpers change
the vertical sync equationto V5’ e V4e V3 e V2 e V()
* VC'e(H5+ H4). The (H5 + H4) portion is (H5 + H4 +
H3)in RFI Revision Apples and this horizontal logic
adds serrations to the vertical syne identically to 60
Hz configured Apples. In Eurapple scanning, the
vertical syne lasts for four horizontal PERIODS,
just as in American scanning. These are horizontal

PERIODS 73, 74, 75, and 76 of VBL in Eurapple
scanning. By way of comparison, normal Apples
have 36 PERIODS in VBL up through vertical syne
and 34 PERIODS in VBL afterwards. The Eurap-
ple has 76 PERIODS in VBL up through vertical
sync and 44 PERIODS in VBL afterwards. The
critical states of VA-V5 in both NTSC standard
Apples and Eurapples are summarized in Table8.1.

The Eurapple jumpers give an Apple scanning
compatibility with European television, but not
color signal compatibility. Also as partof Revision 1,
Apple brought television SYNC and COLOR REF-
ERENCE to previously unused pins 19 and 35 of
peripheral Slot 7. One can install a Eurocolor card
in Slot 7 which outputs a video signal compatible
with PAL or SECAM system televisions, both of
which are found in Europe. The 14M crystal must
also be changed to a value equal to four times the
frequency of the chrominance signal used in a given
system,

VIDEO GENERATION TIMING SIGNALS

Video generation timing is based on several sig-
nals developed in the timing generator with LDPS’
and .LD194 defining video output eycles. These and
other timing signals are shown in Figure 8.8 along
with several examples of video output in the three
modes. Actually, LDPS’ and LD194 are used to
define the same time period, with LDPS’ being used
when an active low signal is required. In the video
generator, TEXT and GRAPHIC patterns are
loaded by 14M rising when LDPS’ islow, 7M is low,
and LD194 is high. The patterns are shifted the rest
of the time.

Table 8.4 Eurapple/NTSC Differences.

VERTICAL PRESET ON VERTICAL
START VBL SYNC OVERFLOW SYNC END VBL
V543210CBA V543216CBA V5432108CBA V543210CBA V5432168CBA
NTSC 111000000 1111606XX 011111016 | =—=ee-- lov0oo06e0
EURAPPLE 1110600000 | -—------ 0110010600 @110100XX 100000000

Video Generation 8-15

A video output cycle lasts .98 microseconds, just
like a normal 6502 cycle. In this period of time there
are 14 cycles of 14M, 7 eyeles of 7TM, and 3.5 cyeles of
COLOR REFERENCE. During a video cycle, one
byte of data from memory is processed for video
output, so there are 40 video cycles per display line.
In HIRES and TEXT modes, seven dot positions are
scanned per video cycle and the output is therefore
shifted every other 14M rising. More specifically,
HIRES and TEXT loading and shifting are clocked
by 14M rising when 7M is low. Note that this is not
the same as TM rising because of propagation delay
of 7TM after 14M. The LORES shift clock is 14M
rising.

Video output timing is related to RAM timing and
video scanner timing, naturally. Data from the
scanner access is latched at the RAM output by
RAS' rising during PHASE 1. Then 14M rises dur-
ing LD194 before the next RAS’, loading GRAPH-
ICS or TEXT patterns at the video generator. Then
the video scanner increments just before shifting for
this video eycle begins. This means that the video
output lags the scanner address by approximately
one video cycle. LORES picture selection is based on
scanner outputs HO and VC as they were for most of
the previous video cycle. In LORES, HO and VC are
latehed every LD194 and held for the entire follow-
ing video cycle. Therefore even though HO may be
high for most of the first video cycleshown in Figure
8.8, LORES picture selection is based on HO low as
was the case when 14M went high during LD194.
Because of this latching action, Figure 8.8 illus-
trates video processing of an even screen memory
address followed by an odd screen memory address.

The saving of HO and VC during LD194 is
accomplished in a4-bitlatchat A10. Besides HO and
VC, other signals which change during the video
cycle are synchronized to the video cycle by A10 and
used in PICTURE signal selection. These signals
are GRAPHICS TIME, DL7, the VIDEO BLANK-
ING gate, and the INVERT TEXT signal.

A fact of life, when dealing with a 1 MHz video
eyeleand a3.5 MHz COLOR REFERENCE, is that
there are 3.5 COLOR REFERENCE cycles per
video cycle. The result is that the COLOR REFER-
ENCE begins every cycle 180 degrees out of phase
from the way it was on the previous video cycle.
Timing is set up so that COLOR REFERENCE is
always low at the beginning of even video cycles
(eycles which process data stored at even memory
addresses). This is the purpose of the long cycle, to
maintain this relationship in spite of an odd number
of eycles (65) in a horizontal scan. Still, the fact
remains that identical dot patterns produce colors

180 degrees out of phase in adjacent video cycles. In
LORES this is compensated for by switching the
phase of the video pattern based on HO. There is no
compensation in HIRES, so the programmer must
process even memory locations different than odd
memory locations when producing colored HIRES
displays. As an example, to produce a short green
line, 00101010 is stored at an even address or
01010101 is stored at an odd address.

TEXT VIDEO OUTPUT

Text processing is very straightforward in the
Apple. The pattern from the TEXT ROM is loaded
to A3 when 14M rises during LDPS’ and it is shifted
to an exclusive-OR gate. The exclusive-OR acts like
a selectable inverter, feeding the pattern to the pic-
ture MUX when INVERT TEXT is low and feeding
the complement of the pattern to the picture MUX
when INVERT TEXT is high. INVERT TEXT is
latched at the same time the dot pattern is loaded, so
it will not switch in the middle of a TEXT output
cycle. As has been mentioned before, the inversion of
video is dependent on DL6 and DL7 of the text
ASCII and the current state of the 2 Hz text flasher
when DL6 is high and DL7 is low.

At the same time the dot pattern is loaded, the
INVERT TEXT signal is loaded into bit A of the
TEXT shifter. Then, during the TEXT shift,
INVERT TEXT determines whether the serial
input to the shifter is high or low. This is mentioned
only because it is true and in spite of the fact that it
serves no function. It makes a schematic diagram
investigator very nervous tosay something like this.
Why would they bother connecting wires that serve
no function? Be that as it may, whatever is loaded or
shifted into bit A of the TEXT shifter never is
shifted to bit H before the shifter is reloaded by 14M
rising during LDPS'".

In the original Apple II, the TEXT ROM was a
General Instrument 2513 upper case character
generator ROM. It is the contents of this character
generator, illustrated in Figure 8.4, which deter-
mine the screen characters that are available in the
Apple TEXT mode. The 2513 contains 512 5-bit
words arranged into 64 eight word characters. In
Revision 7, the wiring of the TEXT ROM socket was
changed to accommodate the 8 x 2048 bit 2316 ROM.
Apple puts exactly the same upper case character
set into the 2316, but it is set up so you can put more
character sets in your own 2716 EPROM and substi-
tute it for the supplied 2316 ROM. That was a pretty
neat thing to do. In any case, the modification did
nothing to alter the TEXT load/shift cycle.

816 Understanding the Apple lI

Figure 8.8 shows the output of the bottom dot
patterns of an ampersand and an inverse amper-
sand to the first two character positions at the left of
thescreen. Atthe far left of the TEXT waveformsin
Figure 8.8, H5 through HO of the video scanner are
at 011000 meaning HBL and VIDEO BLANKING
have just gone low. The RAM Latch contains $A6,
ASCII for a normal ampersand, driven out of RAM
by the scanner access. The combination of VA, VB,
and VC all high and DL5-DL0 equal to 100110
drives 01101 out of the 2513 TEXT ROM or 00011010
out of the 2316 ROM used in Revision 7 and later
Apples.

About 390 nanoseconds after the video data
becomes valid at the RAM Latch, 14M rises with
LDPS’ and 7TM low, loading the dot pattern to the
shifter. Leading and trailing zeroes are loaded on
either side of the five-dot pattern, although this can
be changed with the TEXT ROM in later Apples.

The access time of the TEXT ROM in the Apple
must be under 390 nanoseconds. The typical time of
the 2513 is 250 nanoseconds, but the guaranteed
maximum is 450 nanoseconds, so Apple was shading
their margin of error with this ROM. It is possible in
later Apples that they use 350 nanosecond 2316
ROMSs, and certainly you should use 350 nanosecond
EPROM in your custom TEXT ROM. Of course, if
you have a 450 nanosecond EPROM that gives a
good display in a warm or cold room at power up and
after two hours of operation, use it. There is no law
against a 450 nanosecond memory which can be
accessed in 390 nanoseconds.)

At the same time the dot pattern is loaded, the
picture MUX ENABLE' signal is latched low, and
the INVERT TEXT signal is latched low. The
former event shows the logie behind synchronizing
VIDEO BLANKING to LD194. The blanking
becomes inactive at the exact time dot patterns
become ready for output at the left side of the screen.
The latter event occurs under control of DL7. When
DL7 is high at LD194, INVERT TEXT is latched
low for the whole video cycle.

The QH output of the TEXT shifter is felt at the
DO and D1 inputs to the picture MUX shortly after
the dot pattern is loaded. Either D0 or D1 will be
selected by the MUX in TEXT mode, because S2
(LORES TIME) and S1 (GRAPHICS TIME + 1
RAS’ + 1 LD194) are both low. Therefore, QH is
clocked to the picture flip-flop at B10 by the first
14M rising after the pattern is loaded. It is the out-
put of this flip-flop that is added to SYNC and

COLORREFERENCE tomake up the VIDEO sig-
nal. As the dot pattern is shifted through the TEXT
shifter, the picture flip-flop will follow QH, lagging
it by approximately one 14M period.

The picture flip-flop ensures that all types of
Apple PICTURE signal are begun at identical
points on the screen. For example, if it takes TEXT
patterns longer than LORES patterns to be propa-
gated through the picture MUX, it doesn’t matter.
All types of video are clocked by 14M rising on the
picture flip-flop. An interesting point about the pic-
ture flip-flop is this: its low-to-high propagation
delay (time after 14M rises for pin 5 to go from low to
high) is 13 nanoseconds typical, but its high-to-low
propagation delay is 25 nanoseconds typical. Since
the PICTURE signal rises more quickly than it
drops, the white portions tend to be a little wider
than otherwise equal black portions. For example, a
white dot of a normal TEXT pattern would be about
24 nanoseconds longer than the black dot of an
inverted TEXT pattern. You can easily prove this to
vourself by displaying some normal TEXT next to
some inverted TEXT on a high frequency response
video monitor. The “black dots” are not as wide as
the white dots.

The shifting of the normal ampersand progresses
until the value that was loaded to QB has been
shifted to QH. The next TEXT clockpulse will occur
during LDPS’ low, so it will cause a load rather than
ashift. At the time of this loading clock, $26 (inverse
ampersand) will have been valid at the RAM Latch
for 390 nanoseconds. The identical pattern isdriven
out of ROM that the normal ampersand caused since
the ROM address inputs are the same. When the
loading clock rises, the pattern is loaded and
INVERT TEXT is latched high (because DL7 and
DL6 are low). This pattern is shifted to the
exclusive-OR just as the previous one was, but
because INVERT TEXT is low, the inversion of the
pattern is propagated through the exclusive-OR.

If ASCII is driven out of RAM with DL7 low and
DL6 high, the INVERT TEXT signal is latched
high or low depending on the 2 Hz flasher. This
results in the flash coded screen positions alternat-
ing between INVERSE and NORMAL four times a
second. This is true even if the ASCII is $60, code for
a flashing space. In fact, a flashing character is the
way the monitor’'s RDKEY routine forms the flash-
ing cursor while waiting for a key to be pressed.
More often than not, this is a flashing space.

Video Generation 8-47

TEXT QUTPUT AT

" S O 1 8 9 5 e T A O 2% 50 0 5 8 S

ras' |

T g I L

PHASE 0

™ f_l_J"L_H_1__f'1_J__L_f'l_J—W__r'l_J‘T__f_l_J_1__F_L_J'1__F'L_I'1__F_L_J'T__F'l_.
COLOR

e e LT 1L L LT L e et L
LDPS' = - L
L0194 [[[l
HO [| [
TEXT/HIRES
ege 1 1 0. 4 1 1 11 ¥ (4 ot f |
LOAD VIDEO LOAD VIDED LOAD VIDEO
PATTERN —— PATTERN — PATTERN ——=
s '__'_I'I
PICTURE MUX AS-7
- ENABLE' |1 o
g églﬁé; XX XAXX l‘.‘l'.’ 1 D1D§IOT1D '|DOOI 101 mocimmcooalmm CI]J{II‘DDG mlm DWQIU] 10101101 10 'ID'I1I11DI 011 1IIO1D IIHID1U1 HHilI]H 1!11|D1]1 1“1‘ NE_ﬁT_——_"
2 s
L P1X
54 —— B e
3 A v A -
J L
“

FOUR FORMS
OF THE HIRES
PATTERN 1011010

ADJACENT
COLOR=9 LORES
BLOCKS, VC'

ar. |B9-B4)
ﬁ‘ ‘“‘“I’a"’ umlum unolmm mnlom. mmlmm 101 u]mm 0 ml}lm 1u1ul1u1u uml@:m unulmm 1011Imu1 mm]mm 10m|u1n-| mn1| NEXT

1101 1010

0300 (B4}

Iw1]110£:{umlom1| m1]11ntlu1Ia|m11l1m1[nmlm1nlwn mt uwl1ml|11mln110[001||1nn1l11mln1 [i)[ticli1|lv:vU1IHEl-!!PWIEIIDm1|143!CI11INJlf‘st'r

EVEN LORES 7
FOLLOWED BY
0DD LORES 8
PRODUCES
PINKISH BORDER

EVEN LORES 5
FOLLOWED BY

0DD LORES 10
PRODUCES
BROWNISH BORDER

|
.
8

0300 B4)
Fnimnlnmln alumlmnlnmr1mlmnlm11[||n1[n1n}j1 1I nn[onnlumlmm{mulrooolmunlmwlmmlmuu]a|mluu1a|mu1|mm!u1ml“5"

=W W IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

g3ao

[ﬁalmmlmm]\mulmmlmmImmlwmlmmlmm{mmlmmlmmlmmlmmlum-lm1u|n1ml1uralu1ml1u1u|u1m|m n]mmlwmlmUIIm:ulmm

Figure 8.8 Video Output Examples.

848 Understanding the Apple Il

HIRES GRAPHICS OUTPUT

The HIRES output has similarities to the TEXT
output. Both the HIRES and TEXT PICTURE sig-
nals are straightforward serial outputs of 7-bit dot
patterns. For this reason, it is possible to draw text
using HIRES graphics with the same 5 by 7 dot
patterns generated by the 2513 ROM. The HIRES
TEXT will have coloring however, because the
COLOR BURST is enabled. Besides the COLOR
BURST, important differences are:

1. HIRES patterns are stored directly in RAM,
seven dots per byte. TEXT ASCII is stored in
RAM, one character per byte, and TEXT patt-
erns are stored in ROM, eight rows of seven dots
per ASCII code.

2. The eighth-bit of the HIRES pattern, DL7, is
not output to the screen. Rather its high/low
state is latched at load pattern time, and the
entire HIRES pattern is delayed by a 14M
period if DL7 was latched high.

Figure 8.8 shows the same 7-dot HIRES pattern
output in four different phase relationships with the
COLOR REFERENCE. The result is the same pic-
ture pattern colored four different ways. The four
different colorings are produced by storing the pat-
tern 1011010 at adjacent memory locations with D7
reset and at adjacent memory locations with D7 set.
We'll look at these output sequences, but first we
need to see how the video generator is configured in
HIRES mode.

Since the Apple is in HIRES mode, the following
logical setup exists:

PIX MUX S2 = LORES TIME - low
PIX MUX S1=GRAPHICS TIME - high

PIX MUX S0 - DL7 latched
during
LD194

GRAPHICS SHIFT MODE - 8-bit serial

GRAPHICS LOAD/SHIFT

CLOCK - 14M rising
while TM low

HIRES TIME - high

The setup gets more complicated during switching
between modes, but we assume the Apple is not
currently switching modes. The burden of establish-
ing this configuration lies primarily with the LS257
at A8. Its select input is tied to LORES TIME and
the logic of configuration goes like this: if it is
LORES TIME, configure for LORES; if it is not
LORES TIME, configure the GRAPHICS shifter

for HIRES and select HIRES or TEXT based on the
signal, GRAPHICS TIME + 1 RAS’ latched by
LD194. The HIRES dot pattern is shifted through
QO of the GRAPHICS shifter to D2 of the picture
MUX and through a delay flip-flop to D3 of the
picture MUX. D2/D3 is selected by the picture
MUX, because S1 and S2 are low in the HIRES
configuration. DL7, latched by LD194, selects be-
tween HIRES (D2) and HIRES delayed (D3).

The top HIRES pattern in Figure 8.8 is formed by
01011010 being driven out of RAM by scanner
access to an even address followed by an odd
address. Just as in TEXT shifting, the pattern
stored at LD194 is shifted every other 14M rising,
and the pattern is clocked to the PICTURE signal
by the picture flip-flop. As the leading 010 is shifted
out, the PICTURE signal starts black, swings white,
then swings black, creating a square wave identical
in frequency to the COLOR REFERENCE, 3.58
MHz. The television will pass this signal through its
chrominance amplifier and phase compare it to the
COLOR REFERENCE which it has reconstructed
from the COLOR BURST. The result of this phase
comparison will be color signals resulting in a
HIRES green coloring of the dot on the screen.
Compare the green dot position to the COLOR
REFERENCE. Any PICTURE signal which goes
white then black in this relationship with the
COLOR REFERENCE will produce green coloring
on the television.

Shifting along we come to the two adjacent white
dots. These dots are produced by a signal that goes
white then black at 1.79 MHz, one half the fre-
quency of the COLOR REFERENCE. Very little of
this signal can get through the chrominance ampli-
fier. The result is absence of color signals and subse-
quent white illumination. Anywhere on the screen,
COLOR BURST or no COLOR BURST, bringing
the PICTURE signal to the white level for a full
period of COLOR REFERENCE will result in a
white picture.

The white pulse is followed by a violet pulse, iden-
tical in pulse width to the green pulse but occuring
in opposite phase relationship when compared to
COLOR REFERENCE. HIRES green and HIRES
violet complement each other; that is, they are 180
degrees out of phase.

When the identical 1011010 pattern is loaded
from an odd address and shifted out, the PICTURE
signal swings from white to black and back justas it
did when the pattern was loaded from an even
address. The COLOR REFERENCE, however is
180 degrees out of phase from the way it was during
the adjacent video cycle. The coloring of the screen

Video Generation 849

dots is therefore the complement of the pattern out-
put in the adjacent video cycle. Green becomes
violet, violet becomes green, and white remains
white.

The nature of HIRES green and violet video
should now be fairly clear. The HIRES dot isexactly
the width of half a COLOR REFERENCE period.
Visualize the COLOR REFERENCE alternating
up and down as the beam crosses the screen, starting
with COLOR REFERENCE high as the display
begins. If even position dots are turned on, they
coincide with COLOR REFERENCE high and are
violet. Similarly odd dots are green, and two or more
adjacent dots are white. This was the extent of
HIRES patterns in the Revision 0 Apple II: 280
programmable dots per scan with violet, green, or
white coloring. In Revision 1, the D7 delay option
was added which enables the delay of each 7-dot
pattern by one fourth of a COLOR REFERENCE
period.

The output of the same 1011010 dot pattern,
stored at adjacent memory locations with D7 set is
also shown in Figure 8.8. The picture pattern is
identical, butsince it is delayed by one 14M period, a
new pair of complementary colors are produced.
The new colors are a result of the fact that delayed
dots have a different phase relationship with
COLOR REFERENCE than undelayed dots. The
mechanization of the delay is straightforward. DL7
high, latched at LD194, causes the picture MUX to
select delayed QO for the HIRES PICTURE signal.

Delaying the 7-dot patterns was a tricky way of
sprucing up the HIRES display; violet and green
got a little old. Programming HIRES video became
even more of an abstract art, however, with each
group of seven dots having a color and position char-
acteristic. Add this to the facts that alternating dot
positions produce different colors, screen memory
addresses are difficult to compute, and delayed
HIRES patterns interfere with adjacent undelayed
HIRES patterns; and you've got real programming
complexity.

Delayed and undelayed HIRES patterns inter-
fere with each other? They sure do, but before we get
into that, let’s summarize the characteristics of
HIRES video based on the discussion to this point.
First, there are 192 horizontal rows of dots. In each
row, 280 dots (40 x 7) may be turned on or off, but
since each group of seven dots may be shifted right
half a dot width, there are 560 dot positions in a row.
Color depends on position, and there are 140 violet
positions, 140 green positions, 140 blue positions,
and 140 orange positions. Any two adjacent dots

turned on will be white. We will see shortly that
there are really only 139 orange positions. This is
because an orange dot on the far right of the screen
will be cut off by HBL to make it dark brown. Also,
two adjacent delayed dots at the far right will be
light blue green, not white, and the far left blue dot
will be violet or blue depending on the contents of
the last byte of memory scanned during the preced-
ing HBL.

If color is of no concern, there is uninhibited pro-
gramming of a 192 x 280 matrix of dots. With res-
trictions, this becomes 192 x 560. The main
restriction is that a delayed dot cannot be in the
same 7-bit group as an undelayed dot. For example,
you can draw a slanted straight line close to the
vertical with 192 x 560 resolution. You can alsodraw
avery nice vertically oriented parabola with 560-dot
horizontal resolution at the portions where the slope
is more vertical. The other restriction on 560-dot
resolution is the interference at the boundary
between adjacent delayed and undelayed patterns
which will be detailed shortly.

For coherent violet, green, blue, and orange
colored displays, there is 192 x 140 dot resolution as
long as certain pairs of colors don’t get too close to
eachother. Anytime you plot a green dot in the same
7-dot pattern as an orange dot, that orange dot turns
to green, because D7 had to be reset in that memory
location to plot the green dot. Similar considerations
exist for mixing blue and violet. Any two adjacent
dots will always be white.

Why do colored HIRES objects appear solid if
every other dot is turned off? Shouldn’t a violet
object appear to be numerous horizontal rows of dots
rather than solid lines? The object appears solid
vertically because the horizontal scans are so close
together. If you look at the violet object up close, you
will see that it appears to be numerous horizontal
lines. The reason that the object appears solid hori-
zontally is that a multichannel color television is not
capable of turning its beam intensity on and off
cleanly at 3.58 MHz. Instead, the dots are blurred
into continuous horizontal lines. For the same rea-
son, Apple textis fairly blurred when displayed on a
television set.

Now if you inject the same VIDEO signal into a
high frequency response video monitor, you will
clearly see the black spots between the dots in the
lines that were violet on the television. It is very
educational to compare all forms of Apple video to
simultaneous displays on a television and high fre-
quency monitor. HIRES and LORES graphics
modes use the "slowness” of a television to display

8-20 Understanding the Apple lI

colored solids, but the monitor shows the dot pat-
terns which produce the solids. The “slowness” of a
television is why computers that are designed to
output TEXT to a television have a display of 40
TEXT characters or less. It is also for this reason
that if you use an 80-column card with the Apple,
you must support it with a high frequency response
video monitor.

Interference Between Adjacent Delayed
and Undelayed HIRES Patterns

The 7-dot HIRES patterns fit snugly together if
the adjacent patterns are all delayed or undelayed,
but problems can be caused when they are mixed
together. This can be seen by comparing the delayed
and undelayed HIRES patterns of Figure 8.8.

The sequence of starting a delayed pattern shift
goes like this:

14M 1: Load pattern and latch DL7 high.

14M 2: Shift delayed QO to picture and load
delay flip-flop with first dot of pattern.

14M 3: Shift first dot to picture.

The point is that delayed QO is selected for output
before the delay flip-flop has loaded the state of the
first dot position. What does the delay flip-flop con-
tain at the first output clock of this video cyele? It
contains the state of the last dot position from the
previous 7-dot pattern. This means that the first
14M period of a delayed pattern to the sereen is
controlled by the last dot of the previous pattern.

Now think about the last 14M period of a delayed
pattern. It is not shifted to the PICTURE signal
before the next video cycle begins. If the next video
pattern is also delayed, it will begin by completing
the current dot pattern. If the next video pattern is
not delayed, it will cut off the tail of the current
pattern. The result is that continuous undelayed or
delayed patterns fit snugly together, but a delayed
pattern extends the last dot of a preceding unde-
layed pattern by a 14M period, and an undelayed
pattern cuts the last dot of a preceding delayed pat-
tern in half. Cutting off or extending a dot has the
effect of slightly changing the dot pattern and, more
noticeably, changing the coloring of the border dots.
As a result the HIRES programmer has one more
thing that affects color to educate himself about and
take intoaccount. On the plusside, the programmer
can draw vertical lines at pattern borders in nine
colors that are not otherwise available in HIRES.
He does this simply by turning on a right hand dot
then extending or cutting it off via DL7 of the follow-
ing pattern. In some instances, no dots need be
turned on in the following pattern.

Figure 8.9 is a photograph illustrating the gener-
ation of LORES colors at borders between delayed
and undelayed 7-dot HIRES patterns. The program
which generated thisdisplay is listed in Figure 3.10.
The mixed LORES/HIRES display is created by
switching screen modes in a 8515 cycle loop as is
discussed in an Application Note in Chapter 3. As
the photo shows, any LORES color except dark blue-
green (4) can be produced at a limited number of
sereen positions. LORES colors 3, 6, C, and 9 are
natural equivalents of the HIRES colors. LORES
colors 7 and 2 can be produced at even/odd memory

Figure 8.9 The Output of the Screen Splitting Program (Figure 3.10).

Video Generation 8-21

addressing borders. Colors D and 8 can be produced
at odd/even borders. Colors B and E can be pro-
duced at odd/even or even/odd borders. LORES
color 7 can also be produced at the far left of the
HIRES screen, and LORES color E can also be
produced at the far right of the HIRES screen. Color
1 can be produced only at the far left of the HIRES
screen. Finally, orange HIRES dots at the right side
of the screen are LORES dark brown (8).

Figure 8.10 shows some patterns created by mix-
ing delayed and undelayed dot patterns. Compari-
son to Figure 8.11 in the following LORES section
will show that these patterns have the same phase
relationship with COLOR REFERENCE as var-
jous LORES colors. The exception is the case where
a trailing 1-0 delayed pattern is cut off by an unde-
layed 1-0 pattern. This creates a green or violet with
a different shade than any HIRES or LORES color.
The general rule of all these HIRES interference
patterns is that delayed extends undelayed, and
undelayed cuts off delayed.

The extreme left and right dot positions are spe-
cial cases for delayed patterns. The VIDEO

EVEN 0DD
COLOR REF | I
END VIOLE s 1
EXTEND VIOLET INTO -
e emaweme]
11000000 | 00000000
CUT OFF BLUE WITH BLACK T0 ==
PRODUCE LORES DARK BLUE (2) [
11000000| 00000001
CUT OFF BLUE WITH GREEN TO .
PRODUCE LORES LIGHT BLUEGREEN © | |} [
CUT OFF WHITE WITH 11100000| 00000000
BLACK TO PRODUCE LORES [
LIGHT MAGENTA (B)
CUT OFF ORANGE BLACK 10300000} 2000007
WITH GREEN TO PRODUCE | : [
BRIGHT GREEN = —-

BLANKING gate is precisely aligned to undelayed
video, and this doesn’t change if the first and last
patterns are delayed. Therefore, a delayed pattern
in the first video cycle of a display period extends bit
D6 of the last byte of HBL scanned memory into the
display. In other words, half of an undisplayed
memory bit gets displayed. On the right side of the
screen the last delayed dot is in an orange dot posi-
tion. This dot is cut off by the VIDEO BLANKING
gate so the dot is dark brown rather than orange.
Similarly, a delayed white pair at the far right is cut
off to make it light blue-green.

The right side cut off is no great problem to deal
with, because it is predictable. The left side display
of a HBL scanned dot can be more confusing. The
following Applesoft program is an example of what
can happen:

10 HGR : HCOLOR=5 : HPLOT 5,159
T0 5,8 ToO 279%9,@¢ TO 279,159 %

REM HCOLOR 5 IS ORANGE

00D EVEN

— |

01000000 | 10000000

"

COLOR REF

EXTEND GREEN INTO
LORES LIGHT BROWN (D)

CUT OFF ORANGE WITH BLACK TO
PRODUCE LORES DARK BROWN (8)"*

CUT OFF ORANGE WITH VIOLET TO e
PRODUCE LORES LIGHT MAGENTA (8) B L
CUT OFF WHITE WITH AL WPQ?
BLACK T0 PRODUCE LORES [
LIGHT BLUE-GREEN (E)**
10100000| 00000001

CUT OFF BLUE BLACK
WITH VIOLET TO PRODUCE
BRIGHT VIOLET

LORES DARK MAGENTA (1) CAN BE
PRODUCED AT THE FAR LEFT OF
THE SCREEN BY SETTING
BIT SIX OF THE LAST BYTE OF

HBL SCANNED MEMORY AND EXTENDING
IT INTO DISPLAY TIME WITH 10000000

[/ L 8

XTXXXXXX| 10000000

* LORES LIGHT BLUE (7) MAY ALSO BE PRODUCED AT THE FARLEFT OF THE SCREEN BY SETTING BIT SIX OF THE LAST BYTE OF HBL
SCANNED MEMORY AND EXTENDING IT INTO DISPLAY TIME WITH 10000001

“*THIS IS IDENTICAL TO THE CUT OFF OF A DELAYED PATTERN BY THE VIDEQ BLANKING GATE AT THE RIGHT SIDE OF THE SCREEN

Figure 8.10 HIRES Interference at Pattern Borders.

8-22 Understanding the Apple |

What do you think will be drawn and in what color?
If you think the four points(5,159), (5,0),(279,0), and
(279,159) will be connected by three orange lines,
then you're wrong. What happens is that (5,159),
(5,0), and (279,0) are connected by two orange lines.
(279,0)and (279,159) are connected by a dark brown
line, because VIDEO BLANKING cuts the orange
dots off and makes them brown. Then (0,191) is
connected to(0,64) by adark magenta line. This last
line is there because having the far left pattern
delayed extends the last dot of the last byte of HBL
scanned memory into the display area. The last byte
of HBL scanned memory for lines 64 through 191 is
the last byte of display scanned memory for lines 0
through 127. Therefore, the last display dot of the
top two thirds of the screen is extended to the first
display dot of the bottom two thirds by left hand
delay patterns. Dot (279,0) is extended to dot (0,64);
dot (279,1) is extended to dot (0,65) and so on.
Here’s another line to add to the above program:

20 FOR A =
128 :

8319 TO 16383 STEP
POKE A, 64 : NEXT

This line completes the magenta line at the left side
up to(0,0). Did you cateh those numbers? If BASIC
used hexadecimal addresses, the line would read:

20 FOR A =
S80 :

$2@7F TO $3FFF STEP
POKE A, $40 : NEXT

Those addresses are the last byte of thé eight byte
unused memory segments spread throughout
HIRES memory. They are the last bytes scanned
before display time in the top third of the screen.
They are supposed to be undisplayed, but line 20
causes dots to be displayed by POKING values to
them. Here’s another example. Enter these
keystrokes:

HGR jHIRES mode, clear
; Screen

CALL-151 ;enter monitor

2000:80 ;upper left pattern
;delayed

207F:40 ;set last dot of

sundisplayed byte

This is an example of the same thing. You should be
able to predict what happens. Try it.

The result of the extension of HBL scanned
memory into the display is that far left delayed patt-

erns will often be more trouble than they're worth.
Color and the presence of dots at the left margin
depends on the presence or absence of dots at the
right margin or in undisplayed memory. One help-
ful hint: erase all $XX7F and $XXFF bytes of
HIRES memory as part of your erase routines. Then
don't use these bytes except to purposely manipulate
the far left dots in the upper third of the screen.

This section has shown how interference borders
can be used to display isolated dots or vertical line
segments in HIRES that are not one of the four
HIRES colors. Mostly, though, interference borders
are a nuisance. Anytime two different colors get
close to each other horizontally, the video pattern at
their border is different than either of the solid
colors when compared to COLOR REFERENCE.
Awareness of the causes of off color fringes should
help you experiment with color combinations that
produce eye pleasing displays.

LORES GRAPHICS OUTPUT

LORES blocks are not generated the way you
would expect from looking at a television. You would
expect big one microsecond pulses on the PICTURE
signal would be required to produce those big one
microsecond wide blocks. In reality, the only pulses
that are one microsecond wide in LORES are white
blocks. The colored blocks are made up of a string of
narrow pulses, too narrow for a television to paint
without blurring them into blocks, and narrow
enough that they will be passed by the television’s
chrominance amplifier.

Like the HIRES colored picture, the LORES
colored picture signal swings back and forth
between the black and white levels at 3.58 MHz. But
where the HIRES colored signals are nearly sym-
metrical, the LORES colored signal may or may not
be symmetrical. This is why there is a greater var-
iety of colors available in LORES.

The logical configuration in LORES is as follows:

PIX MUX S2 = LORES TIME - high

PIX MUX S1 - VC latched by
LD194

PIX MUX S0 - HO latched by
LD194

GRAPHICS SHIFT MODE - dual 4-bit end
around

GRAPHICS LOAD CLOCK - 14M rising dur-
ing LD194

GRAPHICS SHIFT CLOCK - 14M rising

Video Generation 8-23

This establishes the nature of the LORES shift. Only
four of the eight pattern bits are used in a video
cyele; DLO-DL3 in B4 are selected during latched
VC’,and DL4-DL7 in B9 are selected during latched
VC. Latching the scanner states during LD194 syn-
chronizes them to the video eyele. The VC control of
the picture MUX results in bits DLO-DL3 control-
ling the upper block and DL4-DL7 controlling the
lower block.

Since each 4-bit section of the GRAPHICS shifter
circulates as clocked by 14M, the sections circulate
3.5 times per video cycle. Nice coincidence, that: 3.5
million circulations per second—the same frequency
as COLOR REFERENCE. As the selected 4-bit
pattern is rotated, either its least significant bit (Q0)
or its third least significant bit (Q2) is clocked to the
picture flip-flop. Q0 is selected in video cycles where
HO was latched low (even memory addresses), and
Q2 is selected in video cycles where HO was latched
high (odd memory addresses). This is what compen-
sates for the alternating phase relationship between
the video cycle and COLOR REFERENCE.

The bottom of Figure 8.8 shows the output of three
different pairs of LORES blocks. These examples
illustrate the nature of LORES timing. The exam-
ples shown all assume that latched VC is low. Tim-
ing is identical when latched VC is high except B9
outputs are selected for the PICTURE signal instead
of B4.

The first example shows two adjacent 1001 blocks
being output. In the even cycle, this pattern is output
3.5 times beginning with the LSB: 10011001100110.
In the odd cycle, the pattern is output beginning
with the third LSB: 01100110011001. In either an
even or odd cycle the PICTURE signal is a symmet-
rical square wave with the same relationship to
COLOR REFERENCE as HIRES orange. The
coloring of the left and right edge of the block
depends on the pattern of the adjacent blocks. If
adjacent clocks are the same pattern, the PICTURE
signal is continuous, meaning orange mates to
orange with no off color fringe between two blocks.
Different colors mate together with a joining pat-
tern which is not the same as either of the joining
colors, creating a color fringe which is more or less
prominent depending on the colors and whether
they meet at an odd-even or even-odd junction. The
examples are marked with an X at the left and right
sides to show that the color there depends on the
adjacent patterns.

The second example in Figure 8.8 is even 0111,
light blue, followed by odd 1000, dark brown. These
patterns produce assymetrical 3.58 MHz square

waves whose 3.58 MHz sinusoidal component is
passed by the television’s chrominance amplifier to
produce different colors. The assymetrical square
waves are produced by patterns with only one bit set
or only one bit reset. Those with only one bit set
produce dark colors, because the PICTURE signal
spends most of its time in the black. Conversely, the
patterns with only one bit reset produce bright
colors. As the example shows, the picture pattern at
the border between colors 0111 and 1000 is a combi-
nation of the two separate patterns. Even 0111 fol-
lowed by odd 1000 produces a pinkish border.

The light blue block shows that some things are
predictable about bordering colors in LORES
blocks. Any odd pattern which ends in the white
level will combine with the left side of even 0111 to
form a white border. The bright colors are particu-
larly prone to forming white borders, because
they're only one black period away from being white
themselves.

The third LORES example in Figure 8.8 is even
0101 followed by odd 1010. These are the two gray
LORES patterns. They are gray, because the PIC-
TURE signal they produce is 7 MHz, which will not
be passed by the television’s chrominance amplifier.
Now gray is really white in a dark disguise. White
light can come in many intensities as evidenced by a
black and white television picture, and LORES
patterns 0101 and 1010 are just less intense white.
They are equal to each other in intensity, and are
therefore identical shades of gray. This is why the
technical overview stated there were 15, not 16,
LORES colors including black and white.

Even though the two grays produce the same
medium intensity, colorless blocks, they are 180
degrees out of phase with each other. Thus, when
1010 follows 0101 there is a discontinuity in the
waveform at the border between them and a result-
ing color fringe. This can be done on purpose to
separate two gray solids horizontally, or it can be
avoided by using only 0101 or 1010 in a display. A
good practice would be to choose one gray over the
other to minimize unpleasant fringe borders with
other colors.

When the LORES colors are displayed side by
side in numerical sequence, there is no apparent
color continuity between them. The fact is that they
form a circular pattern of eight color tones deter-
mined by the phase relationship to COLOR REF'-
ERENCE. This is not apparent when they are in
numerical sequence, because video processing treats
the 4-bit color data as a dot pattern, not a numerical
value.

8-24 Understanding the Apple |

COLOR REFERENCE

0001 DARK MAGENTA

1011 LIGHT MAGENTA

0011 HIRES VIOLET J

0010 DARK BLUE

0111 LIGHT BLUE _]

0110 HIRES BLUE

0100 DARK BLUE-GREEN

1110 LIGHT BLUE-GREEN

1100 HIRES GREEN

1000 DARK BROWN

1101 LIGHT BROWN

1001 HIRES ORANGE

JE]

0101 $5 GREY _I
1010 $A GREY |
1111 WHITE

0000 BLACK

Figure 8.41 LORES Pafterns at B40, Pin 5.

Video Generation 8-25

Figure 8.11 shows the PICTURE signals, com-
pared to COLOR REFERENCE, which are pro-
duced by the various LORES patterns. White levels
are a little longer than equivalent black levels
because high to low propagation on the picture flip-
flop takes longer than low to high propagation. The
colors are shown in an order in which the picture
pulse shifts right as the colors progress from top to
bottom. A very interesting point becomes evident
when looking at this figure. There are four color
tone pairs: dark and light magenta, dark and light
blue, dark and light blue green, and dark and light
brown. For example, the dark magenta pulse is sur-
rounded equally on both sides by the light magenta
pulse, and the horizontal center of both pulses is at
the same point on the COLOR REFERENCE. Asa
result, they produce the same color tone, but a series
of wide pulses is brighter and whiter than the series
of narrow pulses with the same color tone.

Now color 0001 is usually referred to as magenta,
and color 1011 is usually referred to as pink. This
book has been ealling pink “light magenta” tomake
the point that color 1011 looks like color 0001 with a
lot of whiteness in it. Anyone who wants to is
encouraged to call pink "pink.”

Figure 8.12 is a photograph of the LORES colors
based on their circular nature. This display was
generated by drawing the LORES display in
LORES, drawing the color numbersin HIRES, and
switching between LORES and HIRES in a 17030
cycle loop. This sort of screen mode switching pro-
duces a pronounced flicker which is very annoying
when viewed. The flicker goes away in the photo-
graph, however, which was taken at 1/30th of a
second exposure. In this display, the different color

tones are in different sectors of a cirele (if you can
picture a rectangular circle) and brightness is rep-
resented radially in the circle with dark at the cen-
ter and white at the outside. Black, gray, and white
cover all sectors of the circle, because they have no
coloring. Black is the darkest color. Then comes
0001, 0010, 0100, and 1000. The grays, 0101 and
1010, are the same brightness as the HIRES equi-
valents, 0011, 0110, 1100, and 1001. Next brightest
are 0111, 1110, 1101, and 1011. Brightest of all is
white. Looking at the colors in this way should give
you insights when you are trying to produce pleas-
ing LORES displays.

MIXED MODE SWITCHING

A final topic to consider in the video generator is
MIXED mode scanning. This is the reason we have
to live with those RAS’ delayed terms, sowe’ll havea
closer look.

Figure8.13 isa timing diagram of the last display
cyele of line 159 in MIXED mode. At the left side of
this figure you can see the horizontal section of the
video seanner switch from 1111111 to 0000000. This
is the beginning of HBL and the beginning of the
long cycle, which has two LD194 pulses instead of
the normal one. At the same time the horizontal
section of the scanner goes to zeroes, the vertical
section goes to 010100000 making the term V4 ¢ V2
true. This identifies TEXT time, but you can’t
immediately switch to TEXT because the final dis-
played GRAPHICS pattern is not yet output. For
that matter you can't start blanking yet either.

Figure 8.12 LORES Colors.

8-26 Understanding the Apple |

1.

2.

haTwoseeee™ LT 1T 1T 1T 1 1

ammsne | L L Lt r g
RAS' T [] [1]
LD194 1 11—
HO wsea o | S eEAN - 000000 VaCAN~ 1000000
BLANKING cus |

EI}EATII;EE MOX a7 | —- BLANK PIX
GRAPHICS TIME

+1RAS’ B5-2

3RS aa2 (==

PIX MUX S1 AG-10 I—o- SELECT TEXT IF HIRES
HIRES TIME B11-6 IF HIRES MIXED MODE ;
%&:;ESJ)IC%%) A12-13 IF LORES MIXED MODE ILSELECT TEXT

Figure 8.13 Switching from GRAPHICS fo TEXT in MIXED Mode.

What happens is that the GRAPHICS TIME sig-
nal is shifted through three flip-flops which are
clocked by RAS’ rising. This creates the terms
GRAPHICSTIME +1RAS’and GRAPHICS TIME
+ 3 RAS'. These are the signals which control the
video generator configuration. Here is an order of
events after V4 e V2 goes high:

RAS’ rises, bringing GRAPHICS TIME plus
one RAS' low.

14M rises during LD194, signifying the end of
the video cycle. This loads meaningless data to
the GRAPHICS and TEXT shifters that will
not be output to the screen. It latches the picture
MUX ENABLE' signal high (since VIDEO
BLANKING is now high). This forces the pic-
ture MUX output low. Picture MUX select S1
also goes low at this time; in HIRES because
GRAPHICS TIME plus one RAS’ is low and in
LORES because VC is low. In HIRES MIXED
mode, TEXT is now selected at the picture
MUX.

. 14M rises again, clocking the low from the pic-

ture MUX output to the picture flip-flop. This is
the instant that HBL forces the PICTURE sig-

nal into the black, and-it exactly coincides with
the end of the last video pattern. If, however, the
last video pattern is delayed HIRES, the blank-
ing forces the PICTURE signal to the black
prematurely, cutting the last dot in half. This
happens at the end of any HIRES scan, not just
line 159.

. RAS’ rises, bringing GRAPHICS TIME plus

three RAS’ low. This is followed closely by
HIRES TIME falling in HIRES mode, and by
LORES TIME falling in LORES mode. HIRES
TIME is used in the RAM address multiplexor
to cause HIRES memory addressing or TEXT/
LORES memory addressing. Bringing it low
just after RAS’ rises switches TEXT/LORES
memory addressing in time so that RAS' falling
will correctly clock the next TEXT memory
ROW address to RAM. LORES TIME' is the
select input to the LS257 configuration control
chip (A8), and LORES TIME is the S2 select
input to the picture MUX. Bringing LORES
TIME low here selects TEXT at the picture
MUX in LORES MIXED mode.

Video Generation 8-27

The switch back to graphics is made at thesame and from text via the $C050/$C051 toggle, but
point in the horizontal scan, and the delayed timing switching does not necessarily occur during a blank-
similarly prevents display of the last video pattern ing gate.
of line 261. The timing is similar when switching to

8-28 Understanding the Apple |l

SOFTWARE APPLICATION

ASPECT RATIO IN THE APPLE DISPLAY

The aspect ratio of an NTSC standard television
is4 to 3. This is the ratio between the horizontal size
of the display and the vertical size of the display.
Since the ratio of displayed toundisplayed scanning
is different in the Apple than in an NTSC standard
broadecast, the aspect ratio of the Apple displayed
window is not4 to3. However, we can utilize knowl-
edge of television scanning and Apple scanning to
compute the aspect ratioof Apple graphicsdisplays.
Programming computations can use this informa-
tion to make squares square and circles circular.

The 4 to 3 aspect ratio is the ratio of displayed
horizontal and vertical travel of the beam. The tele-
vision horizontal display gate is about 53.6 microsec-
onds compared to 10 microseconds blanking, so
53.6/63.6 or 84.3% of the horizontal cycle is dis-
played. Vertically 242.5 out of 262.5 lines or 92.4% of
the horizontal scans are displayed. Let HD be the
distance a beam would travel at horizontal trace
speed during a horizontal eycle period. Let VD be
the distance a beam would travel at vertical trace
speed in a vertical cycle period. Then:

(.843 HD)/(.924 VD) =4/3
and
HD/VD =1.46

Now in Apple scanning, 560 out of 912 14M peri-
ods are displayed in a horizontal cycle (remember
the long cycle), so 61.4% of the horizontal cycle
period is displayed. Vertically 192/262 or 73.3% of
thevertical cycle isdisplayed. The aspect ratioof the
Apple display window is therefore:

(.614HD)/(.733VD) = .838 (HD/VD) = 1.225

This means the display window is 1.225 times as
wide as it is high.

Let’s say there are 1000 units vertically and 1225
units horizontally in the display. The distance verti-
cally between HIRES dot centers would be 1000/192
= 5.21 units. In 280 point graphics, the distance
horizontally between dot centers would be 1225/280
= 4.37 units. The dots are therefore further apart
vertically than they are horizontally. More pre-
cisely, the ratio of the distance between horizontal
dots to the distance between vertical dots is4.37/5.21
=.84. This will vary with television alignment, but it
is very practical to use .84 and its inverse, 1.19, as
linearity compensation figures in programs. Here is
an example:

10 HGR HCOLOR = 3 : HPLOT 0,0
TO 6,159 TO (159*1.19+.5),159
TO (159*1.19+.5),0 TO 0,0 :
REM ADD .5 TO ROUND OFF.

This Applesoft program draws a square, because
the number of horizontal units is equal to the
number of vertical units times the ratio 1.19.

In 140 point graphics computations, the horizon-
tal to vertical distance ratio would be doubled to
1.68. In 560 point graphics computations, the ratio
would be cut in half to .42. LORES blocks are 7
HIRES dots wide by 4 HIRES dots high, so the
horizontal distance between centers of blocks is
(7/4)(.84)=1.47 times the vertical distance between
centers of blocks. The horizontal distance between
the centers of text characters is (7/8)(.84)=.735 times
the vertical distance. The 5x7 text character itself is
(4/6)(.84)=.56 times as wide as it is high (measuring
between the centers of the corner dots). All of these
ratios are summarized in Table 8.2.

Table 82 Size/Distance Ratios on the Apple Screen.

PLOTTING MODE _ HORIZONTAL/VERTICAL VERTICAL/HORIZONTAL
DISPLAY WINDOW SIZE 1.225 .816
HIRES 140 Point Distance 1.680 .585
HIRES 280 Point Distance .840 1291
HIRES 560 Point Distance .420 2.381
LORES Distance 1.47 .68
Text Distance .735 1.361
Text Size .560 1.786

Video Generation 8-29

HARDWARE APPLICATION

ELIMINATING COLORED SHADOWS FROM TEXT

In Revision 1, a Color Burst Killer circuit was
added which turns off the COLOR BURST inTEXT
Mode. This is nice, because white letters are much
easier to read than violet and green letters. The
problem with this circuit is that it does not com-
pletely eliminate the COLOR BURST but reduces it
toavery small level. Some televisions lock up on this
residual COLOR BURST in an odd way that adds
very unpleasant color shadows to text. In a recent
mod to the Apple II Plus, this problem was elimi-
nated by shutting off the COLOR BURST with a
TTL gate before it gets to the sometimes ineffective
Color Burst Killer, Q6. This Application Note offers
some suggestions for eliminating color shadows
from older Apples on which the COLOR BURST is
not quite dead in TEXT mode.

There is a color killer adjustment on the back of

many television sets, especially older ones. This
adjustment sets the sensitivity of the television cir-
cuit which detects the presence of the color burst on
the back porch of the horizontal blanking gate. This
adjustment is labeled “color killer” if it’s there, and
it may be just a hole in the back through which you
can stick a plastic screwdriver toengage theslotina
potentiometer.
DO NOT REMOVE THE BACK OF THE TELE-
VISION SET UNLESS YOU ARE A QUALI-
FIED ELECTRONIC TECHNICIAN. THE
VOLTAGES ARE LETHAL.

The television color killer adjustment is very sim-
ple tomake. You simply adjust it so color broadcasts
have color in them but monochrome broadcasts
don't. It is so simple that our Asian television suppli-
ers have figured out you don’t really need a color

killer adjustment in the back, so most new televi-
sions don’t have it. If it is there, feel free to tweak on
it and try to eliminate your color shadows that way.
Just make sure that you still get color in GRAPH-
ICS mode and on broadeasts if you also use the TV
for normal reception.

If no color killer adjustment is accessible on your
television, there is a second option which works well
on my Apple. Increase the size of R6, the COLOR
BURST summing resistor. The size of this resistor
determines the amplitude of the COLOR BURST
when it is added to the PICTURE signal. By
increasing the resistor, you decrease the size of the
COLOR BURST and the amount of residual signal
that gets through the Color Burst Killer. The trick is
to select a resistor that eliminates color shadows
from the screen but doesn’t prevent color graphics
generation. This depends on the television rather
than the computer. With my composite video moni-
tor, increasing R6 from 2.7 Kilohms to 4.7 Kilohms
worked nicely.

Disconnect the power cord before doing any work
on the motherboard. R6 is right next to the game I/O
socket and is labeled 2.7K. You can remove it from
the top of the motherboard with a soldering iron and
needlenose pliers. After R6 removal, desolder the
holes with a solder sucker. Try a 4.7K resistor with-
out solder to see if it solves the problem in a satisfac-
tory way. If 4.7 Kilohms doesn’t work, experiment.
When you have the right resistor size, solder it in,
and you're done.*

*Please read the NOTE OF CAUTION at the beginning of the
book before performing any modifications to your hardware.

8-30 Understanding the Apple |l

HARDWARE APPLICATION

PROGRAMMING SCREEN CHARACTER SETS IN EPROM

In Revision 7 and later Apples, ones with 2316
TEXT ROMs, you ean install your own screen char-
acter sets. You may design your own upper case/
lower case set or use an existing upper case/lower
case set. You may also design your own INVERSE
set and FLASHING set which will be output any-
time a program outputs inverse or flashing text, but
they don’t have to be inverted or flashing characters.
This Application Note contains some suggestions
for burning screen character EPROMS for Apples
that will acecept them. Please refer to Figure 8.7
during these discussions.

There are three groups of characters to consider
when building character sets: symbols and numbers,
upper case alphabet, and lower case alphabet. These
will be referred to here as symbols, upper case, and
lower case. Character patterns for each group
require 256 bytes of storage soa complete character
set requires 768 bytes. You should place your pri-
mary character set in the top 768 bytes of the 2716
EPROM with symbols at addresses $500-$5FF,
upper case at $600-36FF, and lower case at $700-
$7FF. This will result in word processing and sim-
ilar programs being able to output lower case to
your screen. These 768 bytes will be driven out by
Apple character codes in the SA0-SFF range.

Where can you get a full ASCII set of text pat-
terns? There are numerous sources for character set
patterns. One source is the DOS TOOL KIT distri-
buted by Apple. Among other things, this valuable
disk contains 21 character setsand ANIMATRIX, a
program which implements computer aided design
of other character sets. These HRCG(HIRES Char-
acter Generator) sets are meant to draw text on the
HIRES sereen, but they may be adapted for your
TEXT EPROM. The main difference between a
HIRES character pattern and a TEXT ROM pat-
tern is that they are reversed. The Apple’s 2316
TEXT ROM is connected to the TEXT shifter so
that the most significant bit is shifted out first.
HIRES patterns are shifted out least significant bit
first, so HIRES patterns are in reverse order.

A second adaptation that must be made to HRCG
character sets is to offset the different effect of bit 7
inthe TEXT ROM and ina HIRES pattern. Bit 7 of
yvour EPROM fonts will control flashing in the lower
1024 bytes of the EPROM. In the upper 1024 bytes,
bit 7 will have no effect, but its a good idea to leave it
reset any time you are not specifically program-
ming a character you want to flash. Bitsevensetina

HIRES pattern causes the pattern to be delayed half
a dot position. In the DOS TOOL KIT sets, DLT7 is
occasionally set to improve the smoothness of a
character. These characters would look a little cock-
eved without the delay, so they need to be modified
before using them in your TEXT EPROM. The way
to do this would be to load the set into ANIMATRIX
where the few delayed patterns can be easily spotted
and the character modified for symmetry with no
pattern delays. Needless to say, if you use ANIMA-
TRIX to design your EPROM text patterns from
scrateh, don’t use the delay feature.

Several other character generating programs are
available, one very nice one at no cost. The August,
1980 edition of KILOBAUD Microcomputing mag-
azine contains the listing of a character generating
aid for the Apple and includes a full ASCII set. The
article is "Graphics Character Generator” by Robin
B. Moore. This character generator does not use
delayed patterns, so there would be no problem
adopting the character set for your TEXT EPROM.

If you have selected a HIRES character set for
your primary ASCII patterns, you must move it to
vour EPROM programming buffer in reverse order.
Here isalittle program sequence which can be used
in a transfer loop:

LDA (FONT) ,Y ;Get byte from

;source font
LDX #7

MOVELP LSR A ;Transfer D6-DO in

;jreverse

ROL WORK ;jshift pattern to
;intermediate loc'n

DEX

BNE MOVELP

LDA WORK

AND #S$7F ;Reset FLASH

scontrol bit
STA (BUFR),Y

The 256 bytes of your EPROM just below the
primary set will not be utilized by most commercial
programs. This area of ASCII ($80-89F) is the
CONTROL codes. You may place any sort of alpha-
betic or symbolic set in this area of your EPROM
and output these symbols to the screen by storing
codes $80-$9F in Text memory. This will also let you
know when any program is storing control codes in

Video Generation 8-31

text memory. You will store the CONTROL patterns
at $400-$4FF of your EPROM.

The lower 1024 bytes are the INVERSE area ($0-
$1FF) and the FLASHING area ($200-$3FF). The
ASCII codes which will drive out these patterns will
be in the $00-$7F range. If you leave O7 (EPROM
Output 7) reset in these patterns, the resulting char-
acters will be inversions of your patterns. If you set
07, the resulting characters will flash. You may
force normal characters (white on black) in these
addresses by storing inverted patterns and leaving
07 reset. In both the INVERSE area and the
FLASHING area, there is space available for a
symbolic set and an upper or lower case set.

Notice that the upper half of the codes aredivided
into CONTROL, symbolic, upper case, and lower
case, but the lower half isn’t. The upper half is
divided like true ASCII. The lower half is tailored to
Apple features, giving the user a symbolic/upper-
case INVERSE set and a symbolic/uppercase
FLASHING set. Since Applesoft INVERSE and
FLASH commands and the monitor “I” command
support this division, you would be well advised to
maintain it in your EPROM.

An idea for your INVERSE set is to make it nor-
mal rather than inverse, and let the alphabet be
lower case. This will give you a convenient way of
outputting lower case to the screen from Applesoft.
If you do this, any alphabetic screen output from
Applesoft with INVERSE active will be normal
lower case. You may want to use one of the different
TOOL KIT sets for this purpose, so you will know
when the INVERSE set is being used.

There are a few symbols associated with the upper
case and lower case alphabetic sections. If you store
lower case patterns in an upper case area like the
INVERSE area, it is best to install upper case asso-
ciated symbols there. Of the 32 characters in an

alphabetic section, the first one and last five are
symbols. Therefore, when installing lower case
patterns in the INVERSE Area, reserve addresses
$0-$7 and $D8-$FF of your EPROM for patterns
from an upper case set.

To transfer the symbolie section of a TOOL KIT
settothe INVERSE Area, transfer the first third of
the TOOL KIT set to $100—$1FF of the EPROM
buffer. The alphabetic partof the INVERSE area is
$0-$FF of the EPROM. Lower case for this area can
be gotten from the last third of a TOOL KIT set.
Upper case for this area can be gotten from the
middle third of a TOOL KIT set. O7 in each byte of
the EPROM should be reset for no flashing, set for
flashing. To make the set normal instead of inverse
you must store the inversion of the TOOL KIT pat-
terns at the EPROM buffer, this in addition to
reversing order of the ones and zeroes as in the
earlier programming example. In the earlier ex-
ample, O7 was reset by ANDing the pattern with
#$TF. You can invert the pattern and leave O7 reset
by following the AND instruction with an EOR:

AND #S$7F
EOR #S7F
STA (BUFR), Y

Programming the FLASHING area of your
EPROM is exactly like programming the IN-
VERSE area: O7 high causes flashing; the lower
half ($200-$2FF) is the alphabet; the upper half
($300-33FF) is symbols. There is a restriction you
should place on your FLASHING set. The FLASH-
ING set must be very easily distinguished from any
other set, because the Apple cursor is generated by

Table 8.3 The Division of Screen Text Patterns in a 2048 x 8 ROM.

APPLESOFT
COMMAND CATEGORY ASCII EPROM ADDRESS
INVERSE ALPHABET SO0-S1F SP0Q-SOFF
SYMBOLS $20-S3F $100-S1FF
FLASH ALPHABET S40-S5F $200-S2FF
SYMBOLS S60-S7F $300-$3FF
NORMAL CONTROL S80-S9F S$400-$4FF
SYMBOLS SAQ-SBF $500-S5FF
UPPER ALPHA SC@-SDF $S600-S6FF
LOWER ALPHA SE@-SFF S700-S7FF

8-32 Understanding the Apple I

flashing the text character under the cursor. You
may make your FLASHING set distinguishable by
having it flash, inverting it, putting a mark on it
(like a dot in the upper left corner of every charac-
ter), or by using an odd HRCG set in the FLASH-
ING area. As an example, you could use the symbolic
and upper case "OUTLINE"” set from the DOS
TOOL KITin the FLASHING area. Your CURSOR
position would then be identified by a text character
changing to the interesting OUTLINE form. You
would want to let the symbols be displayed inverted
or flashing because the symbols and numbers in the
OUTLINE set are not distinct enough from a nor-
mal set.

What’s wrong with letting FLASHING charac-
ters flash and INVERSE characters be inverted?
Nothing—it’s just that customizing your Apple is
fun and rewarding. Burning your special screen
character EPROM is an easy way to do this, and the
capability is a nice feature of newer Apples.

A final word of advice is to use 350 nanosecond
EPROM for your TEXT pattern ROM rather than
the more commonly available 450 nanosecond vari-
ety. The Apple design only gives a 390 nanosecond
address setup time before the ROM data must be
valid. 450 nanosecond EPROM will probably work,
but if your screen text starts looking odd on a hot
summer day, you'll know what's causing it.

Video Generation 8-33

TECHNICAL NOTE

DETAILS OF TELEVISION PROCESSING OF APPLE VIDEO

A rigorous examination of the television process-
ing of the Apple signal involves technical details
beyond the scope of Understanding the Apple I1.
Brief deseriptions of some of these technical details
are presented here for those readers who wish to
study television processing of Apple II video in
depth.

A square wave is the sum of the odd harmonics of a
sine wave of the same frequency. For example, a 3
MHz square wave can be produced by summing the
following sine waves:

3 MHz at amplitude A
9 MHz at amplitude A/3
15 MHz at amplitude A/5

The more harmonics added, the more perfect the
square wave. This sinusoidal make-up of a square
wave is significant because tuned circuits such as
those found in a television receiver respond to the
sinusoidal components of signals. A square wave
will be processed as the sum of its sinusoidal
components.

Generally, Apple PICTURE signals, which pro-
duce color displays, are 3.58 MHz square waves.
These square waves modulate a television carrier
frequency in the user supplied modulator, creating
a radio frequency with a square modulation enve-
lope. Sinusoidally, the square wave intelligence is
carried by the following series of frequencies:

carrier
carrier + 3.58 MHz
carrier +(3.58 MHz) x 3
carrier +(3.58 MHz) x 5

The IF strip of the television will pass the sine
wave carrier and those sine wave frequencies above
the carrier, up tocarrier +4.2 MHz. Only the carrier
and carrier +3.58 MHz of the above distribution are
within this range. As a result, the 3.58 MHz square
envelope is converted to a 3.58 MHz sinusoidal enve-
lope, and the output of the second detector in the
television isa3.58 MHz sine wave. This sine wave is
passed by the chrominance amplifier to the syn-
chronous demodulator, where it is processed with

the reconstructed color reference sine and cosine
waves to produce color signals. It is also processed
by the luminance amplifier to produce the lumi-
nance signal.

Many televisions have a 3.58 MHz trap in the
luminance path which reduces color interference
with the luminance signal. The effect of this trap is
to remove the 3.58 MHz variation, and pass a gray
luminance level which lasts for the duration of the
3.58 MHz presence. A similar effect is felt on the 7
MHz modulation envelope produced by LORES 5
and 10 colors. The 7 MHz + carrier frequency is out
of the band pass of the IF strip, so the 7 MHz varia-
tions are removed and replaced by a gray level.
These solid gray levels do not degrade the Apple
luminancesignal, but enhance it. We cannot see 3.58
MHz variations in picture brightness at normal
viewing distance. We just see solid blocks of bright-
ness. Conversion of 7T MHz and 3.58 MHz signals to
solid gray levels does not, therefore, degrade the
picture we perceive.

A very interesting special case among Apple
PICTURE signals is that created by turning alter-
nating groups of three HIRES dots on and off. Con-
ventional Apple wisdom is that this will create a
horizontal dashed line with white coloration of the
dashes because they are three adjacent dots. How-
ever, the picture signal produced by this patternisa
square wave of 3.568 MHz/3. This square wave has
significant 3.58 MHz sinusoidal content, since 3.58
MHz is the third harmonic of the fundamental
square wave frequency. This produces a 3.58 MHz
sine wave at the output of the chrominance ampli-
fier about one third the amplitude of the signal pro-
duced by a3.58 MHz PICTURE signal. The result is
a washed out coloring of the 3.58 MHz/3 PICTURE
signal, not nearly as intense as the coloring of 3.58
MHz PICTURE signals. The chrominance ampli-
fier frequency band is from 3.1 MHz to 4.1 MHz, so
any PICTURE signal from 3.1 MHz/3 to 4.1 MHz/3
should have some coloration.

A second television phenomenon is less predict-
able. Many televisions have a coupling transformer
or inductor/capacitor combination at the input to
the chrominance amplifier. I have found that this
input circuit has a marked tendency to ring at 3.58
MHz when the PICTURE signal switches from
white to black or black to white. This ringing pro-
duces an output from the chrominance amplifier of

8-34 Understanding the Apple I

about the same amplitude as that produced by a 3.58
MHz/3 PICTURE signal. One result is edge color-
ing of white screen displays. The 3.58 MHz ringing
should vary greatly from television to television, and
may be reponsible for many of the off-color edges
found in Apple displays.

In a normal television broadeast signal, the lumi-
nance signal energy is concentrated at multiples of
the horizontal frequency removed from the picture
carrier. This is because the luminance signal itself
has a very high content of harmonics of the line
scanning frequency. When the luminance signal
modulates the carrier, the energy is largely distrib-
uted in groups centered at the following frequencies:

carrier
carrier + horizontal frequency
carrier + 2(horizontal frequency)

The color signals have a similarly high content of
horizontal frequency harmonics. When the 3.58
MHz color subearrier is modulated by a color signal,
the energy is largely distributed at

3.58 MHz (suppressed)
3.58 MHz + horizontal frequency
3.58 MHz + 2(horizontal frequency)

The 3.58 MHz color subcarrier is used because car-
rier + 3.58 MHz resides between the "carrier +

227(horizontal frequency)” and the “carrier +
228(horizontal freq)” energy concentrations of the
luminance signal. The "carrier +n(horizontal freq)”
luminance distribution is thus interlaced with the
"ecarrier + 227.5(horizontal freq) + n(horizontal
freq)” distribution. This reduces interference be-
tween the chrominance and luminance signals.

The Apple PICTURE signal is high in horizontal
frequency harmonie content, just like the normal
television luminance signal and color signals. There-
fore, the energy of the modulated carrier should be
distributed primarily at “carrier + n(horizontal
freq)” intervals. The process of modulating a 3.58
MHz subcarrier with a color signal does not take
place, so the "carrier + 3.58 MHz + n(horizontal
freq)” energy distribution should not exist to the
same extent as it does in a normal television chromi-
nance signal. However, the 3.58 MHz PICTURE
signal with horizontal frequency harmonic perio-
dicity should create some elements of the “carrier +
3.58 MHz + n(horizontal freq)” distribution when
the carrier is modulated. It is, therefore, interesting
to note that the 3.58 MHz COLOR REFERENCE
signal of the Apple is 228 times the horizontal fre-
quency, not 227.5 times the horizontal frequency as
in a normal television signal. This means that the
"carrier + n(horizontal freq)” energy distribution is
superimposed, rather than interlaced, with the
"earrier + 3.58 MHz + n(horizontal freq)” distribu-
tion. My conclusion is that the energy of a carrier
wave modulated by Apple video is largely distrib-
uted at multiples of the horizontal frequency
removed from the carrier frequency, with no inter-
laced distribution induced by the chrominance
element.

DATA BUS
DATA REGISTER
A
CONTROL
READ PULSE READ
~ INTER-
LOGIC FACE
STATE
SEQUENCER
WRITE SIGNAL rL: 3
CONTROLLER DISK DRIVE

The coming of age of inexpensive floppy disk
drives has been a very important factor in the cur-
rent proliferation of personal computers. By the
same token, the timely introduction of the Apple
Disk IT and its associated Disk Operating System
was a very important factor in the growth of Apple’s
share of the market.

There has been a real personality change in the
Apple II since it was introduced. It was originally a
neat, cassette based machine whose creative and
versatile design made it an initial success. The orig-
inal hardware and firmware are the rock upon
which the Apple empire has been built. Assets from
the original success put the company in a position to
keep the Apple competitive with improvements
such as Applesoft, RAM and ROM cards, and the
Disk II. Combined with substantial software and
hardware support from other vendors, these improve-
ments made the Apple I into what it is today—one
of the world’s most popular personal computers.

The long term success of the Apple II could not
have come about without the development of the
Disk II. For simple storage of data and programs,

chapter 9

The Disk Contiroller

disk I/0 is merely faster and more convenient than
cassette I/0. But for important computer uses such
as word processing, data base management, busi-
ness accounting, and file handling, the disk drive or
its equivalent is mandatory. There can be no doubt
that for most owners the disk drive is the most
important peripheral in the Apple II computer.
Since the original Apple II was strictly cassette
based, the interface to the Disk IT had to be builtona
peripheral card. The extent of motherboard support
of the Disk II is an empty card slot and the Autostart
ROM. The Autostart ROM has no disk handling
routines but only looks for disk handling routines in
the peripheral slots and jumps to them at power up.
The Bootstrap program and the circuits that inter-
face the computer with the drive are on the disk
controller, which is a peripheral card usually
installed in Slot 6. The disk controller is connected
by a 20 wire ribbon cable to the disk drive, which
contains more electronic circuits as well as the drive
mechanisms. It is primarily the controller circuits
and the DOS which determine the features of disk
operation that are unique to the Apple, and it is the

‘92Du8|U| ¥sig 8uj Jo woiBp|q [puoyouny |6 @inbyy
HAMOd
= T ~ 0HIN0J QV3H -
YIMOd =— - 4300030 | gt —
A1ddNS HIMOd ANYWWO0D SS3daav
SE———,
.4 379VN3 - 1237138
————<—(O—~1—30I1A30
(w0l . = £ 378VYN3 1937138
Ov¥IH T0HLNOD OV3IH 378YN3
HILIMS -
103104d L1HM ,1S3N0D3Y LM
AG+ 7/ "
_\3‘1 12310Hd ILIHM
153N034 LM
TUNDIS 3LIEM TYNOIS SLIEM SN wmwmm%ﬂmm
i) H3dYHS > i - T
3dvH 354 OvaE 3SNd avad 21907
A
31v9 | -<
Aol O TR
T04LNOD
zk, : 43181934 = %m_hwm
1 N0 Y ¥ .\h
o 3151934
m viva
0] I 19310Hd 3LIEM »
sna
£ 354 0vay — viva
(9) TVNDIS 31IEM
£
.m 1S3M034 3L1HM sne
NOY ==
.m 1931084 31I5M 1008 g — S53HAAY
% J0HLNOD OV3H
% o (O——1—123135 0/I
m ¢ INY0 Z2318vN3 L
s HITT041NOD XSI0
o

The Disk Controller 9-3

controller circuits which are the main topic of this
chapter. General features of the disk drive are also
discussed, but no attempt is made here to document
the DOS beyond the RWTS (Read or Write a Track
and Sector) subroutine.*

DISK I OVERVIEW

Near the end of 1977, Apple Computer’s decision
making group was still very small. Mike Markkula,
the chairman of the board, presented the group with
a list of products needed to be developed for the
Apple. At the top of the list was a floppy disk drive
for the Apple II. Within a very short period of time,
Apple developed the Disk II and released it along
with its operating system, DOS 3.

The disk drive chosen by Apple was a Shugart
SA400. Apple designed their controller card
(mounted in a peripheral slot), analog card (mounted
in the disk drive), and data formats around this
standard drive. More recently, asubsidiary of Apple
Computer Inc. makes the Disk II drives, but these
drives are nearly identical to the old Shugartdrives.

Other companies make drives and controllers
which will work in the Apple II. If you are inter-
ested, a review of various 5 1/4” disk drives avail-
able for the Apple was presented in Jeffrey Mazur’s
"Hardtalk” column in the September, 1982 edition
of Softalk magazine. Other compatible drives and
controllers will be similar, but the discussions in
this chapter detail the operation of the Disk II con-
troller and, to a lesser extent, the Disk II drive.

Floppy disks are magnetie media, just like audio
and video tapes. Reading and writing is performed
- by rotating the disk while a stationary read/write
head presses against it. Disk speed is 300 RPM
which translates to 48.4 inches per second on the
inner track. This is a great deal faster than audio
cassette tape speed so the rate of data transfer is
greater than that achieved in a cassette storage
system.

In between read or write periods, the head may be
positioned radially so that different tracks can be
written to or read from. The head is positioned pre-
cisely by a stepper motor under 6502 program con-
trol. There are thirty-five tracks on the Disk II, but
some second source drives have forty or more tracks
which can be utilized by modifying the DOS. There
isno hardware sensor that can be used to determine

*Operation of the DOS is well documented in the book, Beneath
Apple DOS, by Don Worth and Pieter Lechner, Quality Software,
1982.

which track the head is on. The DOS absolutely
determines where the head is by running it against
the outer stop at initialization. From that point it
closely monitors head location, always saving the
current position in RAM. Also, when reading data
from or writing data to a formatted disk, the DOS
always verifies head position by reading the stored
track number from the disk and comparing it to the
track number it is attempting to access.

Figure 9.1 is a functional diagram of Apple disk
I/0. Data transfer between the MPU and the con-
troller is eight bit parallel via the data bus. Control
by the MPU is via the address bus, of course.* Data
transfer between the controller and the drives is
serial, and control of the drives is via multiple con-
trol lines serving various functions. The controller is
primarily a digital data processing device, while the
analog circuit card in the disk drive primarily per-
forms the functions of amplification, shaping, and
gating. Control of the disk is software intensive,
meaning very little is done automatically by
hardware.

Hard sectored disks are disks with little holes in
them which divide the disk into a number of sectors.
Disk drives supporting hard sector formats have a
sensor in them which signals the host computer
when a hole is passing by and allows a program to
determine where the disk is in its circular trip. The
Disk II does not have this feature, and the Apple
DOS doesn’t require it. Instead, the Apple uses a
soft sectored format in which positional informa-
tion is stored on the disk in uniquely identifiable
address fields. These address fields are the "holes”
which divide the disk into sectors and identify rota-
tional position. The address fields contain an address
field identifier and a volume-track-sector address
from which programs can locate specific address
fields. Behind each address field, there is a data
field with space for 256 bytes of data. An address
field and the data field that follows it make up a
sector of disk information.**

*In this chapter there is much discussion of the role of the MPU in
disk I/0. The reader will do well to remember that while the
MPU has certain capabilities of manipulating the Disk II hard-
ware, these capabilities can only be utilized under program con-
trol. In other words, a 6502 program must supervise the role of
the MPU in disk I/0.

**The Apple Disk II and DOS will work with hard sectored disks,
but the holes in the disk will be ignored.

9-4 Understanding the Apple I

DATA BUS
DATA REGISTER
A
CONTROL
READ PULSE READ
- INTER-
LOGIC FACE
STATE
AestE N WRITE SIGNAL
=
2 Ds i
CONTROLLER DISK DRIVE

Figure 92 Data Transfer in Disk I/O.

The DOS writes 16 sectors (address fields fol-
lowed by null data fields) in its FORMAT routine.
The 16 sector format is not unconditionally diec-
tated by hardware. It is just a very reasonable
number of sectors to have, considering the facts that
the 6502 addressing modes are best suited for
manipulation of data blocks up to 256 bytes in size,
that 256 bytes is a workable size for data blocks in
disk I/0, and that the Disk II is capable of storing 16
sectorsof 256 bytes on a track in the DOS 3.3 format.
As an example, the hardware will let you store data
in eight sectors of 512 bytes each. Sixteen sectors of
256 bytes, however, is the only format supported by
DOS 3.3 and its RWTS subroutine, and the only
reasons to deviate from it are for copy protection or
to have fun (using the word "fun” in a very broad
sense).

The nuts and bolts details of disk I/O in most
Apples are handled by the RWTS (Read or Write a
Track and Sector Subroutine) of the DOS. The
majority of the DOS is concerned with such tasks as
command interpretation and execution, file man-
agement, track and sector mapping, and cataloging.
Anytime it actually reads or writes disk informa-
tion, however, it uses RWTS. There are four types of

call to RWTS: FORMAT, READ, WRITE, and
SEEK (head position only). FORMAT writes iden-
tifying information for 16 sectors on all thirty-five
tracks. READ positions the head and reads a speci-
fied track/sector, and WRITE positions the head
and writes to a specified track/sector. SEEK moves
the head to a specified track.

Ignoring elaborate copy protection methods, the
normal method of reading a sector is to position the
head and poll the disk input port until the desired
identifying leader, or address field, is found. Then
the following data is read into an area of RAM the
size of the sectors being used. Data is written one
sector at a time. The DOS writing method is to find
the pertinent sector on a formatted disk as when
reading, but to overwrite the following data area
after the desired sector address field has been found.

Figure 9.2 shows the paths data takes during disk
I/0. Data is transferred between the MPU and the
data register on the controller, one byte at a time
over the data bus.* Data is shifted serially between

*The data register is referred to in some writings as the data
latch.

The Disk Controller 9-5

the controller and the disk drive under control of the
logic state sequencer on the controller. The logic
state sequencer is a ROM and some flip-flops wired
up toact likealittle 2 MHz computer. It has a stored
program which it sequences through while exe-
cuting commands that control the data register.
Some writings refer to the sequencer as the “state
machine,” but logic state sequencer more accu-
rately describes its functions. Via address bus
commands, a 6502 program can configure the
sequencer to shift out write data, shift in read data,
or shift in the state of the write protect switch in the
disk drive.

In the write process, a 6502 program causes the
MPU tostore a byte of data in the data register of the
controller. The logic state sequencer shifts this
information, monitoring each bit individually.
Every time the sequencer sees a one, it toggles the
WRITE signal. This changes the direction of mag-
netic field in the read/write head. As the disk
passes across the head during write operation, the
surface of the disk near the head is magnetized, and
the direction of field in the head determines the
direction of the magnetic field on the disk. When the
writing stops, the data remains on the disk in the
form of transitions or lack of transitions in the mag-
netic field. Disk I/0 is identical to cassette I/O in this
regard. Serial data is stored in the form of magnetic
field reversals on the medium. A ONE is a field
reversal. A ZERO is the lack of a field reversal.

Reading is the reverse of writing as far as the
read/write head is concerned. As the disk rotates,
magnetic field reversals on the moving disk surface
cause voltages to be induced in the head. The voltage
pulses are sensed by a special purpose floppy disk
read interface chip which puts out a nice square
read pulse for every magnetic field reversal on the
disk. The sequencer monitors these read pulses and
shifts ONEs and ZEROs into the data register based
on the presence or absence of the read pulse at the
normal write interval.

The sequencer syncs up on the read data if it was
written properly. This means that it will shift data
into the data register until a complete byte is shifted
in, then it holds that complete byte long enough for a
6502 program to detect it by polling the data regis-
ter. The program recognizes that the data register
holds a valid byte when the most significant bit of
the register is set. When a valid byte is detected, the
program must quickly process or store the byte and
start checking the data register for the next one.

It can be seen from this overview that the key to
understanding how data is transferred to and from
the disk is the logic state sequencer and how it is
manipulated by the 6502 program. Later, we will

analyze the sequencer in great detail, but first we
need to lay the groundwork by looking at the hard-
ware environment.

THE DISK |l DRIVE

Figure 9.3 is a functional diagram of the Disk II
drive. The intention here is not to explain all details
of floppy disk drive operation, but only to establish
the basis of control of the dgive from the computer.
In addition to Figure 9.3, reference to Figure 9.1
should help clarify the points of discussion. Even
though only the Apple Disk II is spoken of, most of
the discussion will also be valid for substitute drives.
As Figure 9.1 indicates, all connections to the drive
are routed to the controller.

Power Supply

The drive takes its power supply voltages from the
Apple’s main power supply. +12V,-12V, and -6V are
all utilized, but only +12V is used for motor drive.
Since +12V is used both to position the head and
rotate the disk, the load on +12V is significant, espe-
cially at disk start-up. The drive has a high capacity
+12V input filter to assist the Apple’s power supply
in supplying motor start-up current.

The DRIVE ENABLE' Input

The ENABLE' input is low at drive 1 or drive 2,
but not both, when a drive is being accessed. At the
enabled drive, the drive motor is on, the IN USE
indicator glows, head positioning isenabled, and the
read pulse output and the state of the write protect
switch are enabled to the controller. Speed of disk
rotation is regulated by a motor speed control board
in the back of the drive. This speed is adjustable via
a potentiometer on the speed regulator board.

The Head Positioning Mechanism

The head assembly is positioned precisely, via a
stepper motor. The stepper motor, which rotates, is
linked mechanically to the head assembly, which
travels linearly. A 6502 program positions the head
assembly by directly controlling the four phased
inputs to the stepper motor.

Figure 9.4 is a functional diagram of a four phase
stepping motor, which can provide a basis for
understanding the positioning of the read/write
head. The rotor is a cogged ferrous drum whose cogs
may be attracted by one of four electromagnets. The
electromagnets are activated sequentially under
program control. There may be any number of cogs
on the rotor, but only one of them is next to one of the
four electromagnets at any time.

9-6 Understanding the Apple i

OPEN COLLECTOR
COIL DRIVERS
20 PIN RIBBON
CABLE CONNECTOR
T0 CONTROLLER PLUIG 1 STEPPER 0
Phase-0 [2 J»—— CP) —uas™
- STEPPER 1
Phase-1 |4 | > (R) UUAAS
STEPPER 2
Phase-2 [6 |-» >: (M=
pa— STEPPER 3
Phase-3 [8 |-> >c (N r UM
gt
=
(4) o— PROTECTED
1357 256,814
GROUND[| i L) y
— /\ 4U5E
INDICATOR
13,15,17,19 o (8)
+
v [— eate TGATED +12V ‘b""z'”
L—» 70 WRITE/
T ERASE GATE
MOTOR
PRAGLe (A WAV——(K) MOTOR
v CONTROL
4
WRITE P 5 -
pROTECT 120] S,
ENABLE’
A MC3470 GATED
READ DISK READ o
PULSE 16 N : lNTEE:FACE T
Y WRITE
' WRITE/
J|>c ENABLE = ERASE
GATE
WRITE 75T 4 | e
REQUEST' . ’—c
WRITE 5
SieNaL (81> ik
11.12 MOTION
45V
[}tV

Figure 9.3 Simplified Functional Diagram of Disk i Drive.

The Disk Controller 9-7

Y 1 Y
Phase-0 Phase-1 Phase-2

| |

Phase-3 RETURN

Figure 94 A Stepping Motor.

To rotate the rotor one step to the right in Figure
9.4, energize the phase-2 magnet, then deenergize
the phase-1 magnet. Magnetic attraction will then
align the cog with the phase-2 magnet. To go three
steps left from this new position, perform this pro-
gression: phase-1 on, phase-2 off, wait, phase-0 on,
phase-1 off, wait, phase-3 on, phase-0 off, wait. The
wait is for the response time of the motor, which is
slow compared to the MPU. Summarizing, to step
left, sequence through the phases in descending
order. To step right, sequence in ascending order.

The Apple disk drive uses a four phase stepper
motor for head positioning. The controller has pro-
visions for bringing the control voltage for each
phase high or low individually. In the drive, these
voltages will turn on or cut off current to the elec-
tromagnets in the stepper motor. A good deal of the
software overhead is required to position the head
and remember its location (See PROGRAMMING
EXAMPLES FROM RWTS later in this chapter).
Two phases must be stepped through to position the
head one track, and the Disk II and DOS support
thirty-five tracks.

Writing to the Disk

There are two write related inputs from the con-
troller to the drive, WRITE REQUEST’ and the
WRITE signal. WRITE REQUEST’ causes the

drive to be configured for writing unless the disk is-

write protected. Configuring the drive for writing
consists of allowing the WRITE signal to control
the current in the coil of the read/write head, and of
applying a direct current to a second head referred
to here as the erase head. The WRITE SIGNAL
control of the current in the read/write head is such
that the high/low state of the WRITE signal deter-
mines the direction of the magnetic field set up in
the read/write head.

Current in the read/write head tends to produce
magnetic fields on the disk parallel to disk motion.
Current in the erase head tends to produce magnetic
fields on the disk perpendicular to disk motion. The
actual strength and direction of the fields produced
are a result of the vector sum of the WRITE signal
field and the erase field (see Figure 9.5). The pres-
ence of the erase field means that there is always
some field in the head assembly while writing, even
in the middle of a WRITE signal field reversal. The
absence of a field in the head assembly would allow
previous field alignment on the disk to remain
unchanged. Thus, the erase field causes the pre-
viously written data to be erased when the WRITE
signal component of the field vector has an ampli-
tude of zero.

As was mentioned in the overview, data bits are
stored on the disk as field reversals, or the lack of
field reversals, at a regular interval. This fact is not
changed by the presence of the erase component in

9-8 Understanding the Apple II

MAGNETIC
FIELD
REVERSAL

AN

DISK
MOTION

—

ERASE
HEAD

READ/WRITE HEAD

3 15K
4

D

o

+10v

! — > WHILE
WRITING

Figure 9.5 The Write Field is the Vector Sum of the WRITE and ERASE Fields.

the field. Just understand that the erase, or radial,
component is constant, while the read/write, or tan-

gential, component reverses depending on the
WRITE signal.

The Write Protect Switch

There is aspring loaded switch in the drive which
is open when a write protected disk is installed. A
write protected disk is one with no notch on the left
edge or one with the notch covered up. Having this
switch open causes the WRITE PROTECT signal to
be high, which isolates the WRITE signal from the
read/write head even if WRITE REQUEST’ is low.
The WRITE PROTECT signal is also routed from
the enabled drive to the controller so a 6502 pro-
gram can determine the state of the write protect
switeh.

The WRITE PROTECT signal and the read pulse
are the only two outputs from the drive to the con-
troller (see Figures 9.1 and 9.3). Both are output
through tri-state drivers which are gated by the
drive ENABLE' input. This allows the twodrives to
share control of the read pulse and write protect
lines.

An interesting feature of the write protect circui-
try is that its activating voltage is the phase-1 vol-
tage input to the head positioning motor (see PLUG
1, pin 4 in Figure 9.3). As a result, phase-1 must be
turned off after head positioning or writing to the
disk is impossible. This is probably a way of forcing
the programmer turn off all phases (not just phase-
1) after head positioning. This seems to imply that
keeping a stepper motor input active causes an

The Disk Controller 9-9

undesirable effect: perhaps a tiny vibration or over-
heating of the motor. In any case, the RWTS head
positioning routines leave all four phases off after
head positioning. The boot routine on the controller
card, however, leaves phase-0 energized after send-
ing the head to track 0.

The Read Pulse

When writing is not enabled, passing a field re-
versal on the surface of the disk over the read/write
head induces a voltage in the coil. This induced volt-
age will alternate in polarity for every field rever-
sal. The induced voltage is sensed by a special
purpose chip which is designed for this function.
The special purpose chip, a Motorola MC3470, out-
puts a positive one microsecond pulse for every field
reversal (see Figure 9.6). This read pulse is routed
from the enabled drive to the controller.

Now we come to the biggest problem with reading
a disk. The signal coming off the read/write head is
adirty little voltage. The shape and size of this read
pick-up signal will vary with disk speed, tempera-
ture, humidity, head alignment, disk warpage, and
Murphy’s Law in the read environment as opposed
to the same factors in the write environment. The
MC3470 has to clean up the imperfect read pick-up
signal and pass it to the controller. The basic fea-

tures of the MC3470 clean up job include amplifica-
tion, shaping, filtering, and noise rejection. The
MC3470 detects positive and negative voltage peaks
on the read pick-up signal, then waits about two
miecroseconds to verify that a second opposite polar-
ity peak has not occurred. The purpose of this is to
prevent narrow noise pulses from generating invalid
read pulses. After the two microsecond mask period,
a one microsecond read pulse is output. Even with
this sophisticated interface, the controller must be
able to reliably monitor a read pulse whose timing
interval will vary significantly. In addition, it must
be able to interpret either the presence or the
absence of the read pulse at the distorted interval.

The two microsecond delay period between peak
detection and read pulse output turned out to be too
short for the new format when Apple came out with
DOS 3.3. Apple solved this problem by replacing
fixed resistor R21 with a potentiometer on the
analog card in the disk drive. Technicians align the
potentiometer for an optimum delay, which works
out to be approximately three microseconds. Old
cards causing unreliable data transfer because of
the two microsecond delay arereplaced by Apple as
if the card were still under warranty. Your dealer
will still charge you for labor and alignment in event
of such replacement.

THE WRITE
INTERVAL IS
FOUR MPU CYCLES
/_H
1 1 0 1 1 0 0 1
WRITE SIGNAL - |
1 : 1
CORRESPONDING
READ PICK-UP 0 0 0
VOLTAGE
1 1 1
READ PULSE
FROM MC3470 ! ’ ' : 1 1 0 0

Figure 9.6 When Reading, the Lack of a Read Pulse at a Regular Interval Represents a ZERO.

940 Understanding the Apple Il

ADDRESS
BUS

—>

1/0 SELECT'
(SCE6XX) —},
S DATA
—_’ BOOTSTRAP
ROM > < BUS
(SCOEX)
DEVICE.
A0 SEIIECT
OE2 OE1
WRITE SHFT RT 03
PROT "1 InpuT
R i DATA REGISTER ¢
DATA REG. CONTROL
CLOCK 0000 CLEAR
1000 NOP
1001 SHIFT LEFT 0
1010 SHIFT RIGHT
1011 LOAD
1101 SHIFT LEFT 1
= A1 050-3
COEC/D SHIFT/LOAD o
COEE/F READ/WRITE i
—| A3 B3
LOGIC
STATE
READ READ
PULSE-Lr—-- PULSE |——] a4 SEQUENCER
. SHAPING ROM
CLOCK {
4 DS4-7
SEQUENCE A0, AS-7
CONTROL
WRITE
DEVICE ., WRITE SIGNAL
SELECT' ENABLE
I__a COEO-COE7 HEAD POSITIONING
c2 ENABLE
DECODER = CONTROL Egﬂ*?szE
COE8/9 Dg;';e l o
CLR DRIVE OFF/ON | pe ay
4 SEQUENCER
03 — CLOCK
SYSTEM POJ;ER
RESET = . - e
.15EC

Figure 9.7 Block Diagram of the Disk Il Controller.

The Disk Controller 9-41

The combination of the read/write head and the
MC3470 responds very well to field reversals on the
moving disk as long as there is not too much space
between them. However, if there is too much space
between field reversals on the disk, the MC3470
starts putting out false read pulses. This means that
you can’t utilize copy protect schemes that call for
isolated field reversals on the disk separated by
large intervals of constant field direction. In other
words, the MC3470 will reliably produce read pulses
while data of normal density is moving past the
read/write head, but reduction of this density will
cause spurious read pulses to be generated. The
write interval in the Apple is four MPU cyecles, and
we will see that in the DOS formats the maximum
time between field reversals on a disk will be three
write intervals.

THE DISK Il CONTROLLER

The Disk II controller contains that part of disk
I/0 electronies which needs to be positioned close to
the motherboard. This includes a Bootstrap ROM, a
data register, a logic state sequencer, and a com-
mand decoder. Figure 9.7 shows the functional flow
of the controller, and Figure 9.8 is a full schematic.

The Bootstrap ROM

The Bootstrap ROM is referred to as the P5 ROM
by Apple. It contains a 256 byte program which
begins the bootstrap procedure that reads the DOS
from adisk, putsitinto RAM, and initializes it. This
256 byte program is the only 6502 program which
resides on the controller, and it may be accessed any
time at CnXX where n is the controller slot number.

This program has just enough code to get the con-
tents of track 0, sector 0 into RAM. Then program
control is passed to that part of RAM so that the
bootstrap procedure can be continued. The Boot-
strap ROM is connected to the address bus and data
bus naturally, and its output enable is the I/O
SELECT' input to the slot. This response to the I/O
SELECT' input causes the DOS to be booted when
PR#n or IN#n is executed from BASIC.*

The Autostart power-up RESET routine uses the
contents of the Bootstrap ROM to detect the pres-
ence of a Disk II controller in the Apple. It does this
by starting with slot 7 and working downward,
checking each slot for the presence of $20, $00, $03,
and $3C at locations $Cn01, $Cn03, $Cn05, and
$Cn07. When it finds this combination, it starts exe-
cuting at $Cn00 on that slot, thus booting the DOS.

The Command Decoder

The overseeing 6502 program manages the con-
troller via address bus commands in the DEVICE
SELECT’ range of the controller’s slot ($C080,X
through $CO8F,X with slot number times $10 in the
X-register). This range is divided up into eight
on/off switches by an LS259 on the controller identi-
cally to the way the $C05X range on the mother-
board is divided up (see the F14 chip in Figure 7.2).
In other words, there are eight on/off soft switches
by which a program can manage disk I/0. Like the
motherboard sereen mode switches and annuncia-
tors, the disk switches areset OF F by even addresses
and ON by odd addresses. Table 9.1 is a brief listing
of the functions of these address decoded commands,
but more detailed explanations follow.

*See Chapter 7, PERIPHERAL SLOT CONNECTIONS and
THE APPLE I/0 SYSTEM: KSW AND CSW.

Table 9.4 Disk Il Controller Commands.

SWITCH OFF FUNCTION _ ON_FUNCTION _
o0 SC080,X - PHASE @ OFF SCO81,X - PHASE @ ON
Q1 $C@82,X - PHASE 1 OFF $0083,X - PHASE 1 ON
Q2 $C084,X - PHASE 2 OFF $C085,X - PHASE 2 ON
Q3 $C086,X - PHASE 3 OFF $C087,X - PHASE 3 ON
Q4 $C088,X - DRIVES OFF $C089,X - SELECTED DRIVE ON
Q5 $008A,X - SELECT DRIVE 1 SC@8B,X - SELECT DRIVE 2
Q6 $CO8C,X - SHIFT WHILE WRITING/ $C@8D,X - LOAD WHILE WRITING/

READ DATA READ WRITE PROTECT

Q7 SCOSE,X - READ SCO8F,X - WRITE

1. RESET forces all switches off.

2. Access to even addresses causes the data register contents to be transferred to the data bus.

942 Understanding the Apple lI

5V il
5V 5]
2
MPSUS1 | = 12V “2v
¢ v 12 33 19
seteer(D 5v(2) cs lc3 ® lch @ Lcs _Lca{j
T.‘uF T.i,uF T.1JJF ‘l".'lp.F T,IpF
6ND(26 T 7]
A (2)— Ao oof)
Al ®_2> Al 01 5 48)01
n () —3n2 13 02 1) "2
A3 (52 a3 B30%F5 oaf ~{46)03
5 BGOT 14
a(By=—o-{A4 ROM 07 () o4
A5 [:}—--A? 06 - 44)Ds
a6 (B)——12{a6 052 (1) D5
w (e GaL £ A A Y ~aor
DEV,
5V
1 v ._’?) 253 ¥7 ¥1376 ¥14¥5 15 ¥4 v16 [20
wr1 proTecT [OE1 OE2
=2 : QHITT, ne E%m
gawf . 1 DSR|A|B|C|D|E|F|G|H oshis - g?gfsrsn
3]
MPSUS1 : e S0 51 CLA_GND)
T2 T 119 10
I B 17 6 |9
E201 00 0
2’I‘“‘ 0 03
vee
COEC/D SHIFT/LOAD 3 83
COEE/F READ/WRITE 4. 1ns 6309-P6 02}8
2 3 S
03 (37) ! Q)D‘ S 2 Ap SEQUENCER |
Az TsTi2 g0 Qe 12 T Lagg] k. 9 ROW R
1y Ck CLRLCC I I L 1__7)51—5—A4)
HLIE' 13 ke
F!‘]LIEI:\SUE A3 LS174 HEX FF AZ 15132 =
i 1uSEC ' 6 7 17 04 1
D ~A5 osh2
14 D 15 1 AO o 13
sl = Is 18, {6 "l
3 2 19_
104 g L
; WRITE
o AL 18] SieNAL
»c REQUEST
el
LSos
DRIVE ON B
COEA/B DRIVE 1/2 A2 LS132 ENABLE 2
11 1 10
HEAD STEPPER
07 05.]4 COEO/1 -. MOTOR PHASE o AZLS132 enapyE 1
DEVICE 14 0 PHSO L
(@)—=q NTROL 8
SELECT g iy 05— C0E213 ol Ll -
i ~4]
a(2—3p a0z 6 COE4/5 PHS? _ |
7 COEB/7 RS 14
1 ABLE = gl ——>-"—»{ 8] PHs3 :
mM(3) A LATCH ggﬂ- L I B
A2(4) . 04l 9__CoE8/9 0 6 W o >
A DRIVE OFF/ON ; DELAY NES66
3 CLR GND 505 o R (1sec) o DUAL
T TIMER
5 Ro—
POWER
oc R4
RESET(31 2o §WUTRE”§ET 6 §1Mtl
i LS (1SEC) THZ]
c1
INTING) " (©) SLOT EDGE CONNECTOR T T -Wf
INT OUT(23 OMA T

[] 20 Pin DRIVE CONNECTOR

Figure 98 Schematic: The Disk Il Controller (Address References Assume Siot 6).

The Disk Controller 9-43

Drive Off/On and Drive Select

The $C088,X/$C089,X switch disables the drives
or enables a drive, while the $C08A,X/$C08B,X
switch selects drive 1 or drive 2 for enabling. Here is
an illustrative, but otherwise useless program
sequence:

LDX #S60

CMP SC@8B,X
CMP $C@89,X
CMP SC@8A,X

;SLOT 6

; SELECT DRIVE 2
;DRIVE 2 ON
;DRIVE 2 OFF
;DRIVE 1 ON

CMP $C@88,X ;DRIVES OFF

Turning a drive on ($C089,X) performs the follow-
ing at the controller:

1. Applies +5V power to the sequencer ROM and
the sequencer flip-flops at A3.

2. Applies Q3’ to the clockpulse inputs of the data
register and the sequencer control flip-flops.
The sequencing and data transfer clock is Q3
falling. (DRIVES OFF forces the control flip-
flops to clear.)

3. Enables the outputs of the sequencer ROM.

4. Enables sequencer control of the data register.
(DRIVES OFTF forces the data register to hold
its present state.)

5. Causes the ENABLE 1’ or the ENABLE 2’ sig-
nal to go low depending on which drive is
selected by the drive 1/drive 2 switch. At which-
ever drive is enabled, this turns on the drive
motor and IN USE indicator, and it enables
head positioning, writing, and control of the
read pulse and write protect inputs to the
controller.

The drive off/on signal is routed through one half
of an NE556 timer. The effect of this timer is to
delay drive turn-off until one second after a refer-
ence to $C088,X. This gives the drive apparent
momentum, keeping it running after it is turned off.
The result is that the drive never turns off between
closely spaced accesses, and in these instances,
access time is reduced because there is no delay
while the disk comes up to speed. This is why the
computer is ready to process after a "CATALOG"
well before the IN USE light goes out on the drive.
The one second turn off delay does not apply to turn-
ing off the drive via a RESET. Pressing RESET
causes the delay timer to clear and turns off the
drive almost immediately.

The second half of the NE556 timer is used to
generate a .1 second power-up RESET. This is
overridden by the motherboard .3 second power-up
RESET on Revision 1 and later boards, but on Revi-
sion 0 boards, the controller generated RESET is
necessary to achieve the autostart capability.

Head Positioning Commands

Address bus commands $C080,X through $C087,X
are translated directly into four phase-off/phase-on
stepper motor controls. These control voltages are
routed to the drives where they are amplified and
applied to the head positioning motor. Ascending
references to $C080,X through $C087,X cause the
head assembly on the enabled drive to move toward
the inner track (track 34). Descending references
cause movement toward track 0. The controlling
program must wait approximately 20 milliseconds
for motor response after turning a phase on. The
actual motor response will ‘vary with momentum,
and the RWTS head positioning routine reduces
positioning time by varying the waiting period with
expected momentum.

The motor must be stepped two phases per
track, so there are really 70 head positions. RWTS
writes at the phase-0 aligned and the phase-2 aligned
positions, but copy protected disks may have data
written on the half-tracks, the phase-1 aligned and
phase-3 aligned positions. The head assembly hasa
mechanical stop—an electrical stop in some alter-
nate drives—at track 0. One method to absolutely
ascertain the head position is to step outward eighty
phases as the bootstrap program does. The head will
run against the track 0 stop, and you will be at track
0. The head/stepper motor linkage is aligned so that
the motor will be phase-0 aligned at track 0, so
from track 0 it is known that stepping inward must
be begun by turning phase-1 on by a reference to
$C083,X. From this point, the head position can be
stored in RAM, and the phase alignment can be
determined from the head position. After head posi-
tioning, the four phases should all be turned off,
because, if phase-1 is left on, the drive will behave as
if a write protected disk is installed.

Read/Write

$CO08E,X/$CO8F X is the controller’s READ/
WRITE soft switch. It is an addressing input to the
sequencer and divides the sequencer into its two
most significant parts, the READ sequence and
the WRITE sequence. It also is inverted to become
the WRITE REQUEST' signal to the drives. Thus,
the READ/WRITE switch configures the controller

944 Understanding the Apple |

for reading or writing via sequencer addressing,
and it configures the enabled drive for writing via
the WRITE REQUEST’ line unless a write pro-
tected disk is installed.

SHIFT/LOAD

SHIFT/LOAD is a fairly inadequate label for the
$CO8C,X/$C08D,X soft switch, but any label would
be. It is chosen because, during writing, $C08C,X
causes shifting of the data register on every eighth
sequencer clock, and $C08D,X causes loading of the
data register from the data bus on every eighth
sequencer clock. In reality, the SHIFT/LOAD
switch performs several functions which defy sum-
marization in a short label.

SHIFT/LOAD is an addressing input to the
sequencer and it divides both the READ sequence
and the WRITE sequence into two parts. As men-
tioned above, it is a programmable SHIFT/LOAD
control for the data register. When the READ/-
WRITE switch is low, the SHIFT/LOAD funection is
changed to READ/CHECK WRITE PROTECT.
These sequencer control functions are summarized
in Table 9.2. The operation should become clearer
when we study the sequencer listings.

$CO8C,X and $C08D,X are also the normal input
and output port addresses used by RWTS for
transfer of disk data. In reality any even address
could be used to load data from the data register to
the MPU, although $C088 (DRIVES OFF) and
$CO8A (SELECT DRIVE 1) would be inapprop-
riate for this purpose. Use of $C08D,X as the output
address goes hand in hand with the fact that it
causes loading of the data register from the data
bus.

The Logic State Sequencer and Data
Register

As mentioned before, the logic state sequencer is
a ROM wired up to behave like a little 2 MHz com-
puter. It is this powerful sequencer that enables the

controller to perform such complex control with so
few chips. It uses a 256 byte ROM with four of its
data outputs (04-O7) connected through flip-flops to
four of its address inputs (A5, A0, A6, and A7). The
flip-flops are clocked by Q3 falling while a drive is
enabled.*

There are eight address inputs to the sequencer
ROM, so let’s refer to the four flip-flop latched end
around inputs as the sequencing inputs and the
other four address bits the partitioning inputs.
Assume for a moment that the four partitioning
inputs are fixed. The overall ROM address will then
change every time Q3 falls, and the contents of bits
04-07 of any addressed location will determine the
address after the next clockpulse. These four data
bits thus contain flow information, and they are
programmed so the flow will proceed in an orderly
manner from clock to clock. There are 16 states of
the four sequencing address inputs and 16 states of
the four partitioning address inputs. The sequencer
ROM is thus divided into 16 partitions of 16
sequencer states each.

The four partitioning inputs are:

Al - QA, the MSB of the data register

A2 - SHIFT/LOAD, the $C08C,X/$C08D,X
switch

A3 - READ/WRITE, the $CO8E,X/$C08F,X
switeh

A4 - The read pulse from the disk drive

The A2 and A3 inputs allow the 6502 programmer
to configure the sequencer for loading while writ-
ing, shifting while writing, reading data from the
disk, or checking the write protect switch. The A1
and A4 inputs allow the sequencer flow to deviate

*The sequencer clock is actually the rising edge of Q3’, developed
by gating Q3 through a 74LS132 NAND gate (see Figure 9.8).
Due to propagation delay, the clock is effectively Q3 falling plus
approximately 15 nanoseconds.

Table 9.2 Functions of the $C08C X/$C08D X and $CO8E/$CO8F Switch.

SHIFT/LOAD | READ/WRITE Sequencer Function
$C@8C,X SCO8F, X Data register shift every eighth sequencer clock
} while writing.

$CO8D, X $SCO8F,X Data register load every eighth sequencer clock
while writing.

$CO8C, X $SCO8E,X Enable READ sequencing.

$C@8D, X $CO8E,X Check state of write protect switch and initialize
sequencer for writing.

The Disk Controller 9-45

depending on the presence or absence of aread pulse
and depending on the state of shifted data in the data
register.

The data register is a very versatile 8-bit IC that
can shift left, shift right, load parallel or store paral-
lel based on its control inputs. The remaining four
outputs of the sequencer ROM are connected to
inputs of the data register, which completes our
picture of the sequencer. Four of the ROM data bits
are programmed to control sequencing and the
other four data bits are programmed to control the
data register. There are only six distinct commands
which the sequencer can cause the data register to
perform, but there are 16 possible states of the
command bits. This is because there are redundant
states which command the data register to do the
same thing. Table 9.3 shows the 16-bit states in hex-
adecimal and binary with an asterisk next to the six
states used by Apple to perform commands in their
3.2 and 3.3 ROMs.

In addition to the sequencer control of the data
register, any reference to even addresses in the
DEVICE SELECT' range of the controller slot will
cause the contents of the data register to be placed
on the data bus. For this reason, programs should
not cause the MPU to write to even addresses or the
MPU bidirectional driver will compete with the
data register for control of the data bus. It is impor-
tant to note that while a 6502 program can check the

state of the data register at any time, a program can
store data to the data register only when the
sequencer is performing a load. As a result, the
write operation involves getting the 6502 program
in syne with the sequencer and keeping it there by
performing write operations in exact timing loops.
If the data register is to accept data from the MPU,
the 6502 program must store the data to the data
register at exact multiples of the bit writing
internal. This interval is eight cycles of the
sequencer or four eycles of the MPU.

[t is important to make a distinction here between
what can be done and what normally is done. A
program can store data at any multiple of the bit
writing interval—8, 12, 16, 20, etc. MPU cycles—
and the data register will accept it. The DOS, how-
ever, only stores data to the data register at 32, 36,
and 40 cycle intervals. There are very practical rea-
sons for this which will become apparent as these
discussions progress.

Both the sequencer control flip-flops and the data
register are clocked by Q3 falling when a drive is
enabled. This means the sequencer operates at
approximately 2 MHz, twice the frequency of the
6502. Additionally, the read pulse from the enabled
drive is synchronized to the Q3 falling clock, quant-
ized in pulse width to one Q3 period, and inverted in
the process to form a negative pulse. It is this syn-
chronized, negative read pulse which is applied to

Table 9.3 Logic State Sequencer Command.

07-06-05-04
HEX | BINARY | MNEMONIC FUNCTION
*@ 0009 CLR CLEAR DATA REGISTER

1 @egL CLR

2 0010 CLR

3 @e11 CLR

4 9100 CLR

5 9101 CLR

6 0110 CLR

7 @111 CLR
*8 1000 NOP NO OPERATION

*9 1001 SLg SHIFT ZERO LEFT INTO DATA REGISTER
*A 10190 SR SHIFT WRITE PROTECT SIGNAL RIGHT INTO DATA REGISTER
*B 1911 LD LOAD DATA REGISTER FROM DATA BUS

c 11060 NOP
*D 1101 SL1 SHIFT ONE LEFT INTO DATA REGISTER
E 1110 SR

E 1111 LD

*These are the codes actually used by Apple.

946 Understanding the Apple ||

A4 of the sequencer ROM, and the read pulse is
therefore monitored in the same 500 nanosecond
time frame as the other addressing inputs to the
ROM. In a further attempt to stabilize the shaky
read pulse, a Schmidt trigger type NAND gate is
used in the read pulse quantizing circuit (see Figure
9.8). Use of this type of gate increases noise immun-
ity and ensures smooth transitions of the A4 input to
the sequencer ROM.

During both reading and writing, the data regis-
ter is shifted left while the most significant bit, QA,
is monitored. In writing, the state of QA is moni-
tored and the WRITE SIGNAL is toggled at the bit
writing interval when QA is set. In reading, ONEs
and ZEROs are shifted into the data register
depending on the presence or absence of a read pulse
at the bit writing interval. When QA becomes set,
the sequencer holds the data register long enough
for a 6502 program to detect the valid byte with a
seven MPU cycle polling loop. Then the data regis-
ter is cleared and the next byte is shifted in from the
disk.

%Modlng the Contents of the Sequencer

In the past, the contents of the logic state sequencer
ROM have been a mystery in the world of Apple
users. The basic reason for this is that no one who
understood the contents ever bothered to publish
any information about them. A primary aim of this
chapter is to fill this gap in Apple liferature by
providing formatted listings of the DOS 3.2 and
DOS 3.3 sequencer ROM contents and discussing
operational aspects of disk I/O which are deter-
mined by the contents.

This section shows how to make the contents of the
sequencer ROM accessible to the MPU and provides
a program which makes formatted listings of those
contents. The program will accurately list the con-
tents of any ROM designed to operate in the B3
socket of the Disk II controller. It is not necessary for
the reader to go through the exercise of making
listings of the DOS 3.2 and DOS 3.3 sequences since
these listings are furnished in Figures 9.10 and 9.11.
He may, however, find it interesting and educa-
tional to make his own listings.

The MPU cannot normally read the contents of
the sequencer ROM because the ROM is not con-
nected to the data bus. You can change this situation
by removing the bootstrap ROM from the D3 socket
and moving the sequencer ROM from the B3 socket
to the D3 socket. The contents of the sequencer ROM

can then be read by the MPU by addressing $C6X X
(assumes Slot 6). Of course, your disk drive won't
work with the controller configured this way, but
you can save the data to cassette tape and then
transfer it to a disk file when your controller is back
to normal.

This data can be listed to a printer using the moni-
tor, but it is not particularly readable in this form. I
have written a BASIC program to format the data
into a readable listing. Figures 9.9 through 9.11
contain listings of the Applesoft BASIC formatting
program, the DOS 3.2 sequencer, and the DOS 3.3
sequencer respectively. The program was written in
BASIC rather than assembly language so it could be
more easily understood by readers who choose to
study it. Also, readers should find it very easy to
manipulate the sequencer listing because it is for-
matted as a 16 by 16 BASIC subscripted string
variable. The program takes a little over a minute to
run. It will list any sequencer ROM designed to run
in the Disk II controller as long as its source file is
read from the D3 socket of the controller. The source
file needs to be resident on diskette as a binary file
named "SEQROM.” However, it would be easy to
change line 50 of the program so the source file was
obtained elsewhere. Before running the program,
enable your 80 column printer or 80 column video
card.

The manipulations of the program are based on
the following features of controller wiring:

1. Address bus A5 is connected to the A7 input to
the D3 socket. Address bus A7 is connected to
the A5 input to the D3 socket.

2. Data bus D4 through D7 is connected to outputs
07 through 04 on the D3 socket in reverse
order.

3. A natural significance order of addressing
inputs to the sequencer ROM is WRITE—
READ PULSE—SHIFT/LOAD—QA—O7—
06—05—04. This does not correspond to the
way they are connected to A7 through A0 on the
sequencer ROM.

4. The read pulse applied to A4 of the sequencer
ROM is a negative pulse.

These wiring connections were not designed to
confuse us, although they serve the purpose. They
were designed to minimize wire cross over on the
mechanical layout. A design engineer can swap the
address and data pin assignmentson a ROM until he
finds his own version of peace of mind, then he com-
pensates for the scrambled pin assignments when

The Disk Controller 9-47

he writes the ROM program.* The sequencer ROM
formatting program must account for this by read-
ing each byte of data, unscrambling address bits to
find where that data is in the sequence, and revers-
ing data bits before storing them ina 16 by 16 string
variable matrix from which listings can easily be
made.

The result is the listings of Figures 9.10 and
9.11.** The WRITE and READ sequences are
separated from each other, and the listing is other-
wise divided into columns of 16 sequencer states.
This is a natural division since 16 different values
can be represented by the four sequencing data bits.
The far left hand column is the sequencer state, and
the other columns hold the contents of the ROM for
that sequencer state. The left digit of each number
is the next sequencer state, and the right digit is
the command. Next to each number is a mnemonic
for the command digit.

As a quick example of interpreting this listing,
assume that the sequencer is at the top of the fifth
column of the WRITE sequence in Figure 9.10. This
means the sequencer is at State 0 and the partition-
ing address bitsare WRITE—NO READ PULSE—
SHIFT—QA'. The data being driven out of the
sequencer ROM is 18. The 1 is the next sequencer
state which will occur when Q3 falls. The 8 is the
command which will be executed when Q3 falls, a
NOP. A quick scan through the WRITE listing will
show that it contains mostly NOPs and that it nor-
mally flows from one sequencer state to the next.

The WRITE Sequence

The WRITE sequence and WRITE PROTECT
sequence are the same in the 3.2 and 3.3 controllers,
so this section pertains to both. Please refer to the 3.3
listing during these discussions, using the 3.2 listing
for comparison.

*Since writing this paragraph, | have learned that Steve Woz-
niak designed the Disk II controller. Working with Randy Wig-
ginton, Wozniak completed this complicated and innovative
design in the space of one week (the final week of 1977). Steve is
very proud of the mechanical layout and at one’time redid the
layout for the sole purpose of reducing the number of feed-
through holes from three to two. [had always assumed that much
of Apple's disk interface technology had been borrowed from
Shugart, but I couldn’t have been further from the truth. The
format and circuitry represent a notable creative effort by the
Apple group. Besides the controller design, Wozniak wrote
RWTS. Randy Wigginton wrote the restof the original DOS, and
Rod Holt designed the analog board of the disk drive.

**The formatted listings presented here are my own representa-
tions which resulted from lengthy investigation. The mnemonices,
address labels, and layout won't, therefore, be the same as those
used by Apple Computer engineers. Who knows what they use? I
submit, though, that my representation provides adequate illus-
tration in the absence of any labels and formats published by
Apple.

We begin our analysis by making two simplifying
observations. First, if WRITE is selected at the
READ/WRITE switch ($CO8F,X), the left four
columns (READ PULSE) are identical to the right
four columns(NO READ PULSE). This means that
read data has no effect on the WRITE sequence and
it can be ignored for purposes of writing. This is a
necessity because meaningless read pulses will
normally be present while writing. Second, all
entries of the READ—LOAD sequence states are
0A. This means that READ—LOAD sets the
sequencer state to 0 and idly shifts the state of the
write protect switch right into the data register
where it can by checked by 26502 program. Thus we
have the basis for checking if a disk is write pro-
tected, namely:

LDA $C@8D,X ;CHECK WRITE PROTECT
; IF READ.
READ.
sBRANCH TO WRITE PROTECT
sROUTINE IF QA SET.

LDA S$SCO8E,X
BMI ERROR

-

These are the program steps used by RWTS to check
for write protection before writing a sector. A rou-
tine such as this must be performed every time
before writing. It not only checks if a disk is write
protected, it also elears QA if the disk is not write
protected and sets the sequencer to State 0. This
initializes the sequencer for writing, and it is the
only way an MPU program can establish the state of
the sequencer.

In the above program steps, the data register was
checked via a LDA $CO8E,X. This sets READ/
WRITE to READ, shifts the state of the write pro-
tect switch into QA of the data register, and places
this shifted value on the data bus so the MPU can
load it to its accumulator. Now, in reality, any time
you would run this program, the READ/WRITE
switch will already be set to READ, because we are
preparing to write. If READ/WRITE were set to
WRITE and a disk with no write protect were rotat-
ing, the logic state sequencer would be merrily
stomping the flux out of all the data on the track.
When you write to the disk, the program waits until
the right moment, switches READ/WRITE to
WRITE, then stores a few hundred bytes of data to
the data register in precision loops, then switches
back to READ. So, since the READ/WRITE switch
was already in the READ above, the “LDA
$C08D,X” is not intended to switch READ/WRITE
to READ. It is intended solely to load the contents of
the data register from the only appropriate even
controller address $CO8E X.

948 Understanding the Apple lI

18 REM

12 REM LIST LOGIC STATE SEQUENCER ROM
13 REM

14 REM BY JIM SATHER

15 REM 2/22/83

16 REM

30 REM THIS PROGRAM FORMATS AND LISTS THE PROGRAM CONTAINED IN THE

32 REM DISK II LOGIC STATE SEQUENCER. BEFORE RUNNING THIS PROGRAM,

33 REM YOQU MUST CREATE A BINARY SOURCE FILFE ON A DISK AND

34 REM NAME IT “SEQROM". THE SOURCE FILE IS CREATED BY PLACING

36 REM THE B3 ROM IN THE D3 SLOT OF THE DISK CONTROLLER. THE

38 REM SOURCE FILE IS WRITTEN TO CASSETTE FROM $C600-SC6FF. WHEN THE
4¢ REM CONTROLLER IS RESTORED, THE CASSETTE FILE IS TRANSFERRED TO DISK.

50 PRINT CHRS (4);"BLOAD SEQROM,A7936"
16¢ DIM LST(15,15): DIM ASWAP(7): DIM DFIX(15): DIM HEXS(15): DIM CMNDS(15)

110 FOR X = @ TO 7: READ ASWAP(X): NEXT

120 FOR X = @ TO 15: READ DFIX(X): NEXT

136 FOR X = @ TO 15: READ HEXS$(X): NEXT

140 FOR X = @ TO 15: READ CMNDS (X): NEXT

15¢ GR : COLOR= 6: REM SOMETHING TO WATCH WHILE WAITING
208 REM

201 REM FORMAT DATA INTO 16 X 16 MATRIX

202 REM

210 FOR COL = @ TO 15: FOR ROW = @ TO 15:WRK = ROW + 16 * COL
300 REM

301 REM GET BINARY FORM OF WRK

302 REM

305 FOR X = @ TO 7:A(X) = 0

310 WRK% = WRK / 2:WRK = WRK / 2: IF (WRK - WRK%) THEN A(X) =1
320 WRK = WRK%: NEXT X

400 REM

401 REM RECONSTRUCT DECIMAL WRK WITH ADDRESS BITS SWAPPED:
402 REM A7-A6-A5-A4-A3-A2-Al-A0 ---> A@-A2-A3-A6-A7-A5-A4-Al
403 REM THE DATA WILL THEN BE ADDRESSED BY THE WORD:

404 REM WRITE-READ PULSE-SHIFT/LOAD-QA-07-06-05-04.

405 REM

408 POWEROF2 = 1

410 FOR X = @ TO 7: IF A(ASWAP(X)) THEN WRK% = WRK® + POWEROF2
420 POWEROF2 = POWEROF2 * 2: NEXT

508 REM

S5@2 REM SWAP BITS D7-D4 OF DATA BEFORE SAVING, BECAUSE THESE
503 REM BITS ARE SWAPPED ON THE D3 ROM.

504 REM

507 DTA = PEEK (WRK% + 7936):HI = INT (DTA / 16)
519 LST(COL,ROW) = 16 * (DFIX(HI) + DTA / 16 - HI)
520 PLOT ROW,COL: NEXT ROW: NEXT COL: TEXT

600 REM

601 REM

602 REM ADDRESS SWAP TABLE

61¢ DATA 1,4,5,7,6,3,2,0

620 REM

63¢ REM DATA SWAP TABLE

64¢ DATA 0,8,4,12,2,1¢,6,14,1,9,5,13,3,11,7,15
650 REM

660 REM DECIMAL TO HEX CONVERSION TABLE

67¢ DATA 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

680 REM

699 REM SEQUENCER COMMAND TABLE

695 DATA -CLR,-CLR,-CLR,-CLR,-CLR,-CLR,-CLR,-CLR
706 DATA -NOP,-SL@,-SR ,-LD ,-NOP,-SL1,-SR ,-LD

Figure 99 BASIC Listing: Program fo List State Sequencer ROM. (1 of 2)

The Disk Controller 949

800 REM

801 REM

862 REM AT THIS POINT IN THE PROGRAM, THE SEQUENCER LISTING

816 REM RESIDES IN 16 COLUMNS OF 16 SEQUENCES. THESE COLUMNS

820 REM ARE ARRANGED SO EACH COLUMN CONTAINS THE COMPLETE SEQUENCE
830 REM FOR A STATE OF THE ADDRESS WORD:

840 REM WRITE-READ PULSE-SHIFT/LOAD-QA.

990 REM

9F1 REM Hkkkkkkkk LIST WRITE SEQUENCE

9@2 REM

91¢ COSUB 200@: GOSUB 210@: GOSUB 2200: GOSUB 23@@: REM PRINT WRITE HEADING.
92¢ FOR ROW = ¢ TO 15: PRINT HEXS (ROW);"-";

93¢ FOR COL = 8 TO 15

940 HI$ = LST(COL,ROW) / 16:L0% = (LST(COL,ROW) / 16 - HI%) * 16
95¢ PRINT " ";HEXS (HI%);HEXS (LO%) ; CMNDS (LO%) ;

96@ NEXT COL: PRINT : NEXT ROW

999 GET BS$: PRINT : PRINT

1086 REM

10@1 REM Ekkkkikkx LIST READ SEQUENCE

1062 REM

1010 REM THE READ PROGRAM IS EASIER TO UNDERSTAND WHEN THE

10280 REM LOAD PORTION IS SEPARATED FROM THE SHIFT PORTION AND

1024 REM WHEN OA' (QA LOW) IS SEPERATED FROM QA. THEREFORE

163¢ REM THE COLUMN ORDER IS CHANGED IN THE READ LISTING.

1046 REM

1645 REM COLUMN ORDER DATA FOR READ LISTING

165¢ DATA @,4,1,5,2,6,3,7

1055 IF FLAG THEN 1070

1668 FOR X = @ TO 7: READ CSWAP(X): NEXT :FLAG = 1

1670 REM

1086 GOSUB 240@: GOSUB 250@: COSUB 260@: GOSUB 270@: REM PRINT READ HEADING.
109¢ FOR ROW = @ TO 15: PRINT HEXS (ROW);"-";

116@ FOR COL = @ TO 7

1110 HI$ = LST (CSWAP(COL) ,ROW) / 16:LO% = (LST(CSWAP(COL),ROW) / 16 - HI%) * 16
112¢ PRINT " ";HEXS (HI$) ; HEXS (LO%) ; CMNDS (LO%) ;

113¢ NEXT COL: PRINT : NEXT ROW: PRINT

1168 GET BS: PRINT : PRINT

1176 PRINT "CODE MNEMONIC FUNCTION"

1188 PRINT " 0 CLR CLEAR DATA REGISTER"

119¢ PRINT " 8 NOP NO OPERATION"

1206 PRINT " 9 SL@ SHIFT ZERO LEFT INTO DATA REGISTER"

1216 PRINT " A SR SHIFT WRITE PROTECT SIGNAL RIGHT INTO DATA REGISTER"

122¢ PRINT " B LD LOAD DATA REGISTER FROM DATA BUS"

123¢ PRINT " D sLl SHIFT ONE LEFT INTO DATA REGISTER"

1246 END

1996 REM

1992 REM

2080 PRINT : PRINT ; SPC(37);"WRITE": PRINT : RETURN

2100 PRINT " ¥e-ee-e-ee-- READ PULSE-============ e NO READ PULSE=--=-==-=== *n
2119 RETURN

2260 PRINT " *==--- SHIFT====== e LOAD-====== L SHIFT=====~ LT LOAD====== *n
221@ RETURN

2 DRINT "SEQ *-=QA'=cH=-aQA==r#=-QA' - -#--Ql-=-*=-QR"-c=¥=uoQhno---QA' —= ot oo —QA-- 4T
231¢ PRINT : RETURN
2400 PRINT ; SPC(37);"READ": PRINT : RETURN

*

2508 PRINT " *==-=sm====---- SHIFT--====m===m===— (P — LOAD R = mm e e *N
251¢ RETURN

2600 PRINT " Kemmem QA'—-===== Hommm e Qh==-m-m== Hemmmmm QA'====-== L QA======= *0
261¢ RETURN

2706 PRINT "SEQ *--RP---*-NO RP-=*-==RP==-*=NO RP--*---RP---*-NO RP--*---RP---*-NO RP-*"
2716 PRINT : RETURN

Figure 9.9 BASIC Listing: Program fo List Siate Sequencer ROM. (2 of 2)

9-20 Understanding the Apple I

WRITE

Fmmmemme e READ PULSE-=w==-weeaco-- E e NO READ PULSE==--=-=---=-=-= *

*emmmm SHIFT==w=== *mwwmo LOAD == me=u L S — SHIFT-==~~- o LOAD---=== *
SEQ *'-—QA' --*-'-QA—--*-'-QA' -—-*-——QA-—"*-—QA'———*—"—Qﬁ———*——QA‘--**-——QA——*
a- 18-NOP 18-NOP 18-NOP 18-NOP 18-NOP 18-NOP 18-NOP 18-NOP
1- 28-NOP 28 -NOP 28-NOP 28 -NOP 28 -NOP 28-NOP 28 -NOP 28-NOP
2- 39-SL0@ 39-SL0O 3B-LD 3B-LD 39-5L03 39-5L0 3B-LD 3B-LD
3- 48 -NOP 48 -NOP 48-NOP 48-NOP 48 -NOP 48-NOP 48-NOP 48-NOP
4- 58-NOP 58-NOP 58-NOP 58-NOP 58-NOP 58-NOP 58-NOP 58-NOP
5- 68-NOP 68 -NOP 68-NOP 68-NOP 68-NOP 68-NOP 68-NOP 68-NOP
6- 78-NOP 78-NOP 78-NOP 78-NOP 78-NOP 78-NOP 78-NOP 78-NOP
7- @8 -NOP 88 -NOP A8 -NOP 88-NOP A8 -NOP 88-MOP @8-NOP 88 -NOP
8- 98-NOP 98-NOP 98-NOP 98-NOP 98-NOP 98-NOP 98-NOP 98-NOP
9- AB-NOP A8-NOP A8-NOP AB-NOP AB-NOP A8-NOP A8-NOP A8-NOP
A= B9-5SL0G B9-SL0O BB-LD BB-LD B9-SL0 B9-SLO BB-LD BB-LD
B- C8-NOP C8-NOP C8-NOP C8-NOP C8-NOP C8-NOP C8-NOP C8-NOP
C- D8-NOP D8=-NOP D8-NOP D8-NOP D8-NOP DB-NOP D8-NOP D8-NOP
D- E8-NOP E8-NOP E8-NOP E8-NOP E8-NOP E8-NOP E8-NOP E8-NOP
E- F8-NOP F8=-NOP F8-NOP F8-NOP F8-NOP F8-NOP F8-NOP F8-NOP
F- 88-NOP @8 -NOP 88-NOP @8-NOP 88 -NOP @8 -NOP 88-NOP 08 -NOP

READ

L SHIFT===mecceconooon K e e oo LOAD----===cemcmmnw *

L, T QA' _______ 0 o QA ________ e QA'————--—* _______ [0 - ¥*
SEQ *--RP---*-NO RP=-=*-=-RP===*<NO RP=«*-v_-RP-=-*_-NO RP--%*---RP---*-NO RP-*
a- D8-NOP 18-NOP 18-NOP gA-SR @A-SR PA-SR gA-SR
1- D8-NOP 28-NOP 28-NOP 28-NOP @A-SR @AA-SR P@A-SR GA-SR
2- D8~-NOP 3B-NOP 38-NOP 38-NOP gA-SR @A-SR @A-SR OA-SR
3- D8-NOP 48-NOP D8-NOP 48-NOP gA-SR @A-SR @A-SR gA-SR
4- D8-NOP 58-NOP D8-NOP 58-NOP OA-SR BA-SR gA-SR @A-SR
5- D8-NOP 68-NOP D8-NOP 68-NOP OA-SR GA-SR @A-SR gA-SR
6- D8-NOP 78-NOP D8=-NOP 78-NOP @A-SR @A-SR @a-SR PA-SR
7- D8-NOP 88-NOP D8-NOP 88-NOP JA-SR @A-SR @A-SR OA-SR
8- D8-NOP 98-NOP D8-NOP 98-NOP gA-3R BA-SR @n-SR PA-SR
9- D8-NOP #9-SL@ D8-NOP A8-NOP gA-SR @A-SR @a-SR fA-SR
A- CD-SL1 BD=-SL1 D8-NOP B8-NOP PA-SR @A-SR @A-SR @gA-SR
B- D9-SL@# 39-SL0@ D8-NOP C8-NOP gA-SR @A-SR @A-SR OA-SR
Cc- D9-SLA D9-SL0@ D8-NOP AQ-CLR PA-SR @A-SR @A-SR @A-SR
D- 1D-SL1 @D-5L1 E8-NOP E8-NOP #A-SR @A-SR @A-SR OA-SR
E- FD-SL1 FD-SL1 F8-NOP F8-NOP @A-SR @A-SR @A-SR GA-SR
F- DD-SL1 4D-5SL1 E@-CLR E0-CLR PA-SR @A-SR @A-SR gA-SR

CODE MNEMONIC FUNCTION

a CLR CLEAR DATA REGISTER

8 NOP NO OPERATION

9 SL@ SHIFT ZERO LEFT INTO DATA REGISTER

A SR SHIFT WRITE PROTECT SIGNAL RIGHT INTO DATA REGISTER
B LD LOAD DATA REGISTER FROM DATA BUS

D SL1 SHIFT ONE LEFT INTO DATA REGISTER

Figure 9.10 The DOS 3.2 Logic State Sequencer.

The Disk Controller 9-21

WRITE

 J READ PULSE----========= TR NO READ PULSE-========- *

TR SHIFT-====- T LOAD--=—=-=- L T SHIFT-===m-= T LOAD-===-- *
SEQ *--QA'-—*=—-QA==-*-—QA'=—-*——-QA-==¥=-QA'==-¥ecoQA===¥=-QA'===*--—QA--*
g- 18-NOP 18-NOP 18-NOP 18-NOP | 18-NOP 18-NOP 18-NOP 18-NOP
1- 28-NOP 28-NOP 28-NOP 28-NOP | 28-NOP 28-NOP 28-NOP 28-NOP
2- 39-SL¥ 39-SL@ 3B-LD 3B-LD 39-SLB 39-SL@ 3B-LD 3B-LD
3~ 48-NOP 48-NOP 48-NOP 48-NOP | 48-NOP 48-NOP 48-NOP 48-NOP
4- 58-NOP 58-NOP 58-NOP 58-NOP | 58-NOP 58-NOP 58-NOP 58-NOP
5. 68-NOP 68-NOP 68-NOP 68-NOP | 68-NOP 68-NOP 68-NOP 68-NOP
6~ 78-NOP 78-NOP 78-NOP 78-NOP | 78-NOP 78-NOP 78-NOP 78-NOP
7- (¢8-NOP 88-NOP @8-NOP 88-NOP | @8-NOP 88-NOP @8-NOP 88-NOP
8- 98-NOP _ 98-NOP _ 98-NOP _ 98-NOP | 98-NOP 98-NOP 98-NOP 98-NOP
9- AS-NOP AB-NOP A8-NOP A8-NOP | A8-NOP A8-NOP A8-NOP A8-NOP
A- B9-SL® B9-SL@ BB-LD BB-LD B9-SL# B9-SLE BB-LD BB-LD
B- C8-NOP C8-NOP C8-NOP C8-NOP | C8-NOP C8-NOP C8-NOP C8-NOP
Cc- DB8-NOP D8-NOP D8-NOP D8-NOP | D8-NOP D8-NOP D8-NOP D8-NOP
D- E8-NOP E8-NOP E8-NOP E8-NOP | E8-NOP E8-NOP E8-NOP EB-NOP
E- F8-NOP F8-NOP F8-NOP F8-NOP | F8-NOP F8-NOP F8-NOP F8-NOP
F- 88-NOP @8-NOP 88-NOP @8-NOP | 88-NOP @8-NOP 88-NOP @8-NOP

READ

e cemmm—————— SHIFT-———-—cmcmm——a= e —————— LOAD-=-—-————======— *

[QA' _______ I, s e i e o QA-——————— Do g QA' _______ W e e b i QA-—-=———- *
SEQ *--RP-==%*=NO RP--*---RP---*-NO RP--*---RP---*-NO RP--*---RP---*-NO RP-*
- 18-NOP 18-NOP 18-NOP 18-NOP | OA-SR @A-SP @A-SR @A-SR
1- 2D-SL1 2D-SL1 38-NOP 38-NOP | @A-SR @A-SR @A-SR @A-SR
2- D8-NOP 38-NOP @8-NOP @A-SR @A-SR @A-SR @A-SR
3- D8-NOP 48-NOP 48-NOP 48-NOP | @A-SR gA-SR @A-SR @A-SR
4- D8-NOP 58-NOP DB8-NOP 58-NOP | @A-SR gA-SR GA-SR @A-SR
5- D8-NOP 68-NOP D8-NOP 68-NOP | BA-SR @A-SR @A-SR @A-SR
6- D8-NOP 78-NOP DB-NOP 78-NOP | @A-SR @A-SR @A-SR @A-SR
7- D8-NOP 88-NOP D8-NOP 88-NOP | @A-SR @A-SR @A-SR @A-SR
8- DB-NOP 98-NOP D8-NOP 98-NOP | OA-SR ¢A-SR gA-SR @A-SR
9- D8-NOP 29-SL¢ D8-NOP AB-NOP | OA-SR BA-SR gA-SR @A-SR
A- CD-SL1L BD-SL1 D8-NOP B8-NOP | @A-SR gA-SR @A-SR @A-SR
B- D9-SLO 59-SL0O D8-NOP C8-NOP @A-SR @A-SR @A-SR @A-SR
C- D9-SL@ D9-SL@ D8-NOP A@-CLR | @A-SR 0A-SR gA-SR gA-SR
D- D8-NOP @8-NOP E8-NOP EB-NOP | @A-SR @A-SR @A-SR @A-SR
E- FD-SL1 FD-SL1 F8-NOP F8-NOP | @A-SR @A-SR @A-SR gA-SR
F- DD-SL1 4D-SL1 E@-CLR E@-CLR | @A-SR @A-SR @A-SR gA-SR

CODE MNEMONIC FUNCTION

@ CLR CLEAR DATA REGISTER

8 NOP NO OPERATION

9 SLO SHIFT ZERO LEFT INTO DATA REGISTER

A SR SHIFT WRITE PROTECT SIGNAL RIGHT INTO DATA REGISTER
B LD LOAD DATA REGISTER FROM DATA BUS

D SL1 SHIFT ONE LEFT INTO DATA REGISTER

Figure 941 The DOS 3.3 Logic State Sequencer.

9-22 Understanding the Apple II

If for some reason, the RWTS write protect check
was entered with the READ/WRITE switch in
WRITE, the write protect switch would still be read
correctly. This is some pretty fast addressing, shift-
ing, storing, and loading, the timing for which is
illustrated in Figure 9.12. This figure shows the last
PHASE 0 period of an MPU access to the READ/
WRITE or SHIFT/LOAD switch. The whole opera-
tion depends on the very brief access time (70
nanoseconds) of the 6309 PROM that Apple uses for
the sequencer ROM. This enables DEVICE
SELECT’ to fall, the accessed switch to change
states, and data out of the sequencer ROM to become
valid in plenty of time for the data register to be
newly configured when the controller clock rises.
The controller clock is Q3 falling or, more accu-
rately, Q3 inverted rising with a typical propaga-
tion delay of 15 nanoseconds experienced in the
inversion. The data register then responds to its
clock well before PHASE 0 falls, allowing the MPU
to load the new state of the data register. All this
means that the following general rule applies: when
the MPU reads the data register, the sequencer
responds to any new configuration, performs a
resulting operation on the data register, and then
gates the contents of the data register to the data bus
for reading by the MPU.

Now assume a 6502 program has checked the
write protect switch and found it can now write to
the disk. The program can then write a byte of data
to the disk with these steps:

LDA DATAl
STA S$C@8F,X ;WRITE
CMP $C@8C,X ;SHIFT

Figure9.13 shows the timing of what happens here.
The"STA $CO8F, X" without indexing across a page
boundary actually puts $CO8F,X on the address bus
for the last two MPU cycles of this four cycle
instruction. The first §CO8F X cycle is a read access
and the second is a write access with the MPU con-
trolling the data bus during the greater part of
PHASE 0. The first $C0O8F,X cycle causes READ/
WRITE to switch to WRITE about 90 nanoseconds
after PHASE 0 rises. Within 70 nanoseconds of this
event, the sequencer ROM’s data outputs have
responded to the new address input. The sequencer
state is still 0. That won't change until the sequenc-
ing flip-flops sense a clock edge. The sequencer is
therefore waiting for a clock edge, sitting at State
0—WRITE—LOAD—QA'. There may or may not
be a read pulse, but we don’t care. Assume there is
no read pulse.

Now look at the WRITE sequence in Figure 9.11
(finally). We are at the top of column seven where a
18-NOP is found. At the next sequencer clock
nothing is done to the data register, but the sequencer
moves up to State 1. State 1 contains a 28-NOP,
which causes sequencing to State 2 at the next clock.
State 2 contains a 3B-LD, which causes sequencing
to State 3 at the next clock as well as the loading of
the data register from the data bus.

Now look again at Figure 9.13. The sequencer
clock edge in State 2 occurs while the MPU is plac-
ing valid data from the "STA $CO8F,X” instruction
on the data bus, and it therefore has succeeded in
storing data to the data register. Note that a "STA
SCOEF" (assumes Slot 6) would not have worked
here because MPU data would have been on the data
bus at State 0 instead of State 2. Clearly, Apple
designed the WRITE sequence to support the
features of the 6502 "STA ABSOLUTE,X” in-
struction with no page crossing.

Now look back at Figure 9.11. Assume that when
the MPU stored data in the data register, it set QA.
In fact, if the data was written by RWTS, it's a sure
thing—QA is set. We will see that all data that
RWTS stores to the disk has its MSB set. This means
that instead of sequencing to State 3 in column 7, the
sequencer goes to State 3 of column 8. It makes no
difference here, but it will when we reach State 7.
Until that point is reached nothing happens. At
State 7, if QA is set, sequencing up the states con-
tinues, but if QA is reset, the sequencer loops back to
State 0. Right now, QA is set, so the next state is
State 8.

When State 8 is entered from State 7, the WRITE
signal switches from low to high. Why? Because the
WRITE signal is connected to the A7 input of the
sequencer ROM. The sequencing address bits are
AT—A6—A0—Ab5,s0 AT islow in states 0-7 and high
in states 8-F (see Figure 9.8). Now think about the
decision that was made at State7 in this light. If QA
was reset, the WRITE signal was left alone. If
QA was set, the WRITE signal was toggled.

Continuing on in column 8, State A is reached
before the next event. Remember that “"STA
$CO8F, X" was followed by "CMP $C08C,X.” Just as
wearrive at State A, thissecond instruction switches
SHIFT/LOAD to SHIFT, causing us to arrive at
State A in column 6 instead of 8. This is just in time
to cause shifting instead of loading at State A,
because there is a SL0 in column 6 compared to the
LD incolumn 8. The”"CMP $C08C,X” is barely short
enough to meet the timing requirements for switch-
ing SHIFT/LOAD to SHIFT.

The Disk Controller 9-23

6502 PHASE 0 J \
DEVICE SELECT’ \ /_
READ/WRITE OR

SHIFT/LOAD SWITCH

___| t,_ 70 nsec
max

SEQUENGER ROM X Y

DATA OUTPUT

| I 70 nsec
¢ max

CONTROLLER \ _
CLOCK (A2-3)

SEQUENCER
CONTROL FLIP-FLOPS

Figure 9.12 Timing Example: Sequencer Control While Changing the READ/WRITE or SHIFT/LOAD Switches.

§502PHASED | | \ |

$CO8F,X VALID ON ADDRESS BUS

READ/WRITE (SCOBE.X/SCOBF.X) [

Clock data bus _< 6502 WRITIIJE DATA

to data register
CONTROLLER —‘ r—\ ’—‘ ’——]ﬁ% : r—‘
CLOCK (A2-3)

SEQUENCER
STATE

0 0 1 2 3

Figure 943 Timing Example: Switching fo Write Affer Checking Wirite Profect.

9-24 Understanding the Apple |

The SLO causes the next bit to be shifted into QA,
while QH, the LSB of the data register, is filled with
a ZERO. SL0 is functionally similar to the 6502
instruction, ASL. From this point, we sequence up
to State F' in column 5 or 6 depending on whether
QA was set or reset by the SL0O. From State F, the
sequencer will loop back to State 0 if QA is set,
toggling the WRITE signal, or it will loop back to
State 8, leaving the WRITE signal high, if QA is
reset.

Now let’s step back and look at what's happening.
Writing to the disk is a load and shift process, a
little like HIRES pattern outputs but much slower.
Also, the MPU takes a very active role in the loading
and shifting of disk write data. There are two 8-state
loops in the WRITE sequence. After initializing the
WRITE sequence, data is stored in the data register
at a critical point in the A7 loop. As quickly there-
after as a 6502 can do it, the sequencer is configured
to shift left at the critical point instead of loading.
Then the MPU goes about its business while the
sequencer continues looping, shifting the data regis-
ter. If the sequencer senses QA high, flow vectors
to the opposite loop, toggling the WRITE signal.

Figure9.14 is a flowchart of the WRITE sequence,
which may help you interpret the listing. The flow-
chart is reminiscent of the schematic of a flip-flop.
This is not surprising because the WRITE sequence
has functional similarities to a toggling flip-flop.

So, the sequencer outputs eight bits of data. What
then? Well, if the program controlling the MPU did
nothing more, after the eighth bit was shifted out
the data register would be all zeros, and no more
field reversals would be written on the disk. This
constant field condition cannot be read by the drives
but results in sporadic read pulses. In other words,
the MPU needs to stay involved. Normally, the
MPU program will wait until the last bit has been
shifted to the disk, then switch SHIFT/LOAD to
LOAD with a STA instruction at the precise moment
that the data register will accept it. This moment
oceurs once every sequencer write loop, once every
eight sequencer clocks, or once every four MPU
cycles. It takes 32 MPU cycles to output eight bits of
information, so to continuously shift out informa-
tion in 8-bit groups, the MPU must store data at
$CO08D,X every 32 cycles, then immediately
enable shifting with a read access to $C08C,X.
This example writes two bytes to the disk:

LDA $C@8D,X ; LOAD

LDA $C@8E,X 7 READ

BMI ERROR sWRITE PROTECT
; ERROR

LDA DATAl

STA $C@8F,X sWRITE DATAL

CMP $C@8C,X ; SHIFT (4CP)
PHA ; (3CP)
PLA ; (4CP)
PHA ; (3CP)
PLA ; (4CP)
BIT S@ ; (3CP)
NOP ; (2CP)
LDA DATA2 ; (4CP)
STA $C@8D,X ;LOAD (5CP)
; TOTAL = 32CP
CMP $C@8C,X ; SHIFT

The above example illustrates the principle of
writing continuous bytes of data: initiate the WRITE
sequence, then store data every 32 cycles. This will
normally be accomplished in 32 cycle loops. After
storing the last byte to be written, wait 32 cycles,
switching READ/WRITE to READ on the 32nd
cycle. You don’t have to write in 32 eyele loops. You
can store 6-bit data words in 24 cycle loops if vou can
figure out some purpose for it. You can store data in
any multiple of 4 eycles and the data register will
accept it. RWTS writes read syncing leaders by
‘storing $FF to the data register in 36 cycle loops in
DOS 3.2 and 40 eycle loops in DOS 3.3.* This creates
aseriesof 111111110 or 1111111100 strings which,
we will see, synes up the sequencer for reading fol-
lowing data.

Disk Data Formats

Thereis an inherent problem with storing data on
floppy disks. As their name suggests, floppies are
less than rigid. This and other factors contribute to
the following fact of life: just because some Apple
wrote data to a disk at a four eyele bit interval
doesn’t mean that read pulses are going to come
back from the disk at the same interval. In the first
place, the Apple has a built-in elockpulse jitter with
every 656th MPU cycle longer than the rest. This
elongates some write intervals by 140 nanoseconds,
and it doesn’t help. But normal problems with the
floppy medium and drive inconsistencies are more
significant in causing read pulse variations.

Realizing that the read pulse varies a lot, consider
how this variation affects trying to detect the
absence of a pulse. In reading the absence of a pulse,
the READ sequence must wait a certain amount of
time past the last actual pulse, then decide "there
was definitely no pulse there; that sure was a
ZERO.” In the absence of a clockpulse coming off
the disk, the previous read pulse, or ONE, becomes
the time reference for the absence of a read pulse, or
a ZERO.

*In some literature, the read syncing leaders are referred to as
series of autosync bytes or self-syne bytes.

The Disk Controller 9-25

(sTART)

READ C08C.X
LOAD C08D,X
SHIFT
WRITE ™\ _READ RIGHT.
? CHECK
W. PROTECT
WRITE
i \
0 NOP 8 NOP
1 NOP 9 NOP
2
SHIFT/ LOAD (CO8D.X) LOAD (C08D.X)
LOAD .
2
SHIFT (CO8C.X) SHIFT (C08C. X)
LOAD DATA LOAD DATA
SHIFT LEFT. FIEFGISTEFI SHIFT LEFT, HEFGng'{ﬁEH
ZEROFILL DA!%DE“US ZERO FILL DATA BUS
g |
3 NOP
4 NOP
5 NOP
6 NOP
7
RESET QA SET RESET
?
3 AN Ee
s Y
WRITE SIGNAL LOW WRITE SIGNAL HIGH

Figure 944 Fowchart of the Write Sequence.

9-26 Understanding the Apple ||

What if you have two ZEROs in a row? Well the
last ONE bit is the time reference for the second and
all succeeding ZEROs in a string. Suppose the read-
ing drive rotates at 280 RPM but the disk was writ-
ten using a drive that rotated at 320 RPM. You
cannot read a long string of ZEROs under these
conditions, because while the write interval was
eight controller cycles, the read interval could be ten
cycles. Furthermore, in the absence of field rever-
sals on the disk for too long, the read interface chip
in the drive begins to generate invalid read pulses.
You simply cannot read a long string of ZEROs,
because your time reference is unstable and your
read interface can’t do it anyway.

How may ZEROs in a row can be read reliably?
Two. In DOS 3.3, RWTS never writes more than
twoZEROsinarow,and RWTS 3.2 never writes
more than one ZERO in a row. Of course, normal
data bytes very often have more than two adjacent
zero bits. These normal data bytes cannot be stored
directly to the disk but must be translated to disk
compatible 8-bit words. It takes more than one
LOAD-SHIFT eycle to output a data byte, because
256 possible numbers can be represented in a nor-
mal byte, but not nearly as many can be represented
if you place restrictions on the number of adjacent
ZEROs.

There is a second restriction on data which the
Apple stores to the disk. The MSB is always set.
The MSB is used by both the READ sequencer and
6502 programs to define when a byte of read data is
in the data register. The MSB is therefore not data
butthe BYTE FLAG.* It serves as a data gap which
allows the READ sequencer to hold the previous
byte in the data register for a long enough time that
a 6502 program can detect the presence of a com-
plete byte in a seven cycle polling loop:

POLLIT LDA $C@8C,X
BPL POLLIT

The Apple Disk II was first released with DOS 3
and the associated controller. Then the DOS was
upgraded to 3.1, then 8.2, then 8.2.1 with no change
in written data format. This format will be referred
to here as the 3.2 format. The 3.2 data restrictions

*Steve Wozniak devised the Apple II disk formats. In a speech
given in Anaheim, California, on April 17, 1983, he said that his
idea for flagging groups of data by having every eighth bit set
came directly from the “stop bit” used in RS232 data
transmission.

are MSB set and no two adjacent bits reset. All
sector data was written using the following 32
values:

WRITE TABLE FROM DOS 3.2.1

BC9A - AB AD AE AF B5 B6

BCA@ - B7 BA BB BD BE BF D6 D7
BCA8 - DA DB DD DE DF EA EB ED
BCB@ - EE EF F5 F6 F7 FA FB FD

BCB8 - FE FF

The values D5 and AA are also valid, and they are
used as the first two identifying values which pre-
cede every address field and data field. A 5-bit word
can contain 32 values, so the 3.2 writing process
involves taking a 256-byte data block and translat-
ing it into 410 5-bit words. The 410 5-bit words do
not directly index the write table to find the byte to
be written. Rather, the first word written directly
indexes the write table. The second index is an
exclusive-OR between the first and second words.
Each following index is an exclusive-OR between
the current and previous word. At the end, a 411th
word is written. The last word of the coded buffer
directly indexes the write table for this word. When
this process is reversed in the read operation, each
byte has to be correctly read for the following bytes
to be read correctly. The411th word read serves as a
check sum and must be equal to the 410th decoded
word or the read will be deemed unsuccessful and
reverttoatryagain loop. This check sum procedure
is an effective method of verifying the validity of
disk data transfer.

Apple increased their disk data density in the
DOS 3.3 upgrade by easing the restriction on adja-
cent ZEROs. The 3.2 controller can read this data,
but it's a struggle and the possibility of reading
errors is great. Apple improved the read reliability
by changing the sequencer ROM. They also made
the questionable move of changing the Bootstrap
ROM and bootstrap procedure, the most notable
result of which is that a 3.3 controller will not boot a
3.2 disk. This incompatibility is due solely to pro-
gram based conventions. The 3.3 controller is fully
capable of reading anything written on 3.2 disks.

The DOS 3.3 restrictions on written data are MSB
set, no more than one pair of adjacent ZEROs, and at
least one pair of adjacent ONEs in bits 6 through 0.
D5 and AA are still used only as field identifiers,
and they don’t meet the pair of adjacent ONEs
requirements. This is notable because it helps dis-
tinguish D5 and AA from the other valid written

The Disk Controller 9-27

words. The restriction requiring a pair of adjacent
ONEs rules out 95, A5, A9, and CA. Besides D5 and
AA, the DOS 3.3 written values are:

WRITE TABLE FROM DOS 3.3

BA29 - 96 97 9A 9B 9D 9E 9F
BA3@ - A6 A7 AB AC AD AE AF B2
BA38 - B3 B4 B5 B6 B7 B9 BA BB
BA4¢ - BC BD BE BF CB CD CE CF
BA48 - D3 D6 D7 D9 DA DB DC DD
BAS¢0 - DE DF E5 E6 E7 E9 EA EB
BA58 - EC ED EE EF F2 F3 F4 F5
BA6J - F6 F7 F9 FA FB FC FD FE
BA68 - FF

There are 64 values in the write table, so you can
guess that six bits are written per LOAD-SHIFT
cycle, and a 256-byte block is written in 342 LOAD-
SHIFT cycles. With the size of the data field in a
sector thus reduced, Apple was able to increase the
number of sectors per track from 13 to 16.

The whole gist of this discussion about data for-
mats is that you can write any sort of bit stream you
desire, but you must write something that can be
read by the logic state sequencer. The sequencer
was designed to read a certain data format, and it’s
all it can do to read this floppy data reliably. Copy
protect artists must study the READ sequence very
thoroughly to discover ways to write bit streams
which can be synced by the READ sequence with
some secret manipulation by a 6502 program.

We will see that the READ sequence will properly
read streams of data written from the 3.2 and 3.3
write tables in 32 eycle loops. It does take an indefi-
nite period of time for the sequencer tosync up when
it first encounters a random stream of data. How-
ever, random data streams in the DOS format are
always preceded by read syncing leaders which
force the READ sequence into sync very quickly.
These leaders consist of a series of 111111110 or
1111111100 data streams. They are written by stor-
ing $FF in the data register in 36 cycle loops
(111111110) or 40 cycle loops (1111111100) before
flowing directly into the 32 cycle data writing loops.
Writing data at intervals greater than 32 cycles
results in trailing ZEROs (see WRITE sequence,
State 2:39-SL0). This causes the ZEROs behind the
eight ONEs in the read syncing leaders.

When a string of read pulses from a read syncing
leader is applied to the sequencer, bytes of data
following the seventh FF36 or fourth FF40 will

always be in syne.* RWTS 3.2 syncing leaders are
series of FF36s. RWTS 3.2 uses more than seven,
which works fine, but only seven are necessary.
RWTS 3.3 uses FFs written in 40 cycle loops as read
syneing leaders. A string of four FF40s followed by
valid data will ensure that following data will be in
sync. The use of FF40s allows RWTS 3.3 tosyncina
shorter period of time, slightly increasing the space
available for data.

There are two different times that RWTS writes
to a disk. One time is when it formats the disk,
writing sector information for 16 (3.3) or 13 (3.2)
sectorson 35 tracks. The other time is when the data
field for a sector on a track is written. This consists
of positioning the head, then reading until the speci-
fied sector address field is found. After the desired
address field has passed by, the data field is written
from a 342 byte (410 if DOS 3.2) buffer.

The 3.2 and 3.3 sector formats are shown in Fig-
ure 9.15. Other than the three extra sectors, there
are several basic differences. The address field
identifiers are different, D5 AA B5 in 3.2 and D5
AA 96in 3.3, causing bootstrap incompatibility. The
read syncing leaders are different as was men-
tioned. DOS 3.2 overwrites each track with 9984
FF36s before writing the sectors, but DOS 3.3
doesn’t. DOS 3.2 reserves space for data by writing
431 FF32s after each address field while format-
ting. DOS 3.3 reserves space by actually writing a
data field, with unwritten gaps of about 50 MPU
cycleson either side. The gaps are too short toenable
accidental detection of a false data field identifica-
tion string so they don’t hurt anything. In either 3.2
or 3.3 format, the data space behind an address field
is partially overwritten with a leader and data field
when a "write sector” call to RWTS is made.

An interesting point about DOS formats is the DE
AA EB series that follows every address field and
data field. Apple has always had trouble writing the
EB. In RWTS 3.2 they cut off the EB at the end of
the data field by neglecting to wait 32 cycles before
switching READ/WRITE to READ after storing
EB in the data register. They changed that in
RWTS 3.3, sothe EB isactually written at the end of
the data field. However, RWTS 3.3 cuts off the EB
at the end of the address field. Those cut off EBs are
not really written, so don’t bother trying to read
them. RWTS doesn’t try either.

*F'F36 and FF40 refer to $F'F bytes written using 36 or 40 cycle
loops.

9-28 Understanding the Apple ||

DOS 3.2 FORMATTED SECTOR

SYNCING LEADER ADDRESS FIELD DATA SPACE |NEXT
16-80 FFs 431 FFs SECTOR
FF FF—»FF FF | D5 AA B5 VOL VOL TRK TRK SCT SCT SUM SUM DE AA EB |FF FF—»FF| —»

36 36 36 32| 32 32 32 32 32 32 32 32 32 32 32 32 32 32 |32 32 32
SYNCING LEADER DATA FIELD
11 FFs
RWTS
COMMAND-2—»| FF FF——»=FF | D5 AA AD | 4108 WORDS SUM | DE AA EB
DATA 36 36 36 | 32 32 32 | CODED 5/8 | 32 32 32 14
LAST EB OF 3.2
FIELD NOT COMPEL
WRITTEN.
DOS 3.3 FORMATTED SECTOR
SYNCING LEADER ADDRESS FIELD ZIP | DATA SPACE ZIP
5-40 FFs
FF FF—»FF FF | D5 AA 96 VOL VOL TRK TRK SCT SCT SUM SUM DE AA El:3 GAP NULL GAP | -
40 4@ 409 32 | 32 32 32 32 32 32 32 32 32 32 32 32 32 16 | S@ DATA FIELD | 53
I \ e o
LAST EB OF 3.3 ADDRESS FIELD
NOT COMPLETELY WRITTEN.
SYNCING LEADER DATA FIELD
J 5 FFs
RWTS
COMMAND-2——» | FF FF FF FF FF | D5 AA AD | 342 WORDS | SUM | DE AA EB
DATA 40 40 40 40 36 | 32 32 32 | CODED 6/8 | 32 32 32 32

Figure 9.15 Diskefte Formatting.

The Disk Controller 9-29

The READ Sequence

There is an odd contrast in Apple Disk I11/0. The
6502 program works the tail off the MPU to write
data, initializing the WRITE sequence, then storing
coded data in precise timing loops. Yet, the WRITE
sequence listing is really pretty simple. Reading is
just the opposite. The MPU program sits back and
lets the sequencer do all the work. The program
merely polls the data register, waiting for the
sequencer to lay a complete byte at its feet. The
READ sequence is not simple. Our discussion will
concentrate on the 3.3 sequencer, which is very
nearly the same as the 3.2 sequencer.

We start by assuming that the sequencer is con-
figured for reading ($CO8E,X; $C08C,X) and thata
valid data field is passing acrossthe READ/WRITE
head with every eighth bit set. Further assume that
QA of the data register is not set, there is no read
pulse present, and the sequencer is at State 2. You've
got to start somewhere, and we arestarting at State
2 of column 2 in the READ sequence listing of Fig-
ure 9.11.

At this location in the sequencer there is a 38-
NOP. At State 3, thereisa48-NOP. At State 4, there
is a 58-NOP. We are sequencing through the states,
waiting for a read pulse. Assume a read pulse occurs
at State 6, switching the sequencer to column 1. The
read pulse will last for one sequencer clock because
it is synchronized to the clock by a pair of flip-flops
and a NAND gate. There isa D8-NOP at State 6 in
column 1. In fact if you look at column 1, aread pulse
at any of the states would have resulted in a
D8-NOP.

When the read pulse goes away after the next
clock, the sequencer goes to State D in column 2, a
08-NOP. This means move down to State 0 (18-NOP)
and then up to State 1(2D-SL1). This SHIFT LEFT
ONE is a direct consequence of the read pulse. A
read pulse occurred, so a ONE was shifted in.
Assume the SL1 does not cause QA to become set,
and don’t get tired of assumptions. We now sequence
to State 2 in column 2, right where we started, mov-
ing down the line, waiting for a read pulse.

This time let’s say no read pulse occurs before we
reach State 9. This is the point at which the
sequencer decides it can’t wait for a ONE any
more—that was a ZERO bit. State 9 is a 29-SL0. A
ZERO is shifted in. We'll say QA is still not set and
we're back to State 2, waiting for a read pulse. This
evcle will continue until QA becomes set after an
SLO or SL1. The sequencer is shifting in data based
on the presence or absence of read pulses.

Now assume QA sets as the result of an SLO0 or
SL1. This breaks the loop, shifting flow to State 2 of
column four, a 28-NOP. We are at State 2; the next
state is State 2; we are going nowhere until a read
pulse occurs. This is the QA WAIT location, out-
lined in both the 3.3 and 3.2 listings. If the
sequencer is in sync with the data stream, the
fact that QA is set means that a valid eight bit
word is now in the data register just as it was
when it was stored there to be written. We will
assume for now that the sequencer is in sync with
the data stream. This means that the next read pulse
will be the MSB set pulse of the next word.

So we're sitting at QA WAIT waiting for the
BYTE FLAG of the next eight bit group. The read
pulse occurs. Do we clear the data register and doan
SL1? No way, Jose. That’s a valid byte sitting in the
data register. We're going to hold that information
as long as possible so that the 65602 program can
figure out it's good stuff. The read pulse shifts the
sequencer to State 2 of column 3 (08-NOP). Then the
read pulse goes away and we sequence to column 4,
State 0 (18-NOP), then State 1 (38-NOP), then State
3(48-NOP), etc. We are sequencing now, waiting for
the read pulse that means the second MSBisa ONE
or the decision point that means the second MSB isa
ZERO.

We'll say a read pulse occurs at State 8. The
sequencer goes to column 3, State 8 (D8-NOP),
column 4, State D (E8-NOP), State E (F8-NOP),
State F (E0-CLR). The data register is finally
cleared. It was held from the last read pulse or
decision point of the previous word until past the
BYTE FLAG pulse and second MSB pulse of this
word. The sequencer then goes to column 2, State E
(FD-SL1), then to column 2, State F (4D-SL1). We
shift ONE twice, once for the BYTE FLAG and
once for the second MSB set, then flow to State 4 of
column 2 in the exact condition in which we started:
QA reset, sequencing along, waiting for a read
pulse.

Now we shift in six more bits of data which sets
QA and putsusat QA WAIT. You should notice that
QA is set precisely when a complete eight bit word,
lead by the BYTE FLAG, is completely shifted in.
We made an assumption earlier that we were in
syne, but no further assumptions are required.
Once we are in sync with a continuous stream of
MSB set data, we stay in synec.

Weareat QA WAIT, waiting for the BYTE FLAG
pulse that starts the next word. Suppose somebody
had written the word we just read using a 36 cycle
loop instead of 32. There would be a ZERO following

9-30 Understanding the Apple I

the eight bits of data prior to the BYTE FLAG
pulse. You can't read ZEROs from QA WAIT.
There is no decision point here. The only thing the
sequencer will respond to is a read pulse, so that
ZERO passes right by and is not shifted to the data
register.

Assume the next BYTE FLAG pulse occurs, this
time followed by a ZERO. From QA WAIT the
sequencer takes the same path it did previously,
except no read pulse occurs. The decision point is
reached at column 4, State C (A0-CLR) followed by
column 2, State A (BD-SL1), State B (59-SL0), State
5 (68-NOP), ete. The sequencer cleared the data
register, shifted a ONE, shifted a ZERO, then con-
tinued processing of the next six bits.

The whole idea of the QA WAIT is this: the
sequencer always knows the next bitisa ONE so
it is not monitoring the next pulse as data; it is
monitoring the next pulse as the BYTE FLAG. It
monitors the pulse that follows the BYTE FLAG as
data, and after monitoring this second pulse, it
clears the data register and shifts in a ONE,ZERO
ora ONE,ONE. In the process, the valid data word
is held in the data register for a long time with the
MSB set, a condition which a 6502 program can
easily detect.

How does the sequencer get in sync with a data
stream? The QA WAIT will cause the sequencer to
eventually sync on nearly any valid data stream it
encounters. This is because it ignores ZEROs while
sitting at QA WAIT. What the READ sequence
does is to give the MPU a look at the data stream
in groups of eight bits. Every such group has a
leading ONE. ZEROs between a group and the
next ONE are lost.

Suppose the sequencer encounters a stream of
data which was written in 32 cycle loops with the
MSB set on every 8-bit word. Being out of syne, the

sequencer groups the first data into eight bits lead
by a ONE in some random way. Thisis illustrated in
the first entry of Table 9.4, IXXXBXXX. The B
represents the BYTE FLAG pulse. It is a normal
read pulse, like that generated by any other ONE,
but it is represented by B here for illustration. When
the sequencer is in syne, the BYTE FLAG will be
the first ONE of every group.

Atthe firstentry of Table 9.4, the BYTE FLAG is
in the fifth bit position from the left. If the bit follow-
ing this groupisa ONE, that ONE becomes the first
bit of the next group, and the BYTE FLAG stays in
the fifth bit position. If, however, the bit following
this group is a ZERO, the ZERO is lost and the
BYTE FLAG moves closer to the MSB of the next
group. Eventually, several ZEROs will have been
encountered between groups, and the BYTE FLAG
will reach the MSB. From that point, the
sequencer will stay in sync because the bit
following each group of eight always be a ONE.

In data written by RWTS, the sequencer is never
left to randomly sync on a data stream. All data is
preceded by read syncing leaders which insure the
sequencer is in sync when following data is encoun-
tered. A string of seven or more FFs written in 36
cyele loops or four or more FF's written in 40 cycle
loops will insure synchronization. These nine and
ten bit write cycles cause synchronization because
they are longer than the eight bit groups. When
encountered, these strings quickly are aligned into
groups of eight ONEs followed by one or two
ZEROs. Table 9.4 shows the worst case conditions
for syncing to strings of FF36s and FF40s.

In the READ sequence examples we went
through, many events could have occurred which we
did not take into account. It would not be practical or
useful to try to step through all possible events.

Table 94 Syncing the READ Sequence to Data.

SYNCING TO A RANDOM DATA STREAM | SYNCING TO FF36s SYNCING TO FF40s
1XXXBXXX 10B11111 160B1111
1XXXBXXX0@ 11¢B1111 11100B11
IXXBXXXX 111¢B111 1111100B
1XXBXXXX 11110B11 111111100
1XXBXXXX00 11111@B1 B11111110@
1BXXXXXX 1111110B B111111160
1BXXXXXX@ 111111108
BXXXXXXX B11111119@

BXXXXXXX B11111119@

The Disk Controller 9-341

QA WAIT

4C o YES SECOND READ PULSE 4-12 CLOCKS AFTER FIRST
ATRP +
412
NO
S| 3cpnop
C| CLEAR g CLEAR
F
QA QA
QA QA
A |SHIFT LEFT 1 E |SHIFT LEFT 1
8 0R [SHIFT LEFTO F |SHIFT LEFT 1
A.B. i
59 RP YES 1CP
“;‘}';/ E NOP
NO
. AN
9 |SHIFT LEFT 0
READ PULSE
NO READ PULSE
D
9 [SHIFT LEFT 0 By
1

2
RESET

SET

Figure 9.16 Simplified Flowchart of the Read Sequence.

9-32 Understanding the Apple ||

Deeper analysis shows that the read sequence is
designed to correctly interpret read pulses while
tolerating an expected variation in the pulse inter-
val. Figure 9.16 is my attempt to put the basic flow
of the 3.3 READ sequence in perspective in a simple
diagram. The pertinent sequencer states are listed
next to each block to aid readers in correlating the
flow chart to the sequencer listing.

In this flowechart, it was assumed that the read
pulse interface circuits were successful in produc-
ing a read pulse which was actually one clock period
in width. In the READ sequence, there are provi-
sions to handle the rare event that a two clock read
pulse occurs. This is an extra ounce of reliability
which would clutter up the flowchart and obstruct
understanding of normal flow. [have monitored the
read pulse with an oscilloscope and have never seen
any read pulses that were not properly synchronized
to the sequencer clock.

Please direct your attention to the 8CP WAIT
decision block near the bottom of Figure 9.16. This
represents the time when the sequencer is sequenc-
ing up column 2, waiting for a read pulse. The 8CP
WAIT indicates thata ZERO will be shifted if a read
pulse hasn’t occurred by the eleventh sequencer
clock after a read pulse, and following ZEROs will
be shifted every eight clocks after the first ZERO.
The write interval is eight clocks, of course, so there
is an allowable distortion of three clock pulses for
the first pulse position after a read pulse. This is the
main difference between the 3.2 sequence and the
3.3 sequence. After the first ZERO, following
ZEROs are shifted every 10 clocks in the 3.2
sequence. This represents a skew away from the

write interval while reading strings of ZEROs. It
makes no difference with DOS 3.2 data formats, but
it makes reading less reliable with DOS 3.3 formats.

The skew in the 3.2 READ sequence is shown in
Figure 9.17. While the 3.3 sequencer always makes
a shift 0 decision on the third clock period past an
expected pulse, the 3.2 sequencer starts making the
decision at the wrong point after the first ZERO.
There are never more than two ZEROs in a row in
DOS 3.3 data, but the sequencer will handle more
than two if drive improvements make it a possibil-
ity. Note that the 3.2 sequencer will read 3.3 format-
ted data, especially if the reading drive is slightly
slow. The 3.3 sequencer reads 3.3 data more reliably
though.

If a read pulse occurs on the twelfth sequencer
clock after the previous read pulse, it issmack in the
middle of the two points where the sequencer
expects a pulse. Is this an early pulse caused by a
fast drive or a late pulse caused by a slow drive? The
sequencer treats this pulse as an early pulse when it
oceurs, no doubt because it takes less room in the
sequencer ROM to do so. As a result, the sequencer
tolerates a fast reading drive or a slow writing
drive better than the opposite condition when read-
ing the data format it was designed to read.

For reference, I have tabulated the intervals
which the sequencer can tolerate for various types of
written data. Figure 9.18 shows this tabulation, and
you can see that it shows what would happen with
one data stream the DOS doesn’t use. This is
sequencer performance, not drive and disk perfor-
mance. The use of a string of three ZEROs is not
recommended, although a copy protect scheme

READ READ READ READ READ
PULSE PULSE PULSE PULSE PULSE
l EXPECTED EXPECTED EXPECTED EXPECTED
I L0000
DOS 3.3 DECISION POINT } 4— -
DOS 3.2 DECISION POINT l] 1

Figure 9.47 Decision Points for Reading ZEROS.

The Disk Controller 9-33

frﬁ ——-u-:l— C—>fe—F H -
Jfl B - I -
n_fir
1 E :
ﬂ Nt L G
J_l = J -
BYTE SYNC
D0s 3.2 00S 3.3
MIN AVG MAX MIN AVG MAX
A 3 8 12 4 8 12
B 13 16 21 13 16 19
C 5 g M 5 8 M
D 12 16 21 12 16 19
E 22 24 3 20 24 27
F 2 g M 4 8 N
G 22 24 3 20 24 27
H 12 16 21 12 16 19
| 22 24 31 20 24 27
J 32 3 4 28 3 35

ALL VALUES IN SEQUENCER CLOCK PERIODS

Figure 9.18 Read Performance of the Logic State Sequencer.

might use such a string. Asan example of interpret-
ing Figure 9.18, interval A is the case of a BYTE
FLAG pulse followed by a second MSB pulse. The
expected interval between these two pulses is eight
sequencer clocks. The 3.2 sequencer will read the
second pulse correctly if it occurs anywhere from 3
to 12 clocks after the BYTE FLAG pulse. The 3.3
sequencer will read the second pulse correctly if it
occurs anywhere from 4 to 12 clocks after the BYTE
FLAG pulse.

The amount of time a valid data word is held in the
data register depends on the second MSB of the next
word, normal pulse interval variations, and, in the
3.2 sequencer, the least significant bits of the word.
The only bad thing that can happen is that the data
will be valid for too short a period of time due to a
fast reading drive, a slow writing drive, or both. The

average data valid period for some data streams is
tabulated in Table 9.5. Values are in sequencer
clocks, so the number of MPU cycles is half as many.
In the Table 9.5 DATA STREAM entries, "B"
represents the BY TE FLAG pulse which follows the
valid data. As always, variations in disk surface
speed at the read/write head are most likely to cause
errors in the presence of one or two consecutive
ZEROs.

The average data valid period must be at least 14
sequencer clocks if the MPU is to detect it in a
normal 6502 polling loop. Notice that the 3.2
sequencer would have trouble meeting this require-
ment on data which has two trailing ZEROs. This is
one more reason that a 3.2 sequencer would have an
easier time with 3.3 formatted data if the reading
drive were a little slow.

9-34 Understanding the Apple |l

Table 9.5 Data Valid Periods in Sequence Clocks.

DATA STREAM 3.2 AVERAGE VALID PERIOD 3.3 AVERAGE VALID PERIOD
XX1B1 18 16
X10B1 16 16
199B1 14 16
XX1B@ 19 17
X10B@ 17 17
10080 15 17

The selection of D5 AA as the field identifier in
DOS 3.2 and 3.3 was no aceident. D5 and AA both
consist of alternating strings of ONEsand ZEROs, a
fact which gives them a more unique identity in an
environment filled with strings of FFs and other
valid DOS data. Even when it is not in sync, the
sequencer should never produce the D5 AA combi-
nation from a valid data stream. This is because the
1101010110101010, 11010101010101010, and
110101010010101010 combinations do not exist in a
valid data stream. Obviously, if D5 A A should not be
accidentally read, then the D5 AA AD, D5 AA B5,
and D5 AA 96 combinations should not be acciden-
tally read either. Reliability is even greater because
the AA AD combination itself should not be acciden-
tally produced by DOS 3.2 data or DOS 3.3 data.

The AA B5 combination should not be acciden-
tally produced by DOS 3.2 data, but it can be pro-
duced by an out of syne encounter with DOS 3.3
data. Specifically, the strings EA 96 AX or EA 96
BX can be grouped as AA B5 if the sequencer is out
of sync:

X11.101010100.10110101.X

It is my speculation that this is the reason the
address identifier was changed to D5 AA 96 in DOS
3.3, causing the DOS 3.3 controller to be unable to
boot 3.2 disks. It is my further speculation that this
is why DOS 3.3 data words all have at least one pair
of adjacent ONEs in bits 0 through 6. This elimi-
nates longer strings of ONEs alternating with
ZEROs which might tend to be interpreted as field
identifiers in an unstable read pulse environment.
In particular, the data EA A59X or EA A5 AX or
EA A5 BX could be grouped as AA 96 if the use of
A5 were allowed:

X11.10101010.10010110.X

The switch from B5 to 96 as an address field iden-
tifier in DOS 3.3 may have been required to main-
tain the normal level of reliability in Apple Disk II
I/0. I hope it was worth the cost of bootstrap inca-
patibility between DOS 3.2 and DOS 3.3. If so, my
apologies to Apple for suggesting they could have
done better to stick with D5 AA B5 as the address
field identifier.

The Read Sequence as a Finite State
Automaton

A reviewer of the rough draft of this book, engi-
neer/programmer Jim Aalto, used the Figure 9.11
listing of the DOS 3.3 read sequence to construct his
own illustrative tool for studying the read sequence.
This tool is valuable enough that we decided to
include it in the book (see Figure 9.19). Jim depicts
the read sequence as a " finite state automaton.” Like
a flow chart, Figure9.19 shows the logical paths the
sequencer may take, but the flow is in step with the
sequencer clocks pictured at the top. The average
read pulse interval is also pictured, so sequencer
performance with pulses arriving at various inter-
vals is clearly illustrated. It is recommended that
readers studying this figure attempt to relate it to
the read sequence listing of Figure 9.11.

PROGRAMMING EXAMPLES FROM RWTS

There are several levels at which you can program
disk I/0. The DOS is set up with a very versatile file
handling capability which can be utilized from
BASIC as shown in the DOS Manual. If one had a
desire, he could also perform such direct control
functions as turning drives on and off, selecting
drive 1 or 2, positioning the head, checking for write
protect, and checking to see if a drive is turned on
from BASIC via PEEK instructions. As an exam-
ple, the following Applesoft subroutine will tell you

"WoIBDIQ UOIOWOINY DS S}UH S,OHDY WIr §1'6 2INBH

(Tp]
€
o
5 dON N
&) H31SI93H YIVO 410 2
= 01S 0
Q 1S 1
- YO |¥0
- 141HS 40 1INS3H SV 1IS VO ===
@) r V34 ON HO QV3H HIHLE ==
Qo 35Nd OV3H ON ~—
e 357Nd QY3 we—
9INISSIV0Hd
0¥ SLIBONY e R RS CEETE (4ON 10 ‘470 '01S ‘11S) U I1VLS _H_
S 116 31V S7d 0v3Y S,
'S 118 TVWHON 318N00 ~, (dON) U 31VIS @
, %8
N3O
L OO OO
" Y
’fo’
_"’0’
? — l!l
= A=0=0
ik
11 14IHS — 5
9NISSID0Yd H
G 118 ATHYI < N !
ONY 9-2 S118 L - H
[FHEF- OO0 O=O=0= *
wd][:
.(H

0-} L4IHS

O [V

~ . ('9AY SX2072 HIONINDIS S) @
0 (9v14 3LA8 HO4 LIvM)
— LIVM YD
_ _ _ _ IYAHILNI 3STNd AY3IH FOVHIAY _||_l

N O g o 0 O o o 8 5 O

%0070 H3ON3IND3S

Understanding the Apple lI

JSR §3D9

GET 0B
EDIT SLOT #
DRIVE ON
EDIT DRIVE #

|

POSITION
HEAD.
WAIT FOR
SPEED UP

CODE
WRITE

DATA
256-342

SYNCCNT=40 READ
i ADDRESS
HEAD FIELD
BANGIT
ALLOW 4 MORE
POSITIONS
POSITION
FORMAT TRACK REDUCE e DRIVE HEAD
ERROR EQUALS SYNCCNT ERROR ERROR
(508) TRACK+1 BY20R 1 (520 (540)]
l ALLOW
YES NO 48 BETRIES
SYNCCN
<5 1
NO YES
POSITION FORMAT
T0 ERROR
TRACK ($08)

ol

DRIVE
OFF

(RETURN)

Figure 920 Fowchart of RWTS Routine.

The Disk Controller 9-37

if a disk in Slot 6, drive 1 is write protected:

19 SLOT6 = 49376 : REM SCOE@
2@ DRIVEl = PEEK (SLOT6 + 10)
3¢ REED = PEEK (SLOT6é + 14)
40 DRIVESTART = PEEK (SLOT6 + 9)
5¢0 LODE = PEEK (SLOT6 + 13)
60 WPROTECT = PEEK (SLOT6 + 8)
70 REM LINE 60 GETS DATA
REGISTER AND TURNS DRIVE OFF
8¢ IF WPROTECT > 127
THEN PRINT "WRITE PROTECTED"
9¢ IF WPROTECT < 128
THEN PRINT "NOT WRITE
PROTECTED"
100 RETURN

Note that the DOS does not have to be resident for
this program to work. It bypasses the DOS and goes
straight to the controller.

More sophisticated programs may make direct
use of the DOS subroutines to perform special func-
tions. You do not have to be an expert on the DOS to
do this in your programs. The DOS manual shows
you how to read a sector, write a sector, position the
head to a track, or format a disk by making calls to
RWTS. In Beneath Apple DOS, Don Worth and
Pieter Lechner thoroughly explain the DOS and
show you how to make direct calls to the DOS File
Manager. Worth and Lechner also offer worthy
perspectives of RWTS and RWTS data formats and
provide programming examples which should be of
interest to students of Apple II disk I/O.

Even more sophisticated programs may bypass
RWTS or modify it, substituting different routines
to manipulate the controller and transfer data to
and from the disk in formats not utilized by the
DOS. To learn how to do this, you should study this
chapter to see how the controller works, and you
should study RWTS to see how DOS formats are
written and read. RWTS is located at $B800-$BFFF
of the DOS (assuming 48K of RAM). Its entry point
is $BD00, although it can be called by aJSR $3D9in
order to disable interrupts during RWTS process-
ing and to ensure compatibility with future versions
of DOS. Upon return from RWTS, 6502 status is
interpreted as an error flag (carry set indicates that
an errorocccurred in RWTS). The following discus-
sion points out some examples from RWTS which
show how communication with the disk can be
accomplished. Unless stated otherwise, these dis-
cussions refer to RWTS as it is in DOS 3.3. You are
urged tomake a listing of RWTS using your printer,
so you can refer to it while reading this section.
Make a listing of the Bootstrap ROM at $Cn00-

$CnFF while you're at it. Reference to the RWTS
general flowchart in Figure 9.20 should also help
you keep your bearings.

Drive Turn-On

Drive turn-on is easy. Always configure for read-
ing first (LDA $CO8E,X), select the drive
($C08A,X/$C08B,X), and turn iton ($C089,X). Wait
about a second after turn-on for the disk to get up to
speed and then you can read and write. The RWTS
turn-on procedure, which begins at $BD00, is a good
deal more sophisticated than this. It takes into
account all sorts of factors to get optimum perfor-
mance in a general purpose routine.

First, RWTS checks to see if the slot being
accessed is the same as the slot that was accessed last
time RWTS was called ($BD13). If not ($BD19) it
makes sure that adrive in the last slot accessed isnot
still rotating before proceeding. Remember that it
takes one second for a drive to turn off after access to
$C088,X. RWTS will not turn on two drives at once,
presumably because of loading on the +12V power
line.

It is possible to check whether adrive ataslotison
by configuring for reading data and monitoring the
data register. If a drive is turned on, the data regis-
ter will be changing and vice versa. This is the check
used by RWTS:

ORG $BD22
LDA S$CO8E,X

LDY #S508
LDA C@8C,X

CMP C@8C,X

BNE STILLON
DEY
BNE

; READ

STILLON
s SHIFT

NOTSURE

NOTSURE

This routine loops until the drive at the previous slot
turns off. It will hang in this loop until RESET is
pressed if a call is made to RWTS that specifies a
new slot and the last slot was never turned off.
RWTS itself always finishes by turning off the
accessed drive.

After processing the old slot, RWTS checks if the
new slot has a rotating drive ($BD34). This will be
the case if the one second turn-off delay hasn’t
elapsed. If the drive is already rotating, there is no
need to wait for it to get up to speed. RWTS saves the
rotating/not rotating status ($BD4E), then turns the
drive on ($BD4F). This prevents a still rotating
drive from turning off after its one second lease on
life.

9-38 Understanding the Apple I

Next, RWTS checks to see if the specified drive is
the same as the last call to RWTS ($BD6A). If not
($BD6E), it then assumes that if a drive was rotat-
ing earlier, it was the wrong one. Therefore, it sets
the rotating/not rotating status to not rotating
($BD73). It also selects the drive via the $C08A X/
$C08B,X switch ($BD74).

Now if the selected drive was not previously rotat-
ing, RWTS waits 150 to 175 milliseconds (§BD85)
then calls the head positioning routine. 150 milli-
seconds is not enough time that the drive is up to
speed, but RWTS saves time by positioning the head
while waiting for drive speed to stabilize. The 150
millisecond delay accomplishes two things. First, it
avoids trying to position the head just after a drive
has been turned on, which is a period of heavy cur-
rent flow on the +12 Volt line. Second, if the opposite
drive has just been disabled, the 12 Volts may not
have yet bled off from the disabled drive.* This
might accidentally cause positioning of the disabled
drive if RWTS tried to step the enabled drive too
soon.

Before DOS 3.2.1, this delay before positioning
did not exist in RWTS. Apple added itin DOS 3.2.1,
presumably to improve performance, but they
botched it up. The way it is written in DOS 3.2.1, the
delay before head positioning is dependent primar-
ily on the random state of $46E6 when RWTS is
called and to a lesser extenton $46E6,X. The error is
in the JSR $BA7F which is stored at $BD7E. This
should be changed to JSR $BA7B to make the wait-
ing subroutine entry point correct. The érror does
not exist in DOS 3.3.

After the 150 millisecond delay in drives which
were not previously rotating and almost imme-
diately in previously rotating drives, the head is
positioned to the selected track ($BD94). During the
150 millisecond delay and during head positioning,
the motor-on time count is incremented at $46 and
$47. This two byte counter counts the amount of time
adrive has been rotating at the rate of one count per
100 microseconds. The preset count is part of the
Deviece Characteristics Table used in a call to
RWTS. The DOS uses a value of $D8EF which is
equal to -$2711 or -10001 in decimal. This converts
to minus one second.

After head positioning, the motor count will have
partially counted up to $0000. If the drive was not

*] measured +12V bleed off time in my Disk II drive at 2
milliseconds.

previously rotating, RWTS will go no further than
the count and wait loop at $BD9E until the motor
count reaches $0000. This will complete the turn-on
procedure, which takes one second plussmall change
for a not previously rotating drive and whatever
time it takes to position the head for a previously
rotating drive.

Positioning the Head in RWTS

At bootstrap time, the Apple finds track 0 by
banging the head assembly against the outer stop.
The programming sequence which does this is at
steps $Cn3B through $Cn50 of the 3.3 Bootstrap
ROM (the P5A ROM). This routine shows a very
economical way to step the head in terms of software
overhead. Just wait 20 milliseconds for motor
response before turning off a stepper phase. The
bootstrap routine uses 80 on-off descending refer-
ences to $COE0-$COE7 (assumes Slot 6) to drive the
head 38 or 40 tracks outward depending on initial
phase alignment. The timing is $COE0, $COE1,
wait, $COE0, $COE7, wait, $COE6, $COE5, wait,
$COE4, $COES, wait,..., $COE4, $COE3, wait, 3COEZ2,
$COE1, wait. The wait period is 20 milliseconds.
Note that phase-0 is left energized on the stepper
motor after positioning. This is indicative of the fact
that even numbered tracks are phase-0 aligned and
odd numbered tracks are phase-2 aligned. It also
contradicts every theory I can think of as to why the
analog card was designed so that leaving phase-1on
forces write protection.

The head does not have to be banged against the
stop to locate its position. The track number is writ-
ten as part of the address field in front of every
sector on a formatted disk. The head location can be
determined at any time by simply reading an
address field. Of course banging the head against
the stop is the best way to absolutely determine head
position, and there is no room in the bootstrap ROM
for a routine that reads an address field and then
tiptoes out to track 0.

The RWTS positioning routine is far more sophis-
ticated, and there are two calls you can make. Both
calls are made with slot number times $10 in the
X-register. You can do a JSR $B9A0 with the desti-
nation track times two in the accumulator and the
current track times two at $478. This will simply
position the head using two phases per track. You
canalsodoaJSR$BESA with the destination track
in the accumulator, a Device Characteristics Table
set up, and some RAM locations correctly set up.

The Disk Controller 9-39

This will edit the RAM locations and do a JSR
$B9A0. The RAM assignments are:

$3C, $3D - Device Characteristics Table
location.

$35 - MSB set if drive 1. MSB reset
if drive 2.

$478 plus slot $B - Drive 1 last accessed track
times 2.

$4F8 plus slot $B- Drive 2 last accessed track
times 2.

The $B9A0 routine is the actual positioning
routine for either type of call. It uses a technique of
programming duration periods of the stepper motor
controls to maximize acceleration in the first part of
head travel then to reduce head velocity near the
destination track to prevent overshoot and minimize
settling time. For this purpose, the routine utilizes a
wait after phase-on table at $BA11 and a wait
after phase-off table at $BA1D. These amount to
momentum tables for a typical head assembly. The
values in the table can be multiplied by .1 milli-
seconds to give the wait time.

As an example, the Slot 6 phase control for step-
ping from track $10 to track $11 is as follows:
$COE3, wait $01, 3COE0, wait $70, $COES5, wait $30,
$COE2, wait $2C, wait $100, $COE4. This is phase-1
on, phase-0 off, phase-2 on, phase-1 off, phase-2 off.
The above wait periods in decimal add up to.1+11.2
+ 4.8 + 4.4 + 25.6 = 46.1 milliseconds which is the
single track response time of the Disk II operating
with RWTS, not including a millisecond or so of
general computing time. The final wait of 25.6 mil-
liseconds doesn’t come from the wait tables but
comes from looping through the 100 microsecond
wait routine ($BA00) 256 times at the end of every
head positioning sequence. This is the settling time
of the Disk II head positioning assembly.

As mentioned previously, the 100 microsecond
waiting loop that is used to generate delay periods
also increments the motor-on counter. This is part of
the scheme by which the head is positioned while the
motor gets up tospeed, killing two welfare bills with
one Republican.

Formatting the Disk (Command 4)

Once the head is positioned and the disk is up to
speed, RWTS looks at the command entry of the
I0B (I/0 Block) to see what it is supposed to do
($BDAB). Command 0 ($BDAF) causes an imme-
diate exit with drives off and no error indicated.
Command 4 ($BDB3) causes the disk to be format-
ted with 16 sectors written on every track. Other

than Commands 0 and 4, even commands cause
writing of a sector’s data field, and odd Commands
cause reading of a sector’s data field, but only
Commands 2 and 1 are normally used. Command 2
and 1 processing is the part that gives RWTS its
name.

The FORMAT routine starts at SBBEAF. It works
by starting at track 0 ($BEBB), then formatting
each track one by one. It starts by guessing there
will be 40 FFs in the read syncing leaders which
precede every sector ($BEDO). It then writes the 16
sectors with 128 FF40s before sector 0 (§BF0D)and
40 FF40s before the other sectors. Sectors are writ-
ten in order from 0 to F, but they are effectively
interleaved because the sector specified in the IOB
is not actually the one that is read during a Com-
mand 1 or 2 call to RWTS. Rather, the specified
sector indexes the Sector Interleave Table at
$BFBS.

Writing a sector while formatting consists of writ-
ing the address field ($BF17) which is preceded by a
read syncing leader, then writing a data field
($BF'1C), which is also preceded by a read syncing
leader. The write coded data buffer contains all
ZEROs ($BEBB), which means the data in the data
field will be a string of $96s.

After writing the last sector on a track, the MPU
waits for a number of cycles equal to about 200 plus
50 times the number of synec bytes (50 cycle loop at
$BF3A). An attempt is then made to read the
address field of sector 0. At 40 syne bytes, the sector
0 address field will probably be long gone, in which
case the size of the address field syncing leader will
be reduced by two ($BF52), then the tail end of
sector F will be found ($BF71), and the sectors will
be written again starting at the same point on the
disk as before ($BF0D). This cycle continues until
the sectors fit evenly on the disk. The sync count is
reduced by twos until it reaches 16, then by ones
until it reaches 5. If 16 sectors do not fit on the disk
with a 5-byte leader, the disk speed is probably
adjusted way too high and a formatting error (error
code $08) is signalled ($BF60).

When the sectors fit well on the track, all the
address fields ($BF62) and data fields ($BF67) are
read and validated. As each sector is validated
($BF6A), an FF is stored in the correct spot in the
Sector Initialization Map at §BFA8. Examining
this map may give you hints about the cause of for-
matting errors. When all the sectors are validated
the track number is checked ($BF98). If itis track 0
and the syne count is greater than 15, then two is
subtracted from the sync count ($BFA2). Other-
wise, the synec count is left alone for the next track.

9-40 Understanding the Apple li

Since the optimum sync count is found while for-
matting track 0 the other tracks take much less time
to format.

After atrack is completely formatted, flow returns
to$BEDC. An address field ($BEEB) and data field
($BEF4) areread and the next track isstepped to, or
RWTS is exited with the drive off if all tracks have
been formatted. The drive will actually turn off
about one second after RWTS is exited. Waiting
until a data field is just past before switching tracks
means that anytime the track number is incre-
mented on a formatted disk, an address field will be
ready to be read. Also, if all sectors are validated
without incident, the adjacent track sectors would
be interleaved so that you could start at track 0 and
read a single sector on every track, stepping imme-
diately inward after reading each sector, and the
sector number read would be the same on every
track. The track-to-track sector interleaving serves
the purpose of minimizing access time when step-
ping inward.

Reading and Writing Sectors
(Commands 1 and 2)

Reading and writing sectors are very similar
operations in RWTS. Both operations cause drive
selection and turn-on, head positioning, location of
pertinent sector, reading or writing of a data field,
and drive turn-off. Additionally, write data must be
coded from 256 bytes to 342 6-bit words before locat-
ing the specified sector, and read data must be
decoded from 342 6-bit words to 256 bytes after
reading a data field.

If the RWTS command is not a 0 or 4, read/write
processing begins at $BDB5. First, the command
type is checked and saved ($BDB5). If adata field is
to be written, the 256 bytes of data specified by the
IOB (I/O Block) are coded into 342 6-bit words
($BDBY). After write data coding ($BDBC), read
and write processing take the same path. A retry
count is set to $30 indicating 48 attempts will be
made to read the correct address field. The address
field is read ($BDC4), then checked for correct track
($BDED), volume ($BE10), and sector ($BE26).

Unless volume 0 is specified, finding the wrong
volume causes a return from RWTS with the drive
off and a VOLUME MISMATCH ERROR indica-
tion (error code $20). Finding an incorrect track
number causes up to four repositioning attempts
(count preset at $§BD09), followed by a major track
recalculation (§BDCE), and up to four more reposi-
tioning attempts ($BDDC) beforea DRIVE ERROR
is indicated. A major track recalculation consists of

banging the head against the track 0 stop, then
repositioning to the specified track. Only one major
track recalculation is allowed because the number
of recalculation tries is set to one at the beginning of
RWTS (3BD04). A major track recalculation is also
performed if the correct sector cannot be located
after reading 48 address fields. Another 48 attempts
are made after recalculation before a DRIVE
ERROR is indicated (error code $40).

Once the correct address field has been read, the
command is checked again ($BE32). Read opera-
tions consist of reading the data field ($BE35), de-
coding the buffer 342 to 256 ($BE40), turning the
motor off ($BE4D), and exiting. Write operations
consist of writing the coded data to the data field
($BE51), turning the motor off ($BE4D), and exit-
ing. It takes longer to begin writing than it does to
begin reading, so the reading will start just before
the read syncing leader is encountered if the data
field was written by a Command 2 on the same
drive.

Data fields written by Command 2 are not aligned
with those written during formatting. Writing of
the data field during formatting begins 50 cycles
after writing of the address field ends. Writing of
the data field during Command 2 begins 112 cycles
after the DE AA is detected at the end of the address
field. This is the equivalent point in time at which
the 16 cycle EB is stored while writing the address
field plus 0 to 6 cycles for MPU detectionof AA. Asa
result, Command 2 should begin writing a data field
about 49 eycles (112 + 3 - 16 - 50) after the NULL
data field is written while formatting.

There are only 53 cycles between the end of the
NULL data field and the beginning of the syncing
leader of the next address field. If it takes six cycles
for the MPU to see the AA at the end of the address
field, the data field written by Command 2 will
bump up against the syncing leader of the following
address field. It seems likely that the first address
field sync byte will occasionally be overwritten by
Command 2. Furthermore, if the Command 2 drive
is faster than the formatting drive, destruction of
the first part of the address field leader seems a
certainty. This should cause no problem unless the
formatting drive was very fast, causing very short
address field leaders.

Command 1 should still be able to read the NULL
data field written by Command 4. Command 1 will
cause the MPU to start looking at the data register
while the data field syncing leader is still passing
the read/write head. The data field leader is 192
cycles long so the 49 cyele misalignment should not
cause the data field identifier to be missed.

The Disk Controller 9-41

The misalignment between the Command 2 and
Command 4 data fields is caused by the long pro-
cessing time used in verifying volume, track, and
sector numbers during Commands 2 and 1. If they
were concerned, Apple could easily and substan-
tially reduce the misalignment by fetching volume
and sector from the IOB and Sector Interleave Table
before reading the address field instead of after.

The error detection circuitry in RWTS is very
sophisticated, allowing as it does for the possible
problems that might occur in data transfer. Not so
sophisticated is the error indication found in the
IOB after a return from RWTS. There are three
types of error codes: VOLUME MISMATCH ($20),
error during Command 2 or 1 ($40), and error dur-
ing Command 4 ($08). With a little extra program-
ming RWTS could give such indications as
ADDRESS FIELD CHECK SUM ERROR, DATA
FIELD CHECK SUM ERROR, CAN'T FIND
ADDRESS FIELD IDENTIFIER, CAN'T FIND
DATA FIELD INDENTIFIER, CAN'T FIND
END OF ADDRESS FIELD, CAN'T FIND END
OF DATA FIELD, CAN'T FIND TRACK, CAN'T
FIND SECTOR, SYNC COUNT < 5, and so on. As
it is, such DOS indications as DRIVE ERROR or
[/0 ERROR mean only that something went wrong
in RWTS.

Write Routines

There are several routines related to writing in
RWTS. One is the WRITE ADDRESS FIELD
routine at $BC56. This routine writes the syncing
leader and address field shown in Figure 9.15and it
is only called when a disk is being formatted. The
input parameters are:

Y Reg - Number of FFs in syncing leader

$41 - Volume
$44 - Track
$3F - Sector

$AA - Contains the value $AA

The routine first checks for write protection
($BC57), then stores the first FF in the data register
($BC61), then continues to write FFs in a 40 cycle
loop ($BC69-$BC77). The number of FFs is adjusted
by the format routine so the 16 sectors fit on each
track without a large gap between sector 0 and sec-
tor 15. The minimum number of FFs in the leader
will be 5.

After thesyne writing loop is exited, the series D5
AA 96 is stored directly to the data register at 32
cycle intervals. This is the address field identifier,

and the values D5 and AA are not used in the storing
of data. The D5 is placed in the data register 32
cycles after the last FF of the syncing leader, so
there are no ZEROs following the last FF and it
serves no read syncing purpose.

The volume ($BC88), track ($BC8D), and sector
($BC92) numbers are written next, followed by a

- checksum which is the exclusive-OR of the volume,

track, and sector numbers. These four values cannot
be stored directly to the disk, but RWTS writes
them in a pair of 32 cycle loops following a simple
coding scheme. First, the value to be stored is
shifted left and ORed with AA. After storing this
result to the disk in a 32 eycle loop, the unshifted
value is ORed with AA and stored to the disk. The
result is that four of the bits are encoded in each
storage cycle, and only valid data words are stored.
There are 16 possible storage words in this 4-4
encoded storage format: AA, AB, AE, AF, BA,
BB, BE, BF, EA, EB, EE, EF, FA, FB, FE, and
FF. The use of AA here slightly degrades the integ-
rity of the D5 AA field identifier, but the system
works anyway.

The 4-4 CODE AND WRITE routine begins at
$BCC4. This coding method offers less density than
the 6-8 coding method, but it could be the basis for a
low overhead read/write subroutine which would
transfer 2500 byte blocks of data directly between
RAM and a track on the disk. Such a low overhead
subroutine would serve the purpose of many Apple
users.

After the checksum is written, the WRITE
ADDRESS routine finishes up by writing the values
DE and AA, then part of an EB. The EB is trun-
cated toa 1110since the controller's READ/WRITE
switch is switched to READ ($BCBD) on the 16th
MPU clock after the EB is stored in the data regis-
ter. Switching to READ here results in a 50 cycle
gap between the address field and data field. The 50
cycle gap causes no harm, because it is not long
enough to randomly produce a three word data field
identifier (D5 AA 96 or D5 AA AD).

Another write related routine is a routine which
codes a 256 byte data block into 342 6-bit words. This
"PRENIBBLE"” routine begins at $B800. The
address of the 256 byte data block must be stored at
$3E and $3F and the 6-bit words will be stored in a
pair of coded buffers in the 00XXXXXX format.
The six MSBs of the 256 data bytes are stored in a
256 word buffer beginning at $BB00, and the 2
LSBs of the 256 data bytes are grouped together in
an 86 word buffer beginning at $BC00. The 256
word and 86 word buffers are the source file for the
write data field routine at $B82A.

9-42 Understanding the Apple ||

The WRITE DATA FIELD routine is called in
formatting a disk (RWTS Command 4) and in writ-
ing data to a sector (RWTS Command 2). In format-
ting, the 256-word and 86-word coded data buffers
contain all ZEROs, so a NULL data field is written
50 cycles after the end of an address field. In a
Command 2 write, first data is coded using the
PRENIBBLE routine, then the desired- address
field is read, then the data is written with the
WRITE DATA FIELD routine using the coded data
buffers as a source file. This “real” data field is not
centered on the NULL data field but lags it by
approximately 50 cyeles.

The WRITE DATA FIELD routine checks for
write protection ($B830), writes four FF40s fol-
lowed by an FF36 ($B83D), then stores the data field
identifier, D5 AA AD, directly to the data register
at 32 cycle intervals. Then the coded data buffers
are written in 32 cycle loops, using the exclusive-OR
of thecurrent 6-bit word and the previous 6-bit word
to index the Write Table at $BA29 to obtain the
value to be written. This odd storage method is rev-

ersed in the read operation, and it creates a check- -

sum by which the validity of data transfer is
checked. The 86-word buffer is read first for output
from the top down ($B862), then the 256-word
buffer is read from the bottom up ($BA7B). After-
wards, the DE AA EB trailer is written with the EB
completed. This is opposed to the incomplete EB at
the end of the DOS 3.3 address field and DOS 3.2
data field.

Read Routines

The READ ADDRESS FIELD routine is at
$B944. This routine is used to locate any address
field, fetch the volume, track, and sector, and to
check validity of the read. It is performed in format-
ting to verify correct sector distribution and con-
tent, and it is used in reading or writing the data
field of a sector to locate the correct sector.

The routine starts by looking for any D5 AA 96
sequence, This should occur within roughly 385
valid data register words from any point on the disk.
If it doesn’t occur within 772 valid data words
($10000 minus $FCFC), the routine is exited
($B94D) with the carry status set, indicating an
error condition. After finding D5 AA 96, the four
parameters are read in a 4-4 read loop while accum-
ulating the checksum (§B96D). Volume, Track, Sec-
tor, and Checksum are stored at $2C, $2B, $2A, and
$29 respectively. Next, the presence of the trailing
DE AA is verified. Checksum failure or absence of
DE AA causes the carry to be set, indicating an
error condition. The calling routine will not process
the data if the error flag is set or the volume, track

and sector are not those desired. RWTS calling rou-
tines will attempt to find the correct sector 48 times,
bang the head against the stop, then reposition, then
try to find the correct sector 48 more times before
giving up and deciding there is an error. Reading of
the incorrect volume, however, causes the imme-
diate return with a VOLUME MISMATCH error
unless volume 0 was specified in the IOB.

The sector which is read is not taken directly from
the IOB. Rather, the IOB value is used to index the
Sector Interleave Table at $BF B8 which contains 0,
D,B,9,7,5,3,1,E,C,A,8,6,4,2, F. Asanexample,
if the IOB specifies sector 1, the sector which will be
sought will be sector D. This leads to the following
effective order of sectors on each track: 0,7, E, 6, D,
5C,4,B,3,A,2,9,1,8, F. Presumably itis chosen to
minimize access time to sequential sectors in the
DOS environment.

The READ DATA FIELD routine is at $B8DC.
This is called when the sector writing is verified
while formatting or when a Read Sector (Command
1) call is made to RWTS. Reading begins after the
desired sector is located via the READ ADDRESS
FIELD routine.

Since the READ DATA FIELD routine is always
called after the address field has been read and
verified, the data field should pass under the read/
write head very soon. If more than 32 valid words
are read ($B8DC) and D5 AA AD isn't found, the
routine is exited with carry set to indicate an error.
0Oddly, finding D5 AA XX other than D5 AA AD
gives the routine 86 extra chances to find D5 AA
AD.

After finding the identifier, the data field is read
into the 86 word buffer, top byte first ($B8FF) and
into the 256 word buffer, bottom byte first (§B913).
Each valid word read from the data register is used
to index the Read Table which begins at $BA96.
This table is the inverse of the Write Table. Each
table value is exclusively ORed with the “running
total” to get the value stored in the big and little
buffers. This is the inversion of the writing process
and the running total is checked for correctness at
$B92A. A nonmatching checksum or absence of a
trailing DE AA causes return with carry set, indi-
cating a read error.

The formatting routine calls the READ DATA
FIELD routine just to check the carry status and to
verify its own handiwork. When reading the data
field ina Command 1 call to RWTS, the data must be
decoded from the six bit words in the big and little
buffers into the 256 byte RAM block that was speci-
fied by the IOB. A "POSTNIBBLE" routine which
performs this is located at $B8C2.

The Disk Controller 9-43

HARDWARE APPLICATION

INSTALLING A WRITE PROTECT SWITCH ON THE DISK Il DRIVE

Did you ever want to store information on a write
protected diskette? This involves removing the write
protect tab or cutting a write protect notch, writing
the file, then sticking on a new write protect tab.
Here's another one. Did you ever delete a file, then
immediately regret it? If you haven’t run into one of
these situations, then I'll only say that your ball sure
bounces more nicely than mine does. This Applica-
tion Note details asimple modification to the Disk I1
drive which enables you to write on write protected
disks and also gives you time to have second thoughts
about writing files to or deleting files from a disk.

The modification involves installing a single
switch on the front of the Disk II drive. The three
position switch allows selection between normal
operation, forced write protection, or bypass of
write protection. If you normally leave the switch in
the protect position, you will always have to take an
extra step to write, delete or rename a file. Thisis a
fairly normal feature of expensive storage peri-
pherals associated with mainframe computers.
Normally, taking the extra step required to over-
write data makes the operator think twice about
possible destruction of important data.

The bypass position of the switch allows you to
write on a protected disk. This might be of use in
writing on disks you have protected for your own
reasons, writing on special diskettes that have no
notch, and writing on the backs of single sided disks
if you do that sort of thing. If you happen to be a
software publisher, this mod is a must.

The idea of the write protect switch is not my own.
[t was pointed out to me that the modification had
been suggested in magazine articles. Once it isreal-
ized that such a modification is possible, the design
of the modification is fairly obvious.

Figure 9.21 shows the modification. Before per-
forming the modification, please read the NOTE
OF CAUTION in the front of this book. What is
involved is installation of the new switch and rewir-
ing of the already present switech which is activated
by the write protect notch. The type of switch
required is a ON-OFF-ON SPDT (Single Pole,
Double Throw) switeh. The installation procedure
given here involves installing it on the front of the
drive, but you may prefer to put the switch on a
remote box. When buying the switch, select one that
switches very easily soa minimum of stress is placed

5V
1K
PHASE 1 WRITE
CONTROL E ENABLE PROTECT NORMAL
i v
i OWPT BYPASS O 1K -
PHASE 1 : PROTECT O D
CONTROL ' DEN NORMAL © PROTECT MODIFIED
: Notch in side
of disk

Figure9.21 ASingle Switch on the Front of the Drive Allows the User to Select Normal, Forced Write Protect, or

Bypass Write Protect.

9-44 Understanding the Apple |

Figure 9.22 A Drive With the Write Protect Switch Installed.

on the plastic front panel of the drive. Since the
notch activated switch is mounted below the disk
slot, the new switch should also be mounted below
the slot so wires will not interfere with disk inser-
tion. Choose a mounting point near a reinforcing
structureon the back of the front panel to give added
strength to your installation. All wiring should be
soldered, and 24 gauge insulated wire works nicely.
The purpose of steps 5,7, and 11 is to improve access-
ibility, and you may elect not to perform them if you
are good at working in tight spaces.

Installation Procedure:

1. Turnoff the computer and remove the controller
from its slot. Mark pin 1 of the 20-pin ribbon
cable connector and plug with fingernail polish
so you will not reinstall the cable incorrectly.
Disconnect the ribbon cable from the controller
and move the drive to a convenient work area.

2. Remove the four serews from the bottom of the
drive. Remove the white case by holding the
drive on your palm and sliding the case to the
rear.

3. The notch activated switch can be seen toward
the front on the left side of the drive. Select the
location of your ON-OFF-ON switch so that
wires can be connected between the two switches
in a way that drive mechanisms are not inter-
fered with. Hold the switch near the selected
spot to make sure no problems will arise. The
location shown in Figure 9.22 works well with a
small bodied switch.

4. Mark and drill a hole for your switch. Clean out
any plastie filings which fall into the drive.

5. Thebig horizontally mounted card is the analog
card. You may remove it by disconnecting the

10.

two plugs at the back and by removing the four-
pinread/write head plug. Remove the retaining
serew on either side, and the analog card slides
out. You may wish to clean the head with alcohol
and cotton swabs at this point.

Remove the two beveled head machine screws
from each side of the front panel. Position the
panel to the side, attempting not to strain the
wires connected to the IN USE indicator.

Use a fine lead pencil to outline the position of
the notch activated switch. This way you can
reinstall it in the same position. It will also help
to slide a disk in and out of the drive while you
observe the switch action, so you will be able to
reproduce the same action at reinstallation.
Remove the two allen screws which hold the
switch to the side of the drive.

A black wire is connected to the normally closed
contact of the notch activated switch. Desolder
the black wire. This wire needs to be connected
to the ON-OFF-ON switch and it will probably
require a short splice. Splice a short jumper
between the black wire and the center or com-
mon contact of the ON-OFF-ON switch. Solder
both connections and insulate the splice connec-
tion with electrical tape or by another suitable
method.

Connect a wire between the desoldered terminal
of the notch activated switech and the NORMAL
mode contact of your ON-OFF-ON switch. If
you choose to have NORMAL mode be the down
position, then the upper contact will be the
NORMAL mode contact, and vice versa.

A brown wire is connected to the common con-
tact of the notch activated switch. Solder one
end of a jumper wire to the same contact as the

The Disk Controller 9-45

11.

12.

13.

14.

brown wire. Solder the other end to the BYPASS
mode contact of your ON-OFF-ON switch. The
BYPASS mode contact will be opposite the
NORMAL mode contact.

Remount the notch activated switch to the side
of the drive, aligning it to the outline you drew
with a pencil. Slide a disk in and verify that the
switeh clicks on and off as the disk noteh is
engaged and disengaged.

Mount the ON-OFF-ON switch to the front
panel.

Reinstall the front panel on the drive, making
sure the spindle engagement mechanism mates
with the grooves on the hinged door on the front
panel.

The remainder of reinstallation is the reverse of
the dismantling steps. You can easily verify
operation by attempting to delete some test files
and observing the write protect indication. Do
not operate with any disk containing important
files until you have verified correct operation of
the modified drive.

You should mark the functions of the new switch
on the front panel. I used white dry transfer letters,
available in electronic stores, for this purpose.
Afterwards, 1 sprayed the switch area with an
acrylic coating, also available in electronic stores, to
protect the lettering. All drive openings should be
covered when spraying with aerylic coating to pre-
vent accidental coating of the read/write head.

Some alternate source drives for the Apple use a
light emitter and photo switch to check for write
protection. Rewiring the photo switch in conjunc-
tion with a new ON-OFF-ON switch should also be
possible on most or all such drives. I happentoowna
FOURTH DIMENSION drive manufactured by
Siemens. I added the write protect switch mod to it
by splicing into the wires going to the photo switch.
On the 4D drive, the photo switch is mounted over
the disk slot. The white wire is the input to the photo
switch and is the equivalent of the brown wire in the
above procedure. The yellow wire is the output of the
photo switch and is the equivalent of the black wire
in the above procedure.

The modern microcomputer is such a marvelous
thing. Just think of the accumulated knowledge and
industrial capability of the human race represented
by such a machine. Invented by man, feared by man,
exploited by man, and hated by man. Especially
hated by man when it doesn’t work right. After
years of having computer systems subjecting us to
impersonal and illogical errors, we have advanced
to the point where we have computer systems inour
own homes subjecting us to personal and illogical
errors.

The vast majority of computer mistakes are caused
by imperfect programs. The more involved a pro-
gram, the greater the chance of an oversight by the
programmer. We used to curse the computers. Now,
when a husband writes a program that allows his
wife to enter her kitchen recipes, then destroys them
in milliseconds, it's not the computer that gets
cursed. Yes, today’s computers are very personal.

Ocecasionally, computer malfunctions will actu-
ally be caused by a hardware failure rather than a
program in disarray. This should be a fairly rare
occurrence, because digital electronics circuitry is
so reliable. Yet, hardware failures do occur, and
most of us encounter them eventually in our home or

chapter 10

Maintenance and
Care of the Apple Il

business system. In this chapter, attention will be
given to the maintenance philosophy of the Apple
computer. There will be some discussion of what
options you have when your system fails, and of some
simple fault isolation steps which can be taken by
you in your home. We also will discuss ways of reduc-
ing the probability of hardware failure in your
system.

APPLE HARDWARE RELIABILITY

There is no electronic circuitry more reliable than
modern digital electronic circuitry. Digital ICs rou-
tinely operate for thousands of hours without fail-
ure, and they are easy to replace if they do fail. The
Apple computer is consequently a very reliable
machine. There are, however, less reliable facets of
a computer than the ICs that populate it. Some weak
links in the reliability chain are discussed here.

Tinkering Users

If you are very involved with your hardware, try-
ing new and different things all the time, you are
bound to make some mistakes which cause hard-
ware casualties. People who like to tinker with their

10-2 Understanding the Apple I

computer should do so, because it’s as fun as all get
out. Those same people would be naive to think they
may not occasionally mess something up. Even
though my wife thinks otherwise, I have probably
set no records in this area. I do, however, consider
myself an Apple clobberer of the first degree. The
personality traits necessary to reach this plateau of
destructive potential are an infantile curiosity and
terminal absentmindedness.

The possibility of causing hardware failure by
tinkering leads to the following common sense rule.
If your Apple is your bread and butter—if it costs
you money when it's not running—don’t mess with
it. If your Apple is your creative outlet, then play
with your toy any way you please.

The Peripheral Slots

It is this author’s opinion that the most important
hardware feature contributing to the Apple’s mar-
keting success is the concept of peripheral slots,
mounted on the motherboard with address decoded
control signals generated on the motherboard. The
peripheral slots do represent a reliability weak
point though. Suppose you had a television which
allowed the owner to enhance it in all sorts of ways
by lifting the lid on the television and installing
cards in slots on a big motherboard. Surely, every
owner who reconfigured his television a lot would
mess itup eventually. The TV repair industry would
be happy with the extra business, but give them
another bonus. Mount the motherboard on a few
nylon posts so that it flexes terribly when someone
installs or removes a card, and make sure a lot of
different manufacturers make the cards so that
some of the cards will fit too tightly. How interesting
it was of Apple to combine such admirable elec-
tronic engineering and such ghastly mechanical
engineering in the same peripheral slot concept.
Recent Apples have a greatly improved mother-
board mounting with a steel bar reinforcing the
motherboard near the peripheral slots.

The sort of thing that can go wrong when pulling
or removing cards is that a card might get installed
backwards. I've only done this twice. It tends to wipe
out one or more chips on the card. As soon as a chip
shorts a power supply voltage to ground, the power
supply shuts itself off and damage to further chipsis
prevented. An impatient owner might remove or
install a card with power applied to the Apple. You
can usually get away with this, but when you see a
spark, cross your fingers. I've never burned up more
thanone chip ata time doing this, but it’s possible to
wipe out every chip connected to D0 of the data bus.

This is because D0 is adjacent to +12 Volts on the
peripheral slot pins and they may get shorted
together. Combining two reliability hazards, you
come up with the most common cause of hardware
failure in the Apple, a tinkering owner who installs
and removes cards while power is applied.

One of the worst things that can happen while
installing or removing a peripheral card is that flex-
ing the motherboard might cause a hairline frac-
ture of a current trace or solder joint. Of course the
same thing could happen if you drop your Appleor if
a manufacturing defect starts to show symptoms.
The resulting marginal electrical contact can cause
system problems to come and go in a random way
based on such variables as temperature, mother-
board stress, and the price of hogs in Kansas City. A
good computer technician might be able to isolate a
problem like this on a good day if you can afford the
wages of a good technician for a whole day.

Peripherals with Moving Parts

Moving parts are a reliability problem in any
industrial creation. Compare an automobile to a
computer. The automobile might run 100,000 miles
before its effective life is over. This will be 5000
operating hours at 20 miles per hour with many
parts replaced along the way. Yet you could turn on
your Appleand let it run for 208 days in a row (5000
hours) and have a very reasonable chance of expe-
riencing no hardware failure. If a part fails, you can
replace it and go another few thousand hours with-
out a failure. The main limiting factor on effective
life is obsolescence.

Now take a disk drive, an electro-mechanical
device with precise mechanical alignment. Don’t
expect to run a disk drive for 208 solid days without
hardware failure. Friction can cause the motors or
head assembly to wear out, and like the front end
alignment of a car, drive alignment sometimes goes
out. Cleanliness becomes a factor. If you are really
putting a lot of hours on your Apple, then you should
expect to eventually have to have some disk drive
maintenance performed. The same is true of a prin-
ter. Heavy usage results in wear on the moving parts
and in probable eventual maintenance requirements.
This is why printer manufacturers will advertise
how few moving parts there are in their products.

The Power Supply

In the hypothetical 208 day reliability test that
was mentioned earlier, if any unit failed, it would
most likely be the power supply. This is because the
electric currents in the power supply are so much

Maintenance and Care of the Apple I

10-3

greater than in any IC. Of course the power supply is
rated to handle a lot of current, but high current
devices are usually more apt to fail than low current
devices. Also, if the AC line voltage fluctuates, the
power supply is the unit most likely to be damaged
by the resulting current surges.

Application and removal of power to the Apple
can be thought of as a controlled fluctuation. The ICs
and power supply are designed to handle the cur-
rent surge that occurs when the switch is turned on.
Still, there is no time when your computer is more
likely to fail than when the power is fluctuating,
including when you turn the power switch on. This
means you should turn the Apple off if power starts
fluctuating, as when the lights in the house go dim
during a storm. It also means that you should not
needlessly turn the power to the Apple off and on.

A particular reliability problem with the Apple
power supply is the power switch. The switch ares
sometimes at power up, and this can eventually
cause the switech to malfunction. The problem is
compounded because the Autostart ROM allows
software to hang the system in a way that pressing
RESET will not help. The user has no choice, in this
instance, but to turn the Apple off, then on to reini-
tialize the system. This causes extra wear on the
switch and exposes the computer to possible power-
up casualties. In more recent Apples, the power
switch is rated for 10 amps instead of the 8 amps of
older Apples. Maybe this reduced the likelihood of
switch failures. More importantly, Apple now allows
computer stores to replace the switch instead of
effectively requiring them to replace the whole
power supply as they used to do. This allows a repu-
table store to repair the problem for about one
fourth of the previous cost.

IMPROVING YOUR APPLE’S RELIABILITY

The reliability weak links give some hints on how
to improve the reliability of your own Apple:

1. Above all else, never remove or install peri-
pheral cards or ICs with power applied.

2. To improve reliability, don't tinker with the
Apple or peripherals. This must be each per-
son’s compromise between the conflicting desires
of wanting a reliable computer and wanting to
tinker. You probably know that my personal
choice is to tinker all I want.

3. Keep the Apple covered when not in use so that
the electronics stay clean and nothing is acci-
dentally dropped inside. Don’t set coffee or
sodas on the Apple, because you may spill them.

4. Don't operate the Apple on an unstable power
source. Be wary of operating during electrical
storms because power may fail.

5. Connect power to the Apple through a bus bar or
other device with a switch on it and turn the
Apple on and off using this switch to save wear
on the power supply switch. The bus bar may
have current surge suppressors built in which
help stabilize the power applied.

6. You may elect to reduce the operating tempera-
ture of the Apple by mounting a fan on the case.

Products are available which perform the three
tasks of providing an external switch, surge sup-
pression, and temperature reduction. None of these
is necessary for operation of the Apple, but it can be
argued that each one could improve its reliability.
Necessity of temperature reduction is the most
questionable. The Apple uses commercial grade (as
opposed to military grade) components which are
guaranteed to operate within specifications over the
0-70 degrees Centigrade (32-158 degrees Fahren-
heit) operating range. My measurements of the
Apple’s operating temperature indicate that it
operates under 130 degrees Fahrenheit just above
the 6502, which is the hottest spot I could find. This
is well within the 158 degree specification of the
components. Reducing this operating temperature
should still reduce thermal expansion, reduce the
possibility of malfunctioning of components thatare
not up tospecifications, and reduce the possibility of
malfunctioning due to overloading of signals by too
many peripheral slot cards. Also, by reducing power
supply temperature, one would expect to increase
the amount of current that can be supplied before
overheating and failure of power supply compo-
nents occurs.

To see for myself the effect of using a fan on the
operating temperature of the Apple, I ran a four
hour test, measuring the temperature at the top of
the power supply and just above the MPU with and
without a fan running. The fan used was a Super
Fan II made for the Apple by R. H. Electronics. It
hangs from the left side of the case and has an exter-
nal on/off switch and surge suppression. Four peri-
pheral cards were installed in the Apple under test,
which was a Revision 7D Apple II PLUS. The
temperature measuring device was a pyrometer
which utilizes a thermocouple for a probe. The
results of the test are shown in the graph in Figure
10.1. Asthe graph indicates, it gets very warm near
the surface of the MPU. Also, the fan reduces the
operating temperature by about 15 degrees Fahren-
heit. Whether or not this is worth the price tag is

10-4 Understanding the Apple I

TEMPERATURE
IN DEGREES F.

120

Start test by
turning Apple on.
Fan off.
Temperature probe T
at top of power 70 bt

Cover removed

" from Apple

Fan off
End test

/

Move temperature probe
to point 2 mm above
MPU. Temperature
indication drops while
moving probe

—_—r | S S N N] T O S/ N Y |

Supply: 0 60 120

L ¥] L] T L] T Ld l L] L] L) Ll T I
300 TIMEIN
MINUTES

Figure 104 Temperature Measurements Inside an Apple Il Plus.

a subjective matter. Please note that the graph is
probably a good indication of the relative tempera-
tures with the fan off and on, but that there are
many variables which affect the absolute reading,
including the temperature of the room, probe place-
ment, and instrument accuracy. The measurements
made at the surface of the power supply were prob-
ably closest to the ambient air temperature in an
Apple. It would be fairly accurate to say that the
ambient air temperature in the Apple cabinet is
about 30 degrees F'. greater than room temperature
and that the temperature differential can be reduced
by about 15 degrees F. with a fan.

REPAIR OF THE APPLE I

Repair of a broken digital computer is different
than repair of other sorts of electronic equipment.
Many uncertainties of electronic circuit operation

do not exist in digital equipment, because most of
the circuitry is made up of two-state electronic
switches. In most circuit elements, either current
flows or it doesn’t flow. This is a simple condition
compared to the infinite variety of signal conditions
which exist in analog electronics.

The complexity of digital equipment lies not in
complex electronics but in complex logical capabili-
ties. Asaresult, any difficulty in the repair task will
often be due to this logical complexity. This is good,
because it means many hardware functions in a
computer can be verified, and many casualties can
be isolated by self diagnostic programs. More trouble-
some problems can be diagnosed by external com-
puters designed and programmed to troubleshoot
certain classes of problems. Since computer casual-
ties are often logical malfunctions, what better way
is there tosolve them than by logical analysis using a
computer?

Maintenance and Care of the Apple Il 10-§

There is virtually no end user self diagnostic capa-
bility in the Apple Il computer. There is no hardware
or firmware based timing verification, I/O verifica-
tion, or memory verification. RAM based diagnostic
programs are available on disks to computer dealers
but are not available to owners. There is, therefore,
very little an owner can do by way of isolating diffi-
cult casualties unless there is an in house computer
technician with some test equipment. There are
some checks that can be made by anybody, but more
on that later.

The typical computer retailer will have what
Apple calls a Level I repair capability. They will
often have a shop and a computer technician. They
will also have several disks full of diagnostic pro-
grams and a pipeline to Apple. If their diagnostics
will load, they will verify and isolate faultsin RAM,
ROM, the keyboard, videodisplay, and Apple manu-
factured peripheral devices. The technician or sales-
man can then replace components thatare indicated
to be bad and hopefully fix the malfunctioning
Apple very cheaply. The dealers also havedisk drive
alignment disks and procedures which allow their
technicians to precisely align the Disk II drive.

Dealerships with more sophisticated repair capa-
bilities will also work on some products not manu-
factured by Apple, such as 80 column cards or
printers. If there is a resident Apple technician with
an oscilloscope, he probably will repair many prob-
lems not pointed out or isolated by the diagnostics.

When a problem is beyond the capability of a
dealership or the repair of a problem will be so time
consuming that it will not be cost effective for the
dealer or customer, the dealer will swap out a major
assembly for a very reasonable cost. For example, a
motherboard swap costs $120, a power supply costs
$90, and a disk controller card costs $55.* He then
sends your repairable assembly to an Apple Level IT
repair facility. Apple can repair the assembly more
easily because they have sophisticated test fixtures,
documentation, and assets not found in a computer
dealership. Other companies besides Apple will also
have a turn around policy on their Apple compatible
products. Therefore, when a peripheral card fails,
you may well be able to get a quick swap at a com-
puter dealership. _

Apple will not allow Level I repair shops to per-
form some tasks. They maintain this control by
refusing to swap assemblies upon which unauthor-
ized work has been performed. For example, a Level

*Suggested prices recommended by Apple for out of warranty
repairs, August 1, 1981. Still valid as of March 15, 1983.

I shop can change the analog card in a disk drive,
but they can’t change the drive motor. Also, with
few exceptions, Apple won't accept a modified
assembly. One exception is the shift key mod when
wired to pin 4 of the game I/O socket or pin 1 of
socket H14 (the same point electrically). Apple liked
that mod so much, they included it as part of the
Apple Ile.

Apple’s no swap rule for modified assemblies is
fairly reasonable considering that they must make
their own repair operation cost effective. An exam-
ple of where this rule was carried too far is the
power supply switch. Apple did not allow any repair
work on the power supply and put two rivets in the
bottom so it was hard to gain access to the internal
components. If those two rivets were removed, then
Apple wouldn’t accept that assembly for swap out
without special permission. As a result, if the switch
went bad, the customer was required to pay $90 for a
power supply swap out when switch replacement
should only be about $25 for parts and labor. Then
Apple changed the power supply from the silver
colored one to the gold colored one, to which access
can be gained by simply removing some screws.
They now allow dealers to change the switch on
either type power supply, although some dealers
will still swap out the whole power supply at a $30
cost.

The primary hardware based self diagnostic fea-
ture of the Apple is an empty peripheral slot. An
empty slot becomes a diagnostic port when you plug
a specially designed test fixture into it. There can be
no doubt that Apple must use such test fixtures for
production check out as well as fault isolation,
because they are an obvious necessity. What can you
tell about an Apple from a peripheral slot? You can
verify power supply voltages, verify timing, check
RAM and ROM and all address bus command fea-
tures via DM A, measure for shorts at all pins, exer-
cise the 6502 with a test program via the INHIBIT'
line, and verify correct interrupt response. Prob-
lems with individual memory chips can be isolated
to the chip while other problems may be isolated
only toan area. Further isolation of problems can be
performed by attaching jumpers from the smart
test fixture to various ICs. Apple probably has an
area full of engineers who do nothing but design test
fixtures for Apple products, program them, and
write test procedures for them.

We pay for this diagnostic capability when we buy
Apple products, even though it isn’t built into the
Apple. Large scale automated checkout and fault

10-6 Understanding the Apple I

isolation of a product is the only way to provide
quality assurance and service a complex mass pro-
duction device in a cost effective way. Money for
developing this capability must come from sales and
service revenues.

WHEN YOUR APPLE BREAKS

When your Apple breaks, chances are that you
will have to take it to a computer dealer for repair.
Yet there are some very simple checks you can make
which might get your Appleupinahurry. These are
checks which can be made by anyone, and they are
the kind of checks a salesman might make if you
brought your Apple in on the service technician’s
day off. Be aware that any damage you cause while
making these checks will void your warranty if it is
still in effect. Also, any use of test equipment by
unauthorized service personnel might put your
warranty in jeopardy.

In these discussions, the use of a multimeter, logic
probe, or oscilloscope will be occasionally called for.
If you do not have access to the instrument men-
tioned, or you do not know how to use it, it is time to get
your system to a dealer. Incidentally, you can buy a
logic probe and a multimeter for $20 each at Radio
Shack and learn how to use them in a few minutes.

If you manage to find the exact cause of a problem,
you can buy most Apple components in computer
electronics stores or, more expensively, at computer
dealers. The computer dealer will charge you more
because he is not in business to sell electronic com-
ponents. Like virtually all American maintenence
operations, the computer dealer will put a big mark-
up on his parts prices to improve the profitablity of
his service department.

There are hazardous voltages inside the Apple,
but they are all in the power supply. Nevertheless, it
is a good idea to pull the plug on the Apple anytime
you are working inside. Never work on the power
supply with the line cord attached. Many of the
power supply components are not isolated from the
line voltage and there are numerous dangerous volt-
age points in the power supply.

The Peripheral Card Check

A check that should be made at an early point for
almost any persistent symptom is to turn off the
Apple, remove all the cards, turn the Apple on, and
see if the symptom disappears. If it does, you can
find which card is causing the fault by turning the
computer on with each card installed by itself. Then
you can operate the Apple, losing only the capabili-
ties represented by the malfunctioning card until it

isrepaired. Even when a peripheral is malfunction-
ing, it is a good idea to check operation with all other
peripheral cards removed. For example, your disk
controller may be loading down the RESET' line
and causing the firmware card to misbehave. This
procedure of isolating a problem to a peripheral
card will be referred to as the peripheral card
check. Other than this most basic of checks, your
course of action will depend on your symptoms. The
most easily recognized symptom is a completely
dead Apple, normally indicating a power supply
problem.

Power Supply Problems

There are two symptoms you will normally en-
counter with power supply problems. The Apple is
dead and there is a low level clicking noise coming
from the power supply, or the Apple is dead and
silent too. If there is a clicking noise, the power
supply is quite likely good, but a motherboard or
peripheral card malfunction is causing an overload
condition. If the Apple is dead silent, there may be a
casualty in the power supply itself.

The clicking noise is the tinkerer’s symptom.
Chances are very good that somebody was instal-
ling, removing, or modifying something in the
Apple. When any casualty symptom follows tinker-
ing, concentrate your investigations in the areas
that were tinkered with. If something was touched,
look it over.

When the clicking noise occurs, turn the computer
off immediately. If a component has just shorted, it
may be hot or show evidence of burning. Visually
inspect the motherboard and peripheral cards under
good lighting. Look for such things as ash or black
marks on the components. Touch all the ICs lightly
to see if any are hot. Be careful or you might burn
your finger when you get to the right one. Check that
all eards, plugs, and ICs that may have been tin-
kered with are correctly installed, not reversed, and
with no shorted pins. Perform the peripheral card
check, but don’t leave the computer on with the
clicking noise for any longer than necessary. The
peripheral card check will indicate whether the
motherboard or a peripheral card is the probable
cause. It can be further determined that the prob-
lem is not in the keyboard by disconnecting the key-
board plug from its motherboard socket.

If you were unable to isolate the exact problem
cause, it may be time for you to take your system toa
dealer for repair. At this point, you will be able to
describe the symptoms to the service technicianona
level which will be helpful to him. He will probably

Maintenance and Care of the Apple |I

10-7

Figure 102 A Power Supply With the Bottom Off.

verify a short to ground exists with a multimeter
and try to isolate the short by removing ICs from the
motherboard or peripheral card in groups until the
short goes away. You ecan do this yourself, but
beware. Even experienced technicians damage ICs
or install them incorrectly on occasion. If you remove
all the ICs from a card and put them back in, you
very well may create some casualties that weren’t
there when you started. Also, the problem may be
more difficult than a dead short, and you might end
up requiring a board replacement if it is too difficult.

The second bad power supply symptom that can
be observed is a completely dead Apple with no
clicking noise. This can be verified to be a power
supply problem by measuring the +12,-12, +5, and -5
Volt lines at any peripheral slot with a multimeter.
If the voltages are good, then a timing problem is
indicated. If incorrect voltages are present, there is
probably a power supply problem which will require
a $90 swap out from a dealer. If no voltages are
present, you may still have a $90 swap out coming,
but you may only have a bad switch.

In this event, you have two options. You may take
the computer to a dealer who might verify the
switch is bad and replace it or who might insist on a
$90 swap out. You may also verify the switch is bad
vourself and replace it. Replacement is easier to
accomplish in the newer, gold colored supply. This is
because the newer supply is not riveted closed and
because the switch is a standard sized rocker switch.
The switch on the older, silver colored supply is
undersized and not easily found in part stores. Any
Apple dealer can obtain either switch from Apple

It used to be that Apple would not accept an older
supply for swap out if the rivets had been removed,
but since the newer supply was introduced, they

accept the older ones with rivets drilled out. If you
enlarge the mounting hole on an older supply to
make it take a standard sized rocker switch, it prob-
ably will not be accepted for swap out if a more
serious casualty occurs in the future. While the cost
of a power supply with turn in is $90, the cost with-
out turn in is $300. You should, therefore, weigh the
consequences before embarking on any course of
action. Also, even though Apple has been accepting
older power supplies with the rivets removed, they
have not made any public announcement to that
effect. Neither Quality Software nor myself can be
held responsible for any consequences of your possi-
ble decision to remove the rivets and attempt to
replace the switch. If you do make such a decision,
here is a rough procedure:

1. Turn the Apple off.

2. Remove the power cord from the power supply.

3. Disconnect the power supply plug from the
motherboard connector.

4. Remove the power supply (four serews through
Apple base plate).

5. Drill out the middle rivet on both sides of the
power supply (1/8" bit).

6. Remove four screws from both sides and separ-

ate top from bottom.

Verify switch casualty with ohmmeter.

Replace switch.

. Reverse the dismantling procedure except for

installation of rivets.

DO NOT APPLY POWER TO THE POWER
SUPPLY WHILE INTERNAL COMPONENTS
ARE EXPOSED.THE VOLTAGES INSIDE ARE
VERY HAZARDOUS WHILE POWER IS
APPLIED.

L,

10-8 Understanding the Apple |l

Peripheral Failures

It is sometimes fairly obvious that the only prob-
lem lies in a peripheral or its interface card. If every-
thing else works, but a printer won't print, it's
pretty cut and dried. Other peripheral failures are
less obvious. Cards that steal ROM addressing like
the firmware or RAM card are so integrated into the
overall operation that when one fails, symptoms can
be the same as motherboard failures.

When you are certain that a fault lies with a peri-
pheral, there are some steps you can take to try to
determine the exact cause. First, with the computer
off, remove all the other peripheral cards to be cer-
tain that one of them isn’t somehow causing the
problem. If that doesn’t help, turn the computer off,
and give the suspect peripheral card a visual inspec-
tion. Assuming the ICs are mounted in sockets, wig-
gle them all to make sure that they're properly
seated. Verify that any plugs are properly installed.
Clean the contacts of the card’s edge connector with
a pencil eraser or with aleohol and cotton swabs,
preferably the latter. Reinstall the card and verify
that the problem still exists. You can perform the
same steps on any cards mounted in the peripheral
itself.

Just the act of removing a peripheral card and
installing it will often cure many problems, at least
temporarily. Some lower quality contact materials
will tend to make poor electrical contact when the
temperature rises. Just wiggling the card can cure
the problem, but be sure to wiggle it with the com-
puter turned off. Cards with gold plated contacts
are much less likely to cause this sort of trouble,

Another thing you can try is to run the peripheral
in a different slot than its ordinary one, assuming it
is not slot dependent. If it is slot dependent, try
running another peripheral in that slot, the object
being to prove there is nothing wrong with the slot’s
signals or connections. If the problem persists, you
may as well start calling computer dealers to find
one who will work on your peripheral.

If you cause a malfunction by removing a card
with power applied, suspect that ICs connected to
the INHIBIT' line are burned out. This includes the
74L.S09 on a firmware card or a RAM card. You can
burn up these LS09s by removing any card from any
slot with the power on and accidently shorting pin
32 (INHIBIT')to pin 33 (-12V). If you are less lucky,
you might short pin 50 (+12V) to pin 49 (D0). In the
latter instance, you may possibly destroy numerous
ICs.

Here is one last tip for a special situation. I have
known the LS125 on the Disk II analog card to be

damaged on three separate occasions. On two of
those occasions, the LS125 failure was caused by a
person plugging the 20-pin ribbon cable connector
into the controller incorrectly. The symptom was
that the drive was always configured for writing,
even when the controlling program was attempting
toread data. Booting or cataloging a disk, for exam-
ple, would clobber the disk. A typical operator will
clobber several disks under these circumstances
before realizing what he is doing. He thinks he is
trying to read bad disks, but he is really making
disks go bad by trying to read them. If you encounter
these symptoms, try replacing the LS125 on the
analog card of the offending drive or drives. Then
verify operation with disks containing non-critical
data. This tip also pertains to most second source
5-1/4 inch drives available for the Apple. They gen-
erally use an LS125 for the same functions as the one
in the Disk II drive.

Other Symptoms

There are no error lights built into the Apple, but
there are some very distinct error indications which
you can interpret if you understand the Apple.
First, does it beep when you turn it on? The beep
isn't made by some oscillator. It's made by pro-
grammed control of the speaker by the MPU. It
means that a power-up RESET was generated, the
6502 works and is capable of address bus and data
bus control and data bus reception, the F8 ROM
works, timing works, page 0 and 1 of RAM work,
and a good portion of the address decoding circuitry
works. If you can get to the monitor, you can try the
following RAM test:

*1 CTRL-P (ENABLE PRINTER)

*C@P50 CB53 CO54 CO57 N 265:FF N 266<265.
BFFEM 266<265.BFFEV 265:0 N 266<265.BFFE
M 266<265.BFFEV 34:14 (CR)

Please note that there is a space between the ending
”34:14” and the RETURN. These keystrokes, when
entered from the monitor, will enable the Slot 1
printer and then take turns filling RAM with ONEs
then ZEROs. It verifies the transfer of each byte and
prints out any errors. RAM locations $265 through
$BFFF are checked out, and the test can be cycled
indefinitely with every error recorded on the prin-
ter. The video display gives a visual indication that
the test is in progress. It can be terminated by press-
ing RESET.

Maintenance and Care of the Apple |l 10-9

It is important to verify the errorless operation of
RAM because a random error in memory transfer
can cause seemingly illogical program crashes.
Most 6502 programmers could write a good RAM
diagnostic program and save it on disk, but what
good would it do if a RAM casualty prevented the
operation of DOS? In fact, what good are any disk
based diagnostics if any casualty prevents the oper-
ation of DOS? This is why the little monitor based
RAM diagnostic can be pretty handy.

The second big indicator of the nature of a prob-
lem is the video display. The scanning of RAM for
video output is done independently of the MPU, the
address bus, and the data bus. The only common
bond is timing. The address bus, data bus, MPU,
RAM and ROM can all be burned toa crisp, and you
will still have the display window on the sereen. The
contents would be jibberish, but the window would
be there with its black margins on all sides. The
presence of the window means that timing, the video
scanner, and most of the video generator are
working.

The four possible combinations of the two opera-
tional indicators can greatly narrow the field of pos-
sible causes of a given problem. The following
interpretations of symptoms should help. In all
cases, perform the peripheral card check, visually
inspect the motherboard, and verify that all ICs are
properly seated. Refer to the foldout in the back of
the book entitled "Motherboard Component Loca-
tions” to see which functional areas are affected by
various ICs.

1. Nobeep, nodisplay. This isone dead Apple and
power supply problems are the probable cause.
This can be verified by measuring the +5V, -5V,
+12V, and -12V supplies at any peripheral slot
with a multimeter. If any of the voltages is
incorrect, read the Power Supply Problems
section of this chapter for an indication of how to
proceed. If the power supply voltages are good,
timing generator problems are indicated. Verify

d

ol

the presence of the timing generator signals
using a logic probe or oscilloscope. Refer to Fig-
ures 3.2, 3.8, and 3.9, and replace possible mal-
functioning ICs if you have spares.

2. No beep, display window present. Timing is
good, but the computer does not execute a stored
sequential program. Use a logic probe or oscil-
loscope to verify whether or not signals are
normal at all pins on one of the peripheral slots.
Pay particular attention to the address bus,
data bus, INHIBIT', RESET’, and other 6502
control lines. The condition of the peripheral
slot signals should guide you to possible causes.

3. Beep, no display window. Most of timing is
good, but check LDPS’ and LD194 with a logic
probe or oscilloscope. Also check the video
scanner outputs and the BLANKING, SYNC,
PICTURE, and VIDEO output signals in the
video generator.

4. Beep, window present, programs crash. The
computer executes programs but gets into
trouble in certain cases. Turn off the computer
and remove and reinstall your firmware card or
RAM card to see if that is the problem. Try
operating with all cards removed except the
firmware card or RAM card as well as doing the
normal peripheral card check. Attempt the
monitor based RAM diagnostic that was shown
earlier. Verify various ROM locations using the
monitor. It is helpful to have the Applesoft and
Integer programs stored on disk. If disk I/0O
works, you can load either program into RAM
and verify your firmware using the VERIFY
feature of the monitor. Check all the signalson a
peripheral slot with a logic probe or oscilloscope.

Intermittent problems are the bain of all comput-
er servicemen as well as computer users. They are
often dependent on the temperature and they are
often the product of a mechanical defect like imper-
fect electrical contact. They are sometimes impossi-
ble to repair in a cost effective way and the best

Figure 10.3 Some People Just Shouldn’t Handle ICs.

1010 Understanding the Apple I

thing that can be done in this instance is to swap out
the defective assembly at a computer dealership.
There are two tricks which can be used to make the
problems become more regular so the causes can be
identified. One is to subject the equipment to a
severe mechanical jolt, like Humphrey Bogart in
The African Queen. This will tend to prove or dis-
prove the notion that there isa mechanical problem.
Less drastically, you can flex the motherboard and
reseat suspect peripheral cards and ICs. The second
trick is to raise and lower temperature to make the
problem occur. "Cold problems” can be made to
appear by spraying cold spray, available at elec-
tronic stores, on suspected areas. "Hot problems”
can be made to appear by directing a heat gun, or,
less effectively, a hair dryer at the suspected area.
There are no doubt many symptoms not covered
by the guidelines that have been given here. The
intention was only to give some helpful hints, not a
full blown maintenance aid. Serious readers of this
book, however, should be in a very good position to
correctly interpret the symptoms of any malfunec-
tions which occur in their machines. In the absence
of sophisticated diagnostic aids, full understanding
of operation is the most important asset in isolating

faults in a digital computer. It is good for Apple
owners to possess this level of understanding, and it
is also good for them to locate computer dealerships
which employ service personnel with this level of
understanding.

A Note of Thanks

In preparing this chapter, I benefited from being
allowed to spend a day in the excellent repair
department at Rainbow Computing, 9719 Reseda
Boulevard, Northridge, CA 91324. I was able to
discuss Apple maintenance with Roger Wilbur and
Eric Waller, who are experts at repairing Apples,
and I was also allowed to assist them in some main-
tenance tasks. Eric has been working on Apples so
long that when he first called Apple Computer
about a hardware problem, the phone was answered
by Steve Job’s mother, who called Steve Wozniak in
from the garage to answer the phone! While Roger
and Eric are not responsible for my interpretations
of our discussions, they both contributed measura-
bly to my understanding of Apple maintenance
procedures. My thanks to them and to the manage-
ment of Rainbow Computing.

address bus. A multi-line electrical connection
from the MPU to various devices in a micro-
computer by which the MPU specifies the loca-
tion with which it will communicate. The
address bus in the Apple is 16 lines and the
MPU can specify 65536 different locations for
data transfer.

ampere, amp. The unit of measure of electrical
current.

analog. Pertaining to quantities which vary through
a continuous range such as a voltage which
ranges from +5V to -5V. See digital.

AND gate. A logic gate from which the output will
be true if and only if all of its inputs are true.

Applesoft BASIC. The floating point BASIC inter-
preter language written for the Apple by
Microsoft Corp. and distributed by Apple Com-
puter, Inc.

ASCII, American Standard Code for Informa-
tion Interchange. A code for representing
numbers, letters, and symbols in computers.
ASCII is used in the Apple for representing text
in the keyboard input, text screen map, printer
output, and DOS text files.

glossary

assembler. A program which converts an assembly
language source file into a machine language
object file.

assembly language. A language which specifies
machine language commands on a one to one
basis but in which the computer manages many
of the details of generating machine language
code.

bank switching. A method of accessing more
memory locations than the normal addressing
range an MPU will allow. In bank switching,
the MPU is allowed by hardware to address
more than one memory bank using the same
address range. An example is the firmware
card, which allows the MPU to access Applesoft
or Integer BASIC at the $D000-$FFFF address
range.

BASIC, Beginners All-purpose Symbolic In-
struction Code. The primary high level lan-
guage used in personal computers. It was
originally developed at Dartmouth College as a
training language, and has been developed into
a powerful and usable tool by the microcom-
puter industry.

2 Understanding the Apple I

binary numbering system. A system based on
powers of 2, as opposed to powers of 10 in the
decimal system. The two symbols of the binary
system are 0 and 1. See hexadecimal.

bit. A two state unit of information. The information
is in one state or the other—on or off, for
example.

bomb, crash. When a program is bombed or when it
simply crashes, it loses control of the computer
and must be restarted and possibly reloaded. It
is particularly likely for a program to crash
when it is first written and still has bugs in it.

bootstrap. The process by which a computer loads
large operating systems using asmall firmware
program.

buffer. (1) A temporary holding area in memory in
which data resides before, during or after
transfer operations. (2) Any hardware device
which provides electrical isolation between two
electrical points or sets of points.

bus. A multi-line electrical connection which dis-
tributes an associated group of signals among
two or more communicating devices.

bus driver. A group of amplifiers which allow a
group of signals to control a heavily loaded bus.
The driver gives electronic leverage to the con-
trol signals so they can "drive” many devices.

byte. A group of 8 bits. The 6502 is an 8-bit MPU,
thus, it transfers and manipulates data one byte
at a time.

BYTE FLAG. A term used in this book to describe
the syne bit which leads groups of eight bits in
the Apple DOS data formats.

card cage. A row of receptacles into which printed
circuit cards with edge connectors are plugged.
The receptacles are wired in the back in a
method which serves the design purpose of the
cage.

cascaded. Being arranged in stages such that each
stage depends on the preceding stages. We per-
form counting and arithmetic in a cascaded
numbering system, utilizing carry and borrow
processing. In a computer, logic devices can be
cascaded to form a larger device conceptually
similar to the devices which make it up. For
example, four 4-bit counters can be connected in
cascade to form a 16-bit counter, as is the case in
the Apple’s video scanner.

cathode ray tube, CRT. A device in which ascreen
display is created by a high velocity stream of
electrons striking a phosphor coating. The

impact point on the screen is controlled by
deflecting the electron stream via an electro-
magnetic or electrostatic field. The picture tube
in a television is a CRT.

central processing unit, CPU. The electronic
assembly which performs the arithmetic and
logical operations of a computer.

chip. See integrated circuit.

color burst. In a television color video signal, ashort
sample of the color reference signal which
occurs just after the horizontal sync pulse.
From the color burst, a television or monitor can
reconstruct the color reference.

compiler. A program which converts high level
language source programs into machine lan-
guage object programs.

complement. The complement of a binary number
is 2 binary number in which binary 1's replace
0's, and 0’s replace 1’s in the original number.
For example, 11010 is the complement of 00101.

complementary colors. Pertaining to the Apple,
colors produced by signals 180 degrees out of
phase with each other—HIRES green and
HIRES violet for example.

composite video. A complex video display signal
containing horizontal and vertical syne, lumi-
nance and chrominance signals, and a color
burst. The video output of the Apple can loosely
be called composite video.

current. The motion of charged particles due to
voltage. Generally, in electronics, the move-
ment of electrons through conductive paths.
Current is measured in amperes.

data bus. A multi-line electrical connection over
which data passes between the MPU and var-
ious devices in a microcomputer. The data bus
in the Apple is 8 lines, so one byte can be trans-
ferred per MPU cycle.

debug. To perfect a program by removing the bugs
(defects) from it.

decimal numbering system. The system by which
we normally represent numeric quantities. Ten
symbols (0-9) represent quantities, while the
position of each symbol in a number represents
the significance or weight of that symbol. The
weight increases by powers of ten as position
shifts right to left.

digital. Pertaining to quantities which vary in dis-
crete inerements such as integer numbers. See
analog.

Glossary 3

DIP, dual in line package. A type of IC structure
in which the pins run lengthwise in two parallel
rows. All ICs in the Apple are DIP ICs.

disassembler. A program which attempts to inter-
pret data in memory as a machine language
program and converts it to an assembly lan-
guage listing. A firmware disassembler in the
Apple can be called via the monitor "L”
command.

DMA, Direct Memory Access. Direct access to
memory from devices other than the MPU. In
the Apple, data isdirectly accessed from memory
by the video scanner/video generator combina-
tion without passing through the MPU. Addi-
tionally, a card in any peripheral slot can
directly access memory and other motherboard
devices by pulling the DMA’ line low.

dot matrix. A method of forming displayed or
printed characters in which individual dots at
fixed positions in a matrix are displayed as
necessary to form the characters.

dynamic memory. Memory in which data will
bleed off and lose its validity if it is not regularly
refreshed. RAM in the Apple is dynamic and
must be refreshed every 2 milliseconds.

Easter egging. A troubleshooting method where
possibly failed components or assemblies are
replaced with known good units. Easter eggers
can sometimes repair equipment they know
little or nothing about.

exclusive OR gate. A logic gate from which the
output will be true if and only if at least one, but
not all, inputs are true.

firmware. Programs and data stored in ROM.
Firmware determines many of the operational
features of the Apple II.

flag. A memory location used by a program to sig-
nify some sort of status. A common way to use a
location as a flag is to set or reset its most signif-
icant bit.

flip-flop. A 1-bit storage device capable of storing
data in response to its logical inputs and a
clockpulse. Registers of older computers were
comprised of a number of flip-flops with a sub-
stantial amount of associated logic gating.

float. If all devices capable of controlling the voltage
on an electrical conductor are isolated from the
conductor, the conductor is said to float. In the
Apple, all conductors on the address busor data
bus can be isolated from control, so these buses
sometimes float. Logic which ereates this condi-
tion floats the bus.

flux. Lines of force used to represent a magnetic
field. The lines of force provide a mental picture
for visualizing the substance of a magnetic
field. In theoretical calculations, field strength
is proportional to flux density.

font, character. Patterns of ones and zeroes stored
in memory which represent the dot image of dot
matrix text or graphics characters.

gate. A logic curcuit having one output and more
than one input. Like a gate in a fence, the logic
gate allows intelligence to pass when the inputs
are correct. AND gates and OR gates are two
types of gates. When an input activates a logic
device, it is said to “gate” it on.

general purpose computer. A computer whose
stored program may be altered to change its
purpose. This is normally achieved by storing
the program in random access, read/write
memory. See special purpose computer.

hacker, hack, computer hack. A person who
builds or modifies computer electronic assem-
blies, mostly for fun.

handler. A program designed to handle a specific
occurance such as an interrupt or system reset.

hardware. The components and assemblies of
which a computer and its peripherals are made.

Hertz, Hz. A measurement of frequency which
used to be referred to more sensibly as cycles
per second or cps.

hexadecimal numbering system. A system based
on powers of 16, as opposed to the powersof 10 in
the decimal system. The 16 symbols of the hexa-
decimal system are0, 1,2, 3,4, 5,6, 7, 8,9, A, B,
C,D,EandF.

high level language. A computer language whose
commands correspond to machine language
routines. High level languages are easy to use
and powerful. The predominate high level lan-
guage of the Apple II is Applesoft interpreter
BASIC.

horizontal secan. The movement of the electron
beam in a television from left to right across the
face of the CRT.

impedance. The quality of hindrance of an electri-
cal device to current flow at a given signal
frequency or range of signal frequencies. Impe-
dance, like resistance, is measured in ohms. In
computer three-state logic, the three states are
high voltage, low voltage, and high impedance
(high isolation).

4 Understanding the Apple II

input/output, I/O. The process of moving intelli-
gence to and from a computer, as in keyboard
input, video output, disk I/O, and printer output.

Integer BASIC. The original BASIC interpreter
language supplied with the Apple II. It was
written by Steve Wozniak, the principle designer
of the Apple II computer.

integrated circuit, IC, chip. An electronic compo-
nent into which the functions of many other
components are integrated. Typically, a chip
will be the equivalent of thousands of diodes,
transistors, and resistors.

interface. Communication circuitry between two
devices, such as the interface between an Apple
and a printer.

interlacing. A technique in which alternating tele-
vision vertical scans are displaced from each
other. This increases vertical resolution without
introduction of screen flicker.

interpreter. A program which interprets stored
sequences of high level commands and executes
them via fixed machine language subroutines.
The Apple II is supplied with Applesoft and
Integer BASIC interpreters.

interrupt. A signal or instruction which, when
active, causes a computer to interrupt sequen-
tial program execution and branch to an inter-
rupt handling program. The 6502 has four types
of interrupts: RESET, the Non-Maskable In-
terrupt, the Interrupt Request, and the BREAK
instruction.

I/0 port. The conceptual entry point through which
data flows in I/O operations. For example, in
the Apple, $C000 is the address of the keyboard
input port, and keyboard data is loaded from
address $C000.

joystick. A device which converts the two dimen-
sional motion of a lever into measureable elec-
trical equivalents of the X and Y components of
the motion. Normally an Apple joystick will be
made of two potentiometers, one which responds
to y-axis motion of the lever and one which
responds to x-axis motion.

least significant bit, LSB. The bit of a binary word
or number which has the least weight or signifi-
cance. The rightmost bit of a binary number.

linear IC. A type of IC used in linear amplification
and other analog functions, as opposed to digital
switching functions. Some linear ICs used in the
Apple are 555, 556, and 558 timers and the 741
cassette input amplifier.

LSTTL, Low Powered Schottky TTL. A type of
TTL which provides a good compromise of high
speed and low power consumption. Most Apple
TTLis LSTTL. The name comes from Schottky-
Barrier clamping and coupling diodes inside
the IC.

machine eycle. A clocked cycle of an MPU. The
machine cycle of the 6502 in the Apple is the
period between high to low transitions of the
PHASE 2 clock.

machine language. The language of the central
processor of a computer (6502 machine lan-
guage in the Apple).

mainframe computer. When computers were
physically large, the structure which held the
central processor was called the mainframe.
Computers which have such separate struc-
tures are mainframe computers.

Megahertz, MHz. One million Hertz. One million
cycles per second.

memory cell. A portion of memory capable of stor-
ing one bit of information.

memory mapped [/0. A method of I/O implemen-
tation in which addresses which might other-
wise be assigned to memory are assigned to I/0
functions. In the Apple, addresses $C000 to
$CFFF are assigned to I/O functions.

memory mapped video. A method of computer
video display generation in which a map of the
screen display is placed in memory. In the
Apple, the MPU builds the screen map in
memory, and the memory map is independently
scanned for video processing by the video
secanner,

microprocessing unit, MPU, microprocessor.
The one chip central processing unit of a micro-
computer. This definition is a good subject for
an argument.

microsecond, usec. One millionth of a second. One
thousand nanoseconds.

millisecond, msee. One thousandth of a second. One
thousand mieroseconds.

modulate. To vary a high frequency signal as a
function of a lower frequency signal. The video
output signal of the Apple can be used to ampli-
tude modulate a television frequency signal,
and that modulated signal can be received by a
television set. The high frequency signal carries
the video to the TV and is called an RF carrier.

Glossary 5

monitor. A program which provides for communi-
cation with a computer at a very basic level.
Common capabilities include program start up,
memory modification, and monitoring of com-
puter registers.

monitor, video. An electronie device which gener-
ates a display from a video input signal. It is not
capable of television radio frequency signal
reception.

monochrome. Of one color. A name for black and
white television which accurately describes the
fact that there is only one color tone displayed.

MOS, integrated circuit. A chip using metal-oxide
semiconductor technology. MOS ICs in the
Apple include the 6502, ROM, and RAM.

most significant bit, MSB. The bit of a binary word
or number which has the greatest weight. The
leftmost bit of a binary number.

motherboard. A printed circuit card into which
smaller printed circuit cards can be plugged.

multimeter. An instrument which can measure
electrical voltage, resistance, or current.

multiplex. To combine multiple sources of informa-
tion onto one line. There are numerous exam-
ples of time-multiplexing in the Apple in which
several possiblesignals are switched ontoa line,
one after the other.

NAND gate. A logic gate from which the output
will be false if, and only if, all of its inputs are
true.

nanosecond, nsec. One billionth of a second.

negative logic. A system of logic analysis in which
the high voltage state is considered to be false or
zero, and the low voltage state is considered to
be true or one. See positive logic.

NOR gate. A logic gate from which the output will
be false if, and only if, any of its inputs are true.

object file. The result of an operation which pro-
cesses a group of data and stores the result else-
where. In assembly language processing, the
assembly language source file is assembled into
a machine language object file.

octal numbering system. A system based on pow-
ers of 8, as opposed to the powers of 10 in the
decimal system. The eight symbols of the octal
system are0,1,2,3,4,5,6,and 7.

ohm. The unit for measuring electrical resistance
and impedance.

ohmmeter. A device which measures electrical
resistance. Usually resistance is measured with

a VOM (Volt-Ohm Meter) or multimeter which
performs other functions besides resistance
measurement.

op code, operation code. The part of a machine
language instruction which specifies the com-
mand which is to be performed. The op code of
each 6502 instruction is the first byte of that
instruction.

operand. The entity operated on by a machine lan-
guage instruction. In "LDA $00”, the operand is
the contents of memory location 0. In”"SEC”, the
operand is the carry bit of the 6502 Status
Register.

OR gate. A logic gate from which the output will be
true if, and only if, any of its inputs are true.

oscilloscope. A test instrument which produces a
cathode ray tube display of a test voltage, plot-
ted against time.

PAGE. (1) The 6502 memory addressing range of
$10000 bytes is divided up into $100 pages of
$100 bytes each. $000-$0FF is PAGE 0; $100-
$1FF is PAGE 1; ete. (2) There are four areas of
memory which can be scanned for video output
inthe Apple. Theseare TEXT/LORES PAGE 1,
TEXT/LORES PAGE 2, HIRES PAGE 1, and
HIRES PAGE 2. In any screen mode, the PAGE
1 memory map may be selected for scanning via
programmed reference to $C054, and the PAGE
2 memory map can be selected by reference to
$C055.

parallel data transfer. Simultaneous transfer of n
bits of data on n lines, as in 8-bit parallel data
transfer between the MPU and memory in the
Apple.

peripheral slots, peripheral bus, Apple bus. The
eight slots in the back of the Apple and their
associated electrical connections.

phase. The angular position of a cyclical event ref-
erenced to some event of the same frequency.
Forexample, HIRES violet video is 180 degrees
out of phase with HIRES green video.

pipelining. A process by which program execution
speed is increased in the 6502. In pipelining, the
next instruction’s op code is fetched during the
last execution eycle of instructions which do not
write to the data bus.

positive logie. A system of logical analysis in which
the high voltage state is considered to be true or
one, and the low voltage state is considered to be
false or zero. The Apple and most modern com-
puters use positive logic. See negative logic.

6 Understanding the Apple II

potentiometer, pot. A mechanically variable resis-
tor. Typically, resistance will be proportional to
the shaft rotation of the pot. The Apple paddles
are pots.

power supply. An electronic assembly which con-
verts an AC (alternating current) line voltage to
usable DC (direet current) power. The Apple
power supply converts household power to+12V,
-12V, +6V, and -5V referenced to ground.

printed circuit card, PC board. A thin card made
of an insulating material upon which electronic
components are mounted. The component wir-
ing is "printed” on the board. The printing pro-
cess involves starting with a card completely
coated with conductive metal, then etching
away everything but the desired conductive
parts using photo-chemical methods.

program counter. A counter in a computer which
contains the memory address of the instruction
being executed. The 6502 has an internal 16-bit
program counter.

propagation delay. The time it takes for a signal or
voltage to travel between two points. In logic
gating, the time required for an output to
respond to a change in associated inputs.

RAM, alterable memory, read/write memory.
Memory in which a computer can store or access
data.

random access memory. Memory in which any
location can be accessed at will, such as the
RAM and ROM in the Apple. See serial access

memory.

raster. The pattern of scan lines produced on the
screen of a monitor or television. The Apple ras-
ter contains 262 lines with no interlacing.

read cycle. A machine cycle in which the MPU
receives data from the addressed location via
the data bus.

refresh. (1) The process of renewing data in
dynamic memory before it bleeds off. (2) The
process of renewing an image on a cathode ray
tube by rescanning the image before it fades
away.

register. A temporary storage device which holds
more than one bit of information. It will nor-
mally serve some special logic purpose. Exam-
ples include the 6502 internal registers and the
data register of the Disk II controller.

relocatable program. A program which does not
have to be in one specific memory range to be
properly executed. It can be relocated to differ-
ent memory areas for execution.

resistance. The quality of hindrance of an electrical
device to direct current flow. Resistance in a
current path may be controlled by installing
fixed or variable resistors. The unit of meas-
urement of electrical resistance is the ohm.

RF modulator. A device which varies a high fre-
quency signal as a function of a lower frequency
signal. See modulate.

ROM, read only memory, non-volatile memory,
non-alterable memory. A type of memory
which the computer cannot write to or other-
wise alter. It holds programs and data which
are always available when power is applied,
such as BASIC and the monitor in the Apple.

serial access memory. Memory which can only be
accessed by sequencing through locations until
the correct location is found. High speed mag-
netic tape and bubble memory are examples of
serial memories. See random access memory.

serial data transfer. Transferring data one bitata
time over a single line, as in the shifting of text
patterns to the PICTURE signal.

software. Programs and data stored in RAM and on
storage media such as disks.

source file. A source of data for data processing. In
assembly language processing, the assembly
language source file is assembled into a machine
language object file.

special purpose computer. A computer whose
funetion cannot be changed by altering a stored
program. The functions of a special purpose
computer may be hard wired, or the computer
may execute fixed programs stored in ROM.

stack. In microcomputers, an area of memory set
aside for temporary storage and subroutine
return link information. In programming, the
stack is conceptually similar to a stack of cards
which can be drawn from or discarded to, one
card at a time.

static memory. Memory which requires no refresh-
ing to retain its data, such as the static ROM in
the Apple.

status register. A register in a central processor
which contains control information. In the 6502,
the status register contains indicatorsof the log-
ical results of various executed commands.

strobe. A short pulse that performs a triggering or
clocking action. Strobes in the Apple include
RAS’, CAS’, the C040 STROBE’, and the key-

press strobe from the keyboard.

Glossary 7

television syne. That part of the television signal
which synchronizes thescanning of the electron
beam in the CRT. It includes horizontal and
vertical syne.

tri-state logic, three-state logic. A logic system in
which there are three states: high voltage, low
voltage, and high impedance. Devices connected
to the Apple data bus have tri-state outputs so
the various devices are able to share control of
the data bus.

troubleshoot. To isolate and repair the casualties in
a failed piece of hardware.

TTL, Transistor Transistor Logie. The logic fam-
ily to which most general purpose ICs in the
Apple belong. Both the inputs and outputs of
TTL chips are connected to transistors inside
the chip. As opposed to MOS devices like RAM,
ROM, and the 6502, TTL circuits are made
using bipolar technology.

underware. A substitute for firmware used by
some of Apple's competitors to cut costs.

vector. An address or jump instruction stored in a
memory location which contains program flow
information in case of certain events. An exam-
ple is the interrupt vectors stored in high
memory in a 6502 based computer.

vertical scan. The movement of the electron beam
in a television down the face of the CRT. In the
Apple, 262 horizontal scans occur during every
vertical scan.

video. A signal which can be used to control the
energy of the electron beam of a CRT, thus con-
trolling display intensity, as in television video,
radar video, and oscilloscope video. In television
processing, the combination of picture, syne,
and color information is commonly referred to
as video.

volt. A unit for measuring voltage. Voltages of +12,
-12, +5, and -5 volts are distributed throughout
the Apple.

voltage, electromotive force, EMF. A force of
nature which, when present, causes charged
particles to move. The force which causes elec-
tric current. Voltage is measured in volts.

wetware. A gray matter found within the cranium
of most humans.

wire-OR, collector-OR. A low level OR gate
formed by wiring various signals together. The
RESET’, IRQ’, NMI', INHIBIT', DMA’, and
USERI1' signals of the Apple II are examples of
wire-OR connections. Any peripheral card may
bring any of the wire-OR lines low, but cards not
bringing a line low must present a high impe-
dancetothatline. If no peripheral card is bring-
ingawire-OR line low, a 1000 ohm motherboard
resistor will pull the line high.

write cycle. A machine cycle in which the MPU
sends data to the addressed location via the data
bus.

appendix A

References

Apple Computer, Inc. Apple II Reference Manual. January 1978.

Apple Computer, Inc. Applesoft II BASIC Programming Reference Manual. 1978.

Apple Computer, Inc. The Applesoft Tutorial. 1979.

Apple Computer, Inc. (Christopher Espinoza). Apple II Reference Manual.1979.

Apple Computer, Inc. (originally by Phyllis Cole and Brian Howard). The DOS Manual. 1980.

Apple Computer, Inc. (Allen Watson). Apple II Reference Manual for Ile Only. 1982.

Bishop, Bob. "Have an Apple Split.” SOFTALK, p. 54, Oct. 1982.

Brown, Chrisand Maloney, Eric. "FCC Takes Aim Against RFI Polluters.” Microcomputing,
p. 30, April 1981.

Ciotti, Paul. "Revenge of the Nerds.” California, p. 73, July 1982.

Derfler, FrankJ.”Trying to Live in Harmony with Harmonics.” Microcomputing, p. 36, April
1981.

Devry Institute of Technology. Electronics Technology. Volumes 7 and 10, 1971. This textbook
was the primary source of information relating to television.

Gayler, Winston D. The Apple II Circuit Deseription. Howard W. Sams & Co, Inc., 1983.
Lancaster, Don. TTL Cookbook. Howard W. Sams & Co, Ine., 1974.

Leventhal, Lance A. 6502 Assembly Language Programming. OSBORNE/McGraw-Hill,
1979.

Mazur, Jeffrey. "HARDTALK.” SOFTALK, p. 46, July 1982. Concerns EPROM.
Mazur, Jeffrey. "HARDTALK.” SOFTALK, p. 168, Aug. 1982. Concerns EPROM.
Mazur, Jeffrey. "HARDTALK.” SOFTALK, p. 208, Sept. 1982. Concerns disk drives.
Moore, Robin B. ”"Graphics Character Generator.” Microcomputing, p. 108, Aug. 1980.

A-2 Understanding the Apple |

MOS Technology, Inc. MCS6500 Microcomputer Family Hardware Manual. 1976.

Osborne, Adam. An Introduction to Microcomputers, Volume 1, Basic Concepts. Adam
Osborne and Associates, 1976.

Osborne, Adam and Kane, Gerry. Osborne 4 & 8 bit Microprocessor Handbook. OSBORNE/
McGraw-Hill, 1981.

Sippl, Charles J. Microcomputer Dictionary. 2nd edition, Howard W. Sams & Co, Inec., 1981.

Synertek, Ine. SY6500/MCS6500 Microcomputer Family Programming Manual. Aug. 1976.

Synertek, Inc. Applications Information AN2, SY6500 Microprocessor Family, Microproces-
sor Produets. Oct. 1981.

Texas Instruments, Inc. Designing with TTL Integrated Circuits. 1971.

White, Robert M. "Disk-Storage Technology.” Scientific American, p. 112, Aug. 1980.

Williams, Richard. "How to Use the Hooks.” MICRO, p. 30:7, Nov. 1980.

Worth, Don and Lechner, Pieter. Beneath Apple DOS. Quality Software, 1981.

Wozniak, Stephen. "The Apple II: System Description.” BYTE, p. 34, May 1977.

Wozniak, Stephen. "SWEET16: The 6502 Dream Machine.” BYTE, p. 150, Nov. 1977.

Wozniak, Stephen. Speech made at Applefest. Anaheim, CA, April 17, 1983.

Component Data:

Fairchild. MOS Memory Data Book. 1981.

Fujitsu Microelectronics. MOS 16384-Bit Dynamic Random Access Memory. July, 1981,
General Instrument Corp. Microelectronics Data Catalog. 1982.

General Instrument Corp. ROM 3. no date.

Hitachi America, Ltd. IC Memories. no date.

Jameco Electronics. 1983 Catalog. p. 12.

MOS Technology, Inc. 6500 Microproeessors. March 1980.

Motorola Semiconductors. MC3470 Floppy Disk Read Amplifier System. 1978.
National Semiconductor. MM57,0 90-Key Keyboard Encoder. 1973.

National Semiconductor. Interface Databook. 1980.

National Semiconductor. Memory Databook. 1980.

National Semiconductor. Logic Databook. 1981.

National Semiconductor. Linear Databook. 1982.

Rockwell International. R6500 Microcomputer System Data Sheet. Rev. 4, Nov. 1981.
Synertek. 1981-1982 Data Catalog.

Texas Instruments, Ine. The TTL Data Book for Design Engineers. 1976.

United Technical Publications. IC MASTER. 1981.

appendix B

Trademarks

The following is a list of Registered Trademarks referred to in the text of Understanding the
Apple I1.

Apple Apple Computer, Inc.

Apple 11 Apple Computer, Inc.

Apple II Plus Apple Computer, Inc.

Apple Ile Apple Computer, Inc.

Applesoft Apple Computer, Inc.

CP/M Digital Research, Inc.

Donkey Kong Nintendo

Microsoft Microsoft, Inc.

Softcard Microsoft, Inc.

TRI-STATE National Semiconductor Corporation

780 Zilog, Inc.

In attempting to analyze Apple timing, it is dis-
couraging to find that the three 6502 manufacturers
have different specifications, even though the
MSC6502, R6502, and SY6502 should all perform
identically. It is even more discouraging to find that
the specifications are well beyond the range of typi-
cal operations. I therefore feel that Figure 4.5,
which shows some measurements made in an
SY6502 in an Apple, is a more realistic indicator of
6502 timing than the manufacturers’ data sheets.
Nevertheless, a partial reproduction of Rockwell
International’s data sheet is given here. This data is

appendix C

6502 Data

reprinted with the permission of Rockwell Interna-
tional Corporation, Copyright 1981, all rights
reserved. Rockwell’s timing specification charts are
followed by the author’s compilation of the 1 MHz
timing charts of the Synertek, Rockwell Interna-
tional, and MOS Technology data sheets. Every
attempt was made to make the data in this compila-
tion faithfully represent the data contained in each
manufacturer’s data sheet. The final page of this
appendix is a layout of the author’s which shows the
execution periods of the various 6502 instructions.

Appendix C-2

" Rockwell R6500 Microcomputer System
)N Rockwe DATA SHEET

R6500 MICROPROCESSORS (CPU)

SYSTEM ABSTRACT FEATURES
The 8-bit R6500 microcomputer system is produced with N- e Single +5V supply
Channel, Silicon Gate technology. Its performance speeds are # N channel, silicon gate, depletion load technology
enhanced by advanced system architecture. This innovative e Eight bit parallel processing
architecture results in smaller chips — the semiconductor threshold e 56 Instructions
is cost-effectivity. System cost-effectivity is further enhanced by o Decimal and binary arithmetic
providing a family of 10 software-compatible microprocessor ® Thirteen addressing modes
(CPU) devices, described in this document. Rockwell also pro- e True indexing capability
vides memory and microcomputer system— as well as low-ost ® Programmable stack pointer
design aids and documentation. ® Variable length stack
e Interrupt capability
e Non-maskable interrupt
R6500 MICROPROCESSOR (CPU) CONCEPT e Use with any type of speed memory
e B-bit Bidirectional Data Bus
Ten CPU devices are awvailable. All are softwarecompatible. ® Addressable memory range of up to 64K bytes
They provide options of addressable memory, interrupt input, @ "Ready”input
on-chip clock oscillators and drivers. All are buscompatible e Direct Memory Access capability
with earlier generation microprocessors like the ME800 devices e Buscompatible with M6B0O
e 1 MHz, 2 MHz, and 3 MHz versions
The family includes six microprocessors with on-board clock e Choice of external or on<chip clocks
oscillators and drivers and four microprocessors driven by external e On-the-chip clock options
clocks. The on-chip clock versions are aimed at high performance, External single clock input
low cost applications where single phase inputs, crystal or RC Crystal time base input
inputs provide the time base. The external clock versions are e Commercial and industrial temperature versions
geared for multiprocessor system applications where maximum e Pipeline architecture

timing control is mandatory. All R6500 microprocessors are
also available in a variety of packaging (ceramic and plastic),
operating frequency (1 MHz, 2 MHz and 3 MHz] and temperature
(commercial and industrial) versions

MEMBERS OF THE R6500 MICROPROCESSOR
(CPU) FAMILY
Microprocessors with Internal Two Phase Clock Generator) y
Ordering Information
Model Addressable Memory
Order Number: RE5XX _ _ _
RE6502 64K Bytes
RB503 4K Bytes T a
RB6504 BK Bytes SHptiat g Bide: 5
R6505 4K Bytes No 5“”‘; :‘1 ‘f)“’ +70 %
RE506 4K Bytes _;[ooc "'? +850C
RE507 8K Bytes Industrial)
Package: C = Ceramic
Microprocessors with External Two Phase Clock Input P = Piastic
Frequency Range:
Model Addressable Memory No suffix = 1 MHz
A=2MH
RE512 64K Bytes 45 ;MH:
RE513 4K Bytes
RE514 8K Bytes ——— Model Designator:

RE515 4K Bytes XX =0203,04,...15

C-3 Understanding the Apple |

R6500 Signal Description

Clocks IQ).‘, qtrzl

The R651X requires a two phase non-overlapping clock that runs
at the VCC voltage level.

The R650X clocks are supplied with aninternal clock generator.
The frequency of these clocks is externally controlled.

Address Bus (AD-A15)

These outputs are TTL compatible, capable of driving one standard
TTL load and 130 pF.

Data Bus (D0-D7)

Eight pins are used for the data bus. This is a bidirectional bus,
transferring data to and from the device and peripherals. The out-
puts are tri-state buffers capable of driving one standard TTL load
and 130 pF.

Data Bus Enable (DBE)

This TTL compatible input allows external control of the tri-state
data output buffers and will enable the microprocessor bus driver
when in the high state. In normal operation DBE would be driven
by the phase two ($.) clock, thus allowing data output from
microprocessor only during ¢.,. During the read cycle, the data
bus drivers are internally disabled, becoming essentially an open
circuit. To disable data bus drivers externally, DBE should be held
low.

Ready (RDY)

This input signal allows the user to halt or single cycle the micro-
processor on all cycles except write cycles. A negative transition
to the low state during or coincident with phase one ftb.ll will halt
the microprocessor with the output address lines reflecting the
current address being fetched. If Ready is low during a write
cycle, it is ignored until the following read operation. This con-
dition will remain through a subsequent phase two (szl in which
the Ready signal is low. This feature allows microprocessor inter-
facing with the low speed PROMs as well as Direct Memory
Access (DMA).

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence begin
within the microprocessor. The microprocessor will complete the
current instruction being executed before recognizing the request.
At that time, the interrupt mask bit in the Status Code Register
will be examined. If the interrupt mask flag is not set, the micro-
processor will begin an interrupt sequence. The Program Counter
and Processor Status Register are stored in the stack. The micro-
processor will then set the interrupt mask flag high so that no fur-
ther interrupts may occur. At the end of this cycle, the program
counter low will be loaded from address FFFE, and program
counter high from location FFFF, therefore transferring program
control to the memory vector located at these addresses. The
RDY signal must be in the high state for any interrupt to be rec-
ognized. A 3KSl external resistor should be used for proper
wire-OR operation,

Non-Maskable Interrupt (NMI)

A negative going edge on this input requests that a non-maskable
interrupt sequence be generated within the microprocessor.

NMI is an unconditional interrupt. Following completion of the
current instruction, the sequence of operations defined for IRQ
will be performed, regardless of the state interrupt mask flag. The
vector address loaded into the program counter, low and high, are
locations FFFA and FFFB respectively, thereby transferring pro-
gram control to the memory vector located at these addresses.
The instructions loaded at these locations cause the microproc-
essor to branch to a non-maskable interrupt routine in memory.

NMI also requires an external 3K £ register to VCC for proper
wire-OR operations.

Inputs IRQ and NMI are hardware interrupts. lines that are sam-
pled during @2 (phase 2) and will begin the appropriate interrupt
routine on the (01 {phase 1) following the completion of the cur-
rent instruction,

Set Overflow Flag (5.0.)

A negative going edge on this input sets the overflow bit in the
Status Code Register, This signal is sampled on the trailing edge of
¢1 and must be externally synchronized.

SYNC

This output line is provided to identify those cycles in which the
microprocessor is doing an OP CODE fetch, The SYNC line goes
high during ¢.| of an OP CODE fetch and stays high for the
remainder of that cycle. If the RDY line is pulled low during the
¢1 clock pulse in which SYNC went high, the processor will stop
in its current state and will remain in the state until the RDY line
goes high. In this manner, the SYNC signal can be used to control
RDY to cause single instruction execution.

Reset

This input is used to reset or start the microprocessor from a
power down condition. During the time that this line is held low,
writing to or from the microprocessor is inhibited. When a posi-
tive edge is detected on the input, the microprocessor will imme-
diately begin the reset sequence.

After a system initialization time of six clock cycles, the mask
interrupt flag will be set and the microprocessor will load the pro-
gram counter from the memory vector locations FFFC and FFFD.
This is the start location for program control.

After V. reaches 4,75 volts in a power up routine, reset must be
held low for at least two clock cycles. At this time the R/W and
(SYNC) signal will become valid.

When the reset signal goes high following these two clock cycles,
the microprocessor will proceed with the normal reset procedure
detailed above.

Appendix C+4

<—— REGISTER SECTION CONTROL SECTION ——»

RES {AG NMI

e :
f
AQ] INDE S - INTERRUPT
REGISTER
LOGIC
Y ~at
A -t— * ‘
Y
A2 --— INDE X
REGISTER (-~
x et l4———————————RDY
A7 -
ABL M
- STACK
Sl — gk: POINT -
i REGISTER [
< (s} |
AS - =
At INSTRUCTION
s DECODE
A5 --— -
ALU
A (=
AT -—
ADDRESS
BUS
x
AB -— =]
L4 ACCUMULATOR TIMING
2 A K *— conTROL
z]
AD g E .l
L —— ¢, (IN)
£ > o,
- L 4.1
A10 - PCL e 1 ® RE512, 13, 14, 15
K— 2
@3 (IN)
» PCH
AT - v
PROCESSOR R
ABH K STATUS #,(IN) Rg502, 03, 04, 05, 06, 07
REGISTER GENERATOR 0 ‘
A17 -l P
- INPUT -
DATA
A~ LATCH - I—P ¢y OUT
A3 = - (oL T S—= ¢= ouT
I_—b R/W
Ald e— DBE RE6512 ONLY
DATA BUS = INSTRUCTION
BUFFER el REGISTER
ARty L) -
A f = FERA AR i
oo)
= D1
LEGEND: g
—= D3 DATA
=8 BIT LINE » D4 aus
— D5
' =1 BIT LINE —p D6
D7)

Note: 1. Clock Generator is not included on RE512, 13, 14,15
2. Addressing Capability and control options vary with sach
of the RE500 Products,

RG6500 Internal Architecture

C-5 Understanding the Apple |I

SPECIFICATIONS

Maximum Ratings

Rating Symbol Value Unit
Supply Voltage Vcc -03 10+7.0 Vde
Input Voltage Vi -0310+7.0 Xdc
Operating Temperature T Cc
Commercial D1to +70
Industrial -40 10 +85
Storage Temperature Tsro -55 to +150 %

NOTE

This device contains input protection against damage to high static voltages or electric fields; however, precautions
should be taken to avoid application of voltages higher than the maximum rating.

Electrical Characteristics

ch = 5.0 £5%, Vgg =0l

&y dpz applies to R6512, 13, 14, 15, ¢o(inl applies 1o R6502, 03, 04, 05, 06 and 07.

IRQ and NMI require 3K pull-up resistor.

Charactaristic Symbol Min Max Unit
Input High Voltage vm Vdc
Logic, "u[inl 2.0 VCC
&y &9 -03 Voo * 025
Input Low Voltage 'u'"- Vdc
Logie, Bolin) -0.3 08
@1. ¢2 -0.3 04
Input Leakage Current l.r - KA
l'\al’.mI =010 5,25V, VCC = 0)
Logic (Excl. Rdy,5.0.) - 25
®,. 0, ~ 100
¢’otml = 10.0
Three-State (Off State) Input Current ITSI WA
Win =041024V, VCC =526V)
Data Lines - 10
Qutput High Voltage VOH Vdc
“LOAD =-100 uAdc, VCC =4.75V)
SYNC, Data, A0-A15, R/W, ¢1. ¢2 VSS +24 =
Output Low Voltage VOL Vdc
(l LOAD = 1.6 mAdc, VCC =4.75V)
SYNC, Data, AD-A15, R/W, ¢1. ¢2 VSS +04
Power Dissipation PD mw
1 and 2 MHz - 700
3 MHz - 800
Capacitance at 25°C Cc pF
{vi" =0, f=1MHz)
Logic Ch,1 - 10
Data - 15
A0-A15, R/W, SYNC Com - 12
Dolin) ¢ ¢D[in1 = 15
®, Co, ~ 50
¢2 C¢2 - 80
NOTE

Appendix

RE5XX Timing
A L]) MEF A
W 10V READ 10V
N
X o8 v whiT v
"M—- —__U"“
000,
ADD™
"_QU_ sV
I Taos "acc Tosu Tua
J 10v eV
om (N ADY T 5___'
Yoav oav
| o
7 0w 20V
ol ARITE ?7
Yoy 08 vy
T L
lvu Tuns Thew
_”—/7 20V
s Tirm
y 18w
/ //// / f//é aiv
5o —
50
anyv
L L nire REF &
1 MHz 2MHz 3 MHz
Characteristic Symbol Min Max Min Max Min Max Unit
R/W Setup Time TRWS - 225 - 140 - 110 ns
R/W Hold Time THRW 30 - 30 - 15 - ns
Address Setup Time TADS - 225 - 140 - 110 ns
Address Hold Time THA 30 - 30 - 15 - ns
Read Access Time TACC - 650 - 310 - 170 ns
Read Data Setup Time Tosu 50 - 40 - a5 - ns
Aead Data Hold Time THR 10 - 10 - 10 - ns
Write Data Setup Time Tmos - 175 - 100 - a5 ns
Write Data Hold Time THwW 30 (o 30 - 30 - ns
SYNC Hold Time TsvH 30 - 30 - 15 - ns
RDY Setup Time" TROY 100 - 50 - a5 - ns
5.0. Setup Time Tso 100 - 50 - 35 - ns
SYNC Setup Time TsYN - 225 - 175 - 100 ns
NOTE
*RDY must never switch states within RRpy 1o end of $2
LOAD = 130 pF + 1 TTL
RBB0X CPU Clock Timing
1 MHz 2 MHz IMHz
Charactaristic Symbol Min Max Min Max Min Max Unit
Cyclt Time Teve 1.0 10 05 10 0.33 10 Hs
o[ln Low Time TLég 480 - 240 - 160 - ns
aiin t High Time THoQ 470 - 240 - 160 - ns
"nt) Rise and Fall Time® Tro' TFO - 10 - 10 = 10 ns
Lu se Width TMHw" 460 - 235 - 155 - ns
Pulse Width TPWH® 2 470 - 240 - 160 - ns
l:lzlw Between @q and $2 TD 0 - 0 - 1] - ns
Q‘, ¢2 Rise and Fall Time* TR'TF - 25 - 25 - 15 ns
NOTE
*Measured between 0.8 and 2.0 points on waveform load 130 pF + 1 TTL.

C-7 Understanding the Apple |I

Table C.4 6502 Timing Comparisons.

SYNERTEK ROCEKWELL MOS TECHNOLOGY
PARAMETER SYMBOL MIN MAX MIN MAX MIN |TYP| MAX |UNI
CYCLE TIME TCYC 1.0 49 1.0 10 1.9 =] us
PHS@ LOW TIME TLO 480(2) — 480 —_— _— - —_— ns
PHS@ HIGH TIME TH@ 460 (2) m- 470 — -— - — ns
PHS@ PULSE WIDTH PWHO — — —-— e 469 (7) - | 528(7) ns
PHS@ RISE/FALL TIME TRE/TFE | @(1) 30 —-— 1@ (6) —-_— - 10 ns
PHS1 PULSE WIDTH TPWHL | TL&-20 TL@ 460 — | TLO-28(7)] - |TLE(T7) ns
PHS2 PULSE WIDTH TPWH2Z | TLO-40 | TLO-10 470 === | TLO-408(7)| - |[TLO-16(7) ns
DELAY BETWEEN PHS1 AND PHS2 TD 5 -— @ —_— 5(7) - —_— ns
PHS1, PHS2 RISE/FALL TIMES TR/TF === | 25(1) (3) ——— 25(6) — = 25(8) ns
PHS@ NEG TO PHS1 POS DELAY T@1+ 16 (5) 78 (5) = —— = = _— ns
PHS@ NEG TO PHS2 NEG DELAY T@2- 5(5) 65(5) — — S - — ns
PHS@ POS TO PHS1 NEG DELAY T¢1- 5(5) 65(5) — m— o - — ns
PHS@ POS TO PHS2 POS DELAY TO2+ 15(5) 75(5) — e e - e ns
R/W' SETUP TIME TRWS —-— 225 —— 225 --- |1068| 300 ns
R/W' HOLD TIME TRWH 30 e 30 o 30 60 —-_— ns
ADDRESS SETUP TIME TADS —_— 225 — 225 --- |l0@| 3@0 ns
ADDRESS HOLD TIME TADH 3¢ — 30 — 30 60 e ns
READ ACCESS TIME TACC e 650 — 650 — - 575 ns
READ DATA SETUP TIME TDSU 100 —— 50 —— 100 - _— ns
READ DATA HOLD TIME THR 10 —-— 10 o 10 - — ns
WRITE DATA SETUP TIME TMDS 20 175 S 175 -—= |158| 200 ns
WRITE DATA HOLD TIME THW 60 150 30 S 30 60 —— ns
SYNC SETUP TIME TSYS — 350 e 225 — = 350 ns
SYNC HOLD TIME TSYH 30 — 30 — -_— - — ns
RDY SETUP TIME TRS 200 (4) o 100 (4) e 1006 - e ns
5.0. SETUP TIME TSO — — 100 — 10@ - — ns

(1) Measured between 10% and 90% points on waveform.

(2) Measured at 50% points.

(3) Load =1 TTL load +30 pF.

(4) RDY must never switeh states within TRS to end of PHS2.

(5) Load = 100 pF.

(6) Measured between .8v and 2.0v points on waveform, load 130 pF + 1 TTL.
(7) Measured at 1.5v.

(8) Measured .8v to 2.0v, Load 1/2 30pF 1/3 1 TTL.

Appendix C-8

Table C2 6502 Instruction Execution Periods in Machine Cycles.

IMP| REL | IMM|ACC| UPG |@PG|@PG|ABS| ABS | ABS | IND| IND| IND
XY XY X1Y
ADC AND CMP EOR 2 3 4 4 4% | 4% 6 | 5%
LDA ORA SBC
ASL LSR ROL ROR 2|5 |6 6 || 7
BCC BCS BEQ BMI 2+n
BNE BPL BVC BVS k&
CLC CLD CLI CLV | 2
DEX DEY INX INY
NOP SEC SED SEI
TAX TAY TSX TXA
TXS TYA
BIT 3 4
BRK 7
CpX CPY 2 3 4
DEC INC 5 | 6 6 | 7
JMP 3 3
JSR 6
LDX 2 3 4 | 4 4%
LDY 2 3 |4 4 | 4%
PHA PHP | 3
PLA PLP | 4
RTI 6
RTS | 6
STA 3 4 4 15 5 6 |6
STX 3 4 | 4
STY 3 4 4

* 4] eyele if indexing crosses page boundary.
** n=(if branch does not occur.

n=1 if branch within page occurs.

n=2 if branch across page boundary occurs.

appendix D

BASIC Program Listings

The following pages contain the BASIC program listings which produce Figures 5.8 and 5.9.

Appendix D-2

REM
REM
REM
REM
REM
REM

HIRES MEMORY MAP - DISPLAYED SCAN ONLY.

6 REM

91

108
116
19¢
191
200
218
220
230
290
291
300
310
320
330
340
390
391
400
41@
420
430
440
490
491
500
510
520
530
590
591
600
610
620
630
640
650
660
670

4090
4@91
4092
4093
4094
4095
4096
4097
5000
5010
5020
5030
50480
5858
5190
5191
5192
5193
5194
5195
5196
6a0e
6010
6020 LNS = LN$ + STRS (SCAN) + "

DIM HXS (15)

DATA “E“,“l"."2“,"3","4"."5",“6",“7",“3","9",“A‘","B","C"."D","E","E'"
FOR A = @ TO 15: READ HXS(A): NEXT A

TEXT : HOME

PRINT "
PRINT "
PRINT "
REM

TOP SCREFN/
FIRST 40
LINE PACE 1 RANGE

MIDDLE SCREEN/
SECOND 40
LIN# PAGE 1 RANGE

PAGE 1 PAGE 2

REM
FORA =@ TO 7: FORB = @ TO 7:BASE = A * 128 + B * 1024 + Bl132
LNS = "S$":DEC = BASE: GOSUB 5000: REM GET PAGE 1 HEX
REM
REM
DECS = STRS (BASE): IF LEN (DECS) < 5 THEN LNS = LN$ + "
NS = LNS + " " + DECS + " 8"
DEC = BASE + 8192: GOSUB 5000: REM GET PAGE 2 HEX
NS = LNS +# " " + STRS (DEC) + " "
REM
REM
SCAN = B * A + B: COSUB 6000: RFM GET SCAN NUMBER
DEC = BASE: GOSUB 5000
LNS = LNS + “-5"
DEC = BASE + 39: GOSUB 5080
ms LNS + " "
REM
REM
SCAN = SCAM + 64: GOSUB 6000
DEC = BASE + 4@: GOSUB 5002
ms ws + li_sli
DEC = BASE + 79: GOSUB 5800
ms = LNS + " "
REM
REM
SCAN = SCAN + 64: GOSUR 6000
DEC = BASE + 80: GOSUB 5000
LNS = LNS + "-§"
DEC = BASE + 119: GOSUB 5000
REM
REM
LNS = LNS Y n sl'
DEC = BASE + 120: GOSUB 50200
LNS = LNS + "-§"
DEC = BASE + 127: GOSUB 5008
PRINT LNS$: MEXT B: NEXT A
PRINT : PRINT
PRINT “FIGURE 5.8 - HIRES DISPLAYED MEMORY MAP.
GET BS: END
RFM

SUBROUTINE 5@8@ CONVERTS THE DECIMAL ADDRESS IN DEC TO
HEXADECIMAL AND CONCATINATES THE HEX NUMBER TO LNS.

H4 = DEC / 4096:H4% = H4
H3 = (H4 - H4%) * 16:H3%
H2 = (H3 - H3%) * 16:H2%
H1% = (H2 - H2%) * 16 + .5
LNS = LNS + HXS(H4%) + HXS(H3%) + HXS(H2%) + HXS (H1%)
RETURN
REM
REM
REM
REM
REM
REM

H3
H2

SUBROUTINE 600¢ ADDS LEADING ZEROES TO THE SCAN #

REM

IF SCAN < 180 THEN LNS = LN§ + "@"
IF SCAN < 1@ THEN LNS = LN$ + "@"
$II

6038 RETURN

BOTTOM SCREEN/"
THIRD 40
LIN# PAGE 1 RANGE

UNUSED 8"
PAGE 1 RANGE"

PAGE 1 AND PAGE 2 ARE EACH MADE UP OF 64 12R-BYTE MEMORY SEGMENTS."

Figure DA BASIC Listing: Program that Produces Figure 5.8.

D3 Understanding the Apple |

@ REM

3 REM FOUR PAGE HIRES MEMORY MAP - INCLUDES VBL & HBL,

6 REM

18 DIM HXS (15)

25 DATA Iiall'Ill!lll'lzll'Il3|l,“4llrllsll,"ﬁl‘lrll‘}ﬂl’DIEH'Iigll'IIﬁOI'HBII'llcil'ﬂDll’“EH'HFli
3¢ FOR A = @ TO 15: READ HXS$(A): NEXT A

40 SCAN = -1

1880 REM

182 PRINT TAB(56)"SCREEN TOP": PRINT : PRINT

110 GOSUB 4@@0: REM PRINT HEADINGS

120 FORA =@ TO 7: FOR B = @ TO 7:BASE = A * 128 + B * 1024 + 8192
13¢ GOSUB 10@@: REM DO LINE

140 NEXT B: NEXT A

158 GOSUB 50@@: GET AS

zaa Rm e e e e e e e e e e e e e e

202 PRINT : PRINT : PRINT TAB(55)"“SCREEN MIDDLE"™: PRINT : PRINT
2180 GOSUB 4000

220 FORA =@ TO 7: FORB = 00 TO 7:BASE = A * 128 + B * 1024 + R2312
230 GOSUB l@ee

240 NEXT B: NEXT A

25@0 GOSUB 5000: GET AS

3@3 REM F st i1 1223221122223

301 PRINT : PRINT : PRINT TAR(55)"SCREEN BOTTOM": PRINT : PRINT
318 GOSUB 4000

320 FORA =0 TO 7: FOR B = 0 TO 7:BASC = A * 128 + B * 1024 + B272
330 GOSUB loea

34@ NEXT B: NEXT A

358 GOSUB S@@@: GET AS

49@ REM PR S S S S S 8 A R R 8 Eaded

4@1 PRINT : PRINT : PRINT TAB(46)"VERTICAL BLANKING PERIOD (VBL)": PRINT : PRINT
419 GOSUB 4000

420 FORA =0 TO 7: FOR B = @ TO 7:BASE = A * 128 + B * 1024 + R1312
430 GOSUB 1080

440 NEXT B: NEXT A

450 FOR B = 2 TC 7:BASE = 9208 + B * 1024: REM 7*128+8312+B*1024
460 GOSUR l@ep

470 NEXT B

480 GOSUR S@@0: GET AS

490 END

1800 REM

1@02 REM PRINT A LINE

1004 REM

1@1@ LNS = ""“:SCAN = SCAN + l: IF SCAN < 10 THEN LNS = LNS + " "
1820 IF SCAN < 100 THEN LMS = LNS + " "

1025 LNS = [NS + STRS (SCAN) + " "

10830 HBL = BASF - 24: IF INT (HBL / 128) ¢ > INT (BASE / 128) THEN HBL = HBL + 128
10408 DEC = HBL: GOSUB 3@80: REM DO PAGE 1

1050 DEC = HBL + 8192: GOSUB 3@0C: REM DO PAGE 2

1060 SYMBOLSS = "++++++++++++ ": IF SCAN > 223 AND SCAN < 228 THEN SYMBOLSS = "###ésssssass v
1065 LNS = LNS + "+++++++++E888" + SYMBOLSS

1070 DEC = BASE: GOSUB 300@: REM DO PAGE 1

1080 DEC = BASE + B8192: GOSUB 3@0@: REM DO PAGE 2

1090 SYMBOLSS = "+4+btbbbidbdbtbitbbbbbbbbtibbtbrbrtitss"

1108 1IF SCAN > 223 AND SCAN < 228 THEN SYMBOLSS = "HR4454S4iRasiiutepniistaapiuastantaasasey
1110 LNS = LN$ + SYMBOLSS: PRINT LNS

1128 RETURN

30008 REM

3062 REM GET HEX & DECIMAL STRINGS
3004 REM

3805 H4 = DEC / 4P96:H4% = H4

301@ H3 = (H4 - H4%) * 16:H3% = H3
3020 H2 = (M3 - H3%) * 16:H2% = H2

3030 Hl% = (H2 - H2%) * 16 + .5

3P40 LNS = LNS + "S$" + HXS(H4%) + HAS(H3%) + HXS(H2%) + HXS(H1%®) + " "

3852 DECS = STR$ (DEC): IF LEN (DEC$) < 5 THEN LNS = LNS + " "

3060 LN$ = LNS + DECS + " "

3870 RETURN

4908 REM

4082 REM PRINT HEADINGS

4004 REM

401@ PRINT " HORIZONTAL BLANKING (HBL) HORIZONTAL DISPLAY ENABLE"

4015 PRINT

402¢ PRINT "LINE 11111111 111111111111111122222222"
403@ PRINT "NUM PAGE 1 PAGE 2 @@123456789ABCDEF@1234567 PAGE 1 PAGE 2 0123456789ABCDEF@123456789ABCDEFA1234567"
404@ RETURN

5000 REM

58@2 REM PRINT FIGURE NUMBER

5004 REM

5085 PRINT : PRINT

5@1@ PRINT "FIGURE 5.9 - THIS HIRES SCANNING MAP SHOWS THE ADDRESSES SCANNED DURING DISPLAY PERIODS AND BLANKING PERIODS."

5820 RETURN

Figure D2 BASIC Listing: Program that Produces Figure 5.9.

appendix E

A Logic Circuits Primer

Bits of information in a computer are generally
represented by voltages. In positive level logic like
that used in the Apple, a high voltage (about 3 volts)
is considered to be true, and a low voltage (about 0
volts) is considered to be false. The electronic cir-
cuits in the Apple are designed primarily to treat
signal voltages as true or false indications and to
process them logically. In studying the Apple, it
is advisable to concentrate on the logical function
of the components rather than their electronic
funection.

The most basic functional building blocks are
simple logic gates. For example, a two input AND
gate will bring its output high if and only if both
inputs are high. In other words, both input A AND
input B must be true if the output is to be true. The
two input AND gate is represented in logic dia-
grams as follows:

INPUT A —
OUTPUT

INPUTB —

This AND function is identical to the 6502 AND
instruction, except that the 6502 instruction is per-
formed on 8 bits simultaneously and is logically
equivalent to 8 two input AND gates.

A way of demonstrating a logic function is a truth
table. The truth table shows the state of an output
for every possible combination of inputs. The true
state can be represented by T or 1 or H (for high
assuming positive logic), and the false state can be
represented by F or 0 or L. We will use H and L
because this usually eliminates possible ambigui-
ties. The truth table for the positive logic AND gate
is:

INPUT A INPUT A OouUTPUT
L L L
L H L
H L L
H H H

This clearly demonstrates that both inputs of the
positive logic AND gate must be high before the
output will go high. Table E shows the truth table,
schematic representation, and equivalent 6502 in-
struction, where applicable, of some simple logic
gates used in this book.

E-2 Understanding the Apple I
Table E Basic Logic Gates.
SECONDARY TRUTH TABLE 6502
NAME REPRESENTATION REPRESENTATION B A OUT| EQUIVALENT
AND . . AR N | AND XXXX
= L H L
H H H
OR) : EOE K ORA XXXX
—d B L H H
; D—our o)o wr |5 4
H H H
NAND , L L H pérgg XXXX
=" A L H H HSFF
g_| Jo-our 8 :D— ouT | H L H
H H L
NOR L T K %%’?1 xx;g
A D A—d L ® #S
ouT)— out H L L
. B—a H O OH L
Excbusm i TR T 1 EOR XXXX
R L H H
H H L
AMPLIFIER A _D_ ouT A ~c[>o—{JUT L h NOP
H
INVERTER L H EOR #SFF
A >o—our A-{>—our i
TRI-?_T;:G.EE B L L
AMPLIFIER D L H 2
HIGH A out H L L
ENABLE H H H
?’NH{‘-ESTATE B L L %
RTER L H
HIGH A "|>°‘ out H L H
ENABLE H H L
B
Tmﬂa{zﬁ L L L
AMP L H H
LOW A ‘Iﬁ— out H L 2
ENABLE H H 2z
B
Tnlsglgérs L L H
INVE _ﬁo_ L H L
LOW A out H Lz
ENABLE H H 2

Appendix E-3

The little circles on the gates represent the con-
cepts of inversion and active-when-low signals. The
two concepts are closely related and sometimes
impossible to separate. Inversion is the process of
turning a signal into the logically opposite signal.
When a signal is low, its inversion is high, and vice
versa. When examining a logic gate, the absence of
circles can be read as active-when-high and the cir-
cles can be read as active-when-low. For example,
the NAND gate has a circle on its output, meaning
both inputs must go high to make the output go low.
This can be stated in a second way. If either input
goes low, the output will go high. This results in a
second way of representing the NAND gate, as an
OR gate with little circles on the inputs. The circles
take a little getting used to and are used in some
pretty unusual ways in some drawings. Just asso-
ciate the circle with the word “low” and you should
get the message.

The tri-state amplifiers of Table E represent a
different sort of logic device. In addition to the nor-
mal binary states of high and low voltage, the tri-
state device has a third state, high isolation or high
impedance. The line coming in from the side is the
output enable line and it controls the isolation. When
the output enable is not active, the device is isolated
from the output line, so another device can control
the output line. In electronic terms, the device pre-
sents a high impedance to the output line. In the
truth tables of Table E, the high impedance state is
represented by a “Z”. A more detailed discussion of
tri-state logic is contained in the chapter on bus
structure.

A building block of equal importance to the logic
gates is the clocked flip-flop. This is a 1-bit storage
device which will respond to its logic inputs when it
senses an active transition on its clockpulse input.
Figure E.1showsadiagramofa D type flip-flop and
its truth table. The flip-flop shown is clocked by a
low-to-high transition of its clockpulse input and is
like the 74L.S74 flip-flop used several places in the
Apple. The Q output will follow the D input every
time the clockpulse rises, and the Q" output will be
the inversion of the Q output. The CLEAR and
PRESET inputs cause the flip-flop to change states
without requiring a clock, and actually override the

clocked D input. Bringing PRESET low forces Q
high and Q' low. Bringing CLEAR low forces Q low
and Q' high.

The clockpulse adds synchronization to logic. If
the same clockpulse triggers a hundred different
actions, then the actions all occur simultaneously.
This clockpulse synchronization is common to all
digital computers. Certain devices react to the
clock. Other devices react to those clocked devices,
and soon. After a given period of time, all reactions
are complete and the logic signals are all stable,
waiting for the next clock. The computer thus oper-
ates one cycle at a time.

As an example of clocked operation, Figure E.2
shows a logic function similar to the 6502 AND
instruction. Inthe AND instruction, the value in the
accumulator is ANDed with a different value to get
the new accumulator value. In Figure E.2, the flip-
flop represents one bit of the accumulator. When the
flip-flop clock rises, the flip-flop goes to a state
determined by its old value ANDed with a second
value.

Most logical circuitry is made up of some combi-
nation of simple logic gates and flip-flops or their
equivalents inside an integrated circuit. In modern
computers, many complex functions are available
packaged in integrated circuits. Typical of such
complex functions are comparison, counting, cod-
ing, decoding, and shifting. Even more complex are
the functions of chips like the 6502, RAM, and ROM
in the Apple. A good way to familiarize yourself
with the variety of logic functions available is to
peruse the data books published by manufacturers.
Of particular help in the Apple is a TTL data book.
TTL (Transistor Transistor Logic) is the name of the
logic family to which most of the Apple’s general
purpose chips belong. National Semiconductor is a
company which is very good at making their data
books available to the public at reasonable prices.
Their TTL data is contained in the Logic Databook,
priced at $9.00 as of March, 1982. Books can be
obtained by writing:

National Semiconductor Corporation

ATTN: Literature Distribution MS/14208

2900 Semiconductor Drive

Santa Clara, CA 95051

E-4 Understanding the Apple I

——]D Q0
__,.'r_>
CK
Q0

TYPICAL OPERATION

cLock | |

TRUTH TABLE
INPUTS OUTPUTS
PRESET | CLEAR | CLOCK| D 00
L H X X | H] L
H L X X L] H
L L X X | H| H
H - 4 H| H] L
H H } L L] H
H - L X | HLD|HLD
- H H X | HLD|HLD |

D e

CLEAR]

PRESET

Figure E4 A D-Type Flip Flop.

Understandingthe A pple IT uses logic equations to
describe the logical makeup of certain signals. A
typical logic equation is

VERTSYNC =
VBLe V2e V1'e V0o VC'e (H4+H5),

which is read VERTSYNC = VBL AND V2 AND
NOTV1ANDVOANDNOT VC AND (H4 OR H5).
The dot represents the AND function, the plus sign
represents the OR function, and the prime symbol
represents the NOT or INVERSION function.*
This selection of symbols makes the equation look
like an equation of common algebra, and it's no
accidental coincidence. The manipulation of such
equations has parallels in the field of algebraand is,

in fact, referred to as Boolean algebra, after sym-
bolic logic pioneer, George Boole.

*In representing the NOT funetion with a prime symbol, this
book is following the sensible lead of the Apple lle Reference
Manual. The more common convention is to overscore the termor
terms to which the NOT funection is applied. The overscore is nota
particularly workable representation because it is not a common
typographical symbol and, more importantly, there is no code for
it in standard computer text coding systems such as ASCII.
Engineering and manufacturing printouts normally use an
asterisk or prime symbol after a term to which the NOT funetion
is to be applied. Apple should be commended for taking the lead
in using this notation in published documents. Now, what are
they going to do about that dot that represents the AND function?

Appendix E-§

4

COMPARISON :}——-— D Q -

INPUT 00K — el

1/8 OF THE
ACCUMULATOR

Figure E2 The Circuit Equivalent of the 6502 AND Instruction.

Other functions besides AND, OR, NOT, and isonly todeseribe some details of signal generation
parenthesis grouping can be represented in logic in a concise way. No algebraic manipulations are
equations, but only these basic functions are repre- described, and none are required on the part of the
sented in logic equations in this book. The purposein reader.
using such equations in Understanding the Apple IT

appendix F

A Number System Primer

In our daily lives, we represent numerical quanti-
ties in the base 10, or decimal, numbering system.
For example, by 359 we mean the sum of 9 x (10
EXP0)plus5x(10 EXP 1) plus3x (10 EXP 2). This
use of the decimal numbering system gives us some
unusual biases that would occur only to mathemati-
cians if we used a different base for our numbering
systems. For instance, we place special significance
on numbers like 1,000,000 (10 EXP 6) but not on
2,985,984 (12 EXP 6, equal to 1,000,000 in the base-
12 or duodecimal numbering system). Mathemati-
cians have studied number systems for years, but
now, because of the growing influence of computers,
knowledge of numbering systems other than base 10
is becoming very common indeed.

You see, the electronics of digital computers is
based on hundreds of thousands of two state, or
binary, electronic switches which can be on or off.
The on or off state of each binary switch can be
represented numerically as a ONE or aZERO, and
the information as to whether the switch is on or off

is a bit of information. The simultaneous states of
eight binary switches can be combined into an 8-bit
binary word such as 10011110. Because of the two
state nature of digital computer building blocks,
digital analysis and design has been performed
since day one using the base 2, or binary, numbering
system. In this system, there aretwo digits—1 and 0.
The binary number 110 represents the sum of 0 x (2
EXPO0)plus1x(2EXP1)plus1x(2EXP2), which
is equal to 6 in decimal.

Actual performance of binary arithmetic is very
unwieldy, particularly if you consider fractions.
Addition and subtraction of 6502 addresses would
require 16 digits. For example, subtracting decimal
address 35000 from 35003 looks like this:

100010600101110611
- 1000100010111000
i 1

Appendix F-2

If that looks clumsy, you should try multiplying 143
x 247:
11390111
X 10¢01111
11114111
111190111
11116111
11116111
11110111000
10001001111110601

To prevent carrying out operations like this, com-
puter programmers use other number systems
based on powers of two, such as octal (base 8) and
hexadecimal (base 16). Arithmetie is much easier to
perform in these systems and conversion to and
from binary is so easy that you can doiton sight with
alittle practice. For example, the above product ean
be read as hexadecimal 89F9 or octal 104771.

Conversion between binary and octal consists of
dividing the binary number into groups of three,
from right to left:

1000 100 111 111 001 = 104771 (base 8)

These patterns of three digits can each be converted
toone of eight octal digits from the table below. With
exposure, these patterns become very familiar. As
you would guess, there are eight symbols in the octal
system, 0-7.

The hexadecimal system has 16 digits, 0-9, A, B,
C, D, E, and F. The use of letters to represent
numbers is sometimes confusing, but that’s the con-
vention we're stuck with. When converting between
binary and hexadecimal, the binary number is
divided into groups of four digits starting from the
right:

1000 1001 1111 1001 = 89F'9 (base 16).

6502 programming convention calls for use of the
hexadecimal numbering system for representing
addresses, machine language code, and much data.
Convention further calls for preceding hexadecimal
numbers with a dollar sign ($89F9) and binary
numbers with a percent sign (%10001001), to distin-
guish them from decimal numbers. Following con-
vention, the Apple monitor represents all numbers
in hexadecimal. As a result, some skill in hexadec-
imal arithmetic and hexadecimal/decimal conver-
sion is very desirable for Apple programmers. In
addition, the well rounded computer programmer
will be familiar with the binary and octal systems.

Here are two numerical facts of life about 6502
based microcomputers like the Apple. First, there
are 16 address lines connected to the 6502. 16 lines
can be in 65536 different possible combinations of
states (0-65535, $0-$FFFF, or %0-%1111 1111 1111
1111). Second, there are eight data lines connected
to the 6502. Eight lines can be in 256 different possi-

Table F Number System Equivalent Representations.

DECIMAL BINARY HEXADECIMAL OCTAL
) 0000 g g
1 0001 1 1
2 0010 2 2
3 go11 3 3
4 0100 4 4
5 6101 5 5
6 6110 6 6
7 0111 7 7
8 1000 8 10
9 1001 9 11

10 1010 A 12
1L 1011 B 13
12 1100 c 14
13 1101 D 15
14 1110 E 16
15 1111 F 17

F3 Understanding the Apple |

ble combinations of states (0-255, $0-$FF, or %0-
%11111111). These numerical features of the 6502
account for some limiting numbers which occur
in the BASIC language like 65536, 255, 32767,
and 127.

Addresses are normally referred to in hexadec-
imal in Understanding the Apple I1. This is because
the hexadecimal representations make sense and
are easy toremember. Numbers like $10000, $C000,
and $2000-$3FF'F are much more to the point than
65536, 49152, and 8192-16384 when representing
the number of Apple addresses, the start of I/0
addressing, and the address range of the HIRES
PAGE 1 memory map. It is also far easier to
remember that the Cassette output port can be

toggled by a reference to any address in the range
$C02X ($C020-$CO2F) than the range 49184-49199.
Dear reader, the effort you spend learning your
binary and hex systems will be well worth it.

If this is your first exposure to number systems,
then you have just scratched thesurface. It is highly
recommended that you spend some time with
mathematics or computer arithmetic courses, solv-
ing problems and familiarizing yourself with this
sort of numerical manipulation. You need to get a
little used to thinking like a computer. Probably the
best exercise possible for you would be to write some
6502 assembly language programs. You'll sink or
swim in hexadecimal and binary number systems.

There have been three important revisions to the
Apple IT motherboard: Revision 1, Revision 7, and
the RFI Revision (Radio Frequency Interference
reduction). Revision 1 and Revision 7 corrected var-
ious minor bugs and added circuits which enhanced
the operational features. The RFI Revision was a
direct response to a erackdown by the FCC on com-
puter manufacturers whose products emitted RFI.
Virtually all personal computer manufacturers
were affected by this FCC action.

Between the important revisions, there were a
number of inconsequential revisions, some of which
were apparently never released. Information about
these minor revisions is sketchy because Apple’s
documentation of the revisions has been sketchy.
Revision 1 was documented in the A pple II Reference
Manual. The next documentation to appear was an
addendum to the reference manual which shows the
schematic of the RFI Revision Apple I1. What hap-
pened in each of the interim revisions is a subject of
speculation and it is possible that no one person
knows what each revision accomplished. Mr. Win-
ston Gayler achieved a bit of a breakthrough in this
area by obtaining Apple schematics for the impor-

appendix G

Revisional Information

tant revisions and getting permission to reproduce
them in his book, The Apple II Circuit Description
(Howard W. Sams & Co. Inc., 1983). The Apple 11
Circuit Deseription is highly recommended for its
schematics and timing diagrams, and because it can
provide alternate perspectives of those portions of
this book devoted to circuit descriptions of the Apple
IT motherboard.

The part number of the original Apple II mother-
board is 820-0001-00. The "-00” indicates it is Revi-
sion 0, and the author suspects it was called Revision
0 only when Revision 1 came out. Apple got up to
"-09"” before they wore out the old part number, and
switched to 820-0044-01 when the RFI revision
came out. Then they quicekly ran out of numbers and
switched over to letters to differentiate between
revisions. Do not be bothered if the numbering sys-
tem seems illogical to you. You probably just do not
communicate with yourself on the same level that a
big company communicates with itself. Table G.1 is
an attempt to categorize the revisional part
numbers. Question marks mean that, as far as the
author knows, a particular revision may not exist or
may not have been released to the public.

G-2 Understanding the Apple ||

Table G Apple Il Revision Numbers.

PART NUMBER REVISION

820-0001-00
820-0001-01
820-0001-02
820-0001-03
820-0001-04
820-0001-05 ?
820-0001-06 ?
820-0001-07
820-0001-08 ?
820-0001-09 ?
820-0044-01
820-0044-A ?
820-0044-B ?
820-0044-C
820-0044-D

REVISION 0
REVISION 1

REVISION 7

RFI REVISION

You probably can read the part number of your
Apple on your motherboard. There was no part
number printed on Revision 0 motherboards. The
part number of motherboards prior to the RFI Revi-
sion can be seen by removing the 6502 chip or by
looking at the bottom of the motherboard. RFI Revi-
sion motherboards have the part number printed in
plain view near the F'1 socket. Some notes about the
revisions follow.

Revision 1

Revision 1 was the most important revision from the
standpoint of operational enhancements. The addi-
tion of delayed HIRES video, the power-up RESET,
and the TEXT mode COLOR BURST killer were
significant improvements. The changes made in
Revision 1 are documented in the A pple II Reference
Manual. They include:

1. Addition of a COLOR BURST killer circuit to
remove colors from text.

2. Addition of power-up RESET circuitry.

3. Addition of the HIRES delayed video feature
which gives the blue and orange colors.

4. Solving a memory addressing problem for

Apples with 20K or 24K of RAM.

Addition of 50 Hz Eurapple jumpers.

Connection of COLOR REFERENCE and video

SYNC signals to pins 35 and 19 of slot 7.

7. Addition of a wire wrap post which is connected
to the VIDEO output signal.

8. Disconnection of the speaker output from the
cassette output.

9. Redesign of the cassette input amplifier.

o o

10. Reduction of vertical sync pulse width and addi-
tion of horizontal syncing serrations during the
vertical synec pulse.

You can tell you have Revision 1 or later by examin-
ing the screen text on a color television or monitor.
In Revision 0, all screen text is colored violet, green.
and white. In Revision 1 or later, TEXT mode text is
white, but MIXED MODE text is violet, green, and
white.

Revisions 2 through 6

This is a very gray area in which very minimal
changes were made. It would be very nearly correct
to say all of these revisions are the same as Revision
1. In Revision 4, Apple started soldering 16K RAM
configuration plugs into the motherboard instead of
sockets. From this point on, the obsolete 4K RAM
capability was eliminated. To the author’s knowl-
edge, Revisions 5 and 6 were never released.

APPLE Il PLUS

The Apple II Plus came out when some revision
between 1 and 6 was in production, although it did
not represent a revision to the motherboard. The
only operational difference between the Apple II
and the Apple II Plus is in firmware. The Apple 11
has Integer BASIC and the old Monitor in ROM,
while the Apple II Plus has Applesoft BASIC and
the Autostart Monitor in ROM. At approximately
the same time as the introduction of the II Plus, the
keyboard was changed so CTRL could be required
for RESET to function, and the keyboard electron-
ics were moved to a separate card. Numerous ver-
sions of the keyboard have been available, but this
one major operational difference is associated with
the Apple II Plus. Apple may have produced the
Apple II and the Apple II Plus concurrently for a
while, but they soon switched to the II Plus exclu-
sively. The author’s Apple II has a Revision 3
motherboard, so the Apple II was still available
when Revision 3 was in production.

Revisions 7 through 9

Revision 7 was the next important revision after
Revision 1. Its most significant effect was to change
the screen text ROM from a 2513 to a 2316B. This
enabled the owner to substitute his own upper/lower
case EPROM for thestandard ROM. The Revision 7
changes include:

1. Replacement of 2513 screen text ROM with

2316B ROM. The 2316B is fully pin-compatible
with 2716 EPROM.

Appendix G-3

2. Removal of RAM configuration sockets and IC
E2.

3. Reduction of horizontal sync pulse width from
eight to four microseconds. (Transistor Q7 was
added as part of this logic.)

4. Change to double pulse horizontal syncing ser-
rations during vertical sync.

5. Addition of jumper pads 7 and 8 and a 4-pin
connector (see Figure 7.9).

Revision 7 and later motherboards are easily
identified by the absence of RAM configuration
plugs at C1, E1, and F1.

Revisions 8 and ¢

The author has never seen a Revision 8 or 9
motherboard but he is told they exist. A14 was
probably added to the motherboard in one of these
revisions for the purpose of improving the effective-
ness of COLOR BURST killing in TEXT mode (See
Figure 8.7, top right). This removed some distract-
ing colored “ghosts” which occurred on some televi-
sions or monitors in TEXT mode. Other minor
changes were probably made.

RFl Revision

After home computers began to proliferate, the
FCC became cognizant of the fact that most of them
could interfere with nearby radio frequency recep-
tion under some circumstances. The FCC conse-
quently revised its regulations to include computing
devices. The pertinent restrictions are in part 15 of
FCC regulations. Part 15 sets limits on the amount
of radio frequency emmission that devices like tele-
visions, garage door openers, and computers can
give off. The Apple is a class B computing device,
meaning that it is intended for use in residential
areas. Restrictions on class B computers are tougher
than they are for class A (industrial use) computers,
because of the large number of radio frequency
receiving devices in residential areas.

In October 1979, the FCC set a deadline of July 1,
1980 for computer manufacturers to bring their

products into compliance with part 15. This was
extended to January 1, 1981 because the first dead-
line proved to be unrealistic. Apple requested and
was granted a waiver until April 1981. What Apple
was doing during this period was finalizing the RF1
Revision, which was the next important revision
after Revision 7.

Reduction of RFI involved adding shielding to the
cabinet and peripheral connecting cables, increas-
ing the width of motherboard printed conductors,
addition of filtering circuits, and interchanging
the +5 volt and ground distribution so the +5 volt
bus is on the top and the ground bus is on the bot-
tom. A steel bar is firmly attached between the
motherboard and the base plate in the rear. This
bar reinforces the motherboard (Allah be praised)
and connects the base plate to ground on the
motherboard. These changes represent a substan-
tial engineering effort by Apple, and the extent
of the differences is, no doubt, what prompted
Apple to change the base part number of the RFI
motherboard.

Some minor functional changes were alsomade in
the RFI Revision. These changes included:

1. Changing the double pulse serration in the ver-
tical syne, introduced in Revision 7, back to sin-
gle pulse serrations.

2. Replacement of two 8T28 ICs with one 8304 as
the MPU data bus driver.

3. Elimination of Q7. The function of Q7 is per-
formed by A14 on RFI Revision motherboards.

4. Generation of SOFT 5 with a 1000 ohm pull up
resistor instead of two gates on A2 as was done
in previous revisions. SOFT 5 is a voltage which
represents a constant logical true or ”1” in the
Apple II.

5. Addition of a high frequency rejection filter at
the video output jack.

There have been at least two revisions to the RFI
motherboard. These revisions were made solely to
reduce RFI emmission and had no operational
effect.

The original Apple was designed in late 1975 by
Steve Wozniak, a talented, 25 year old college drop-
out who designed computers for fun. At some point
in time, Wozniak entered into a partnership with his
friend Steve Jobs, named the machine after a fruit,
and sold a few hundred of these Apples. This origi-
nal Apple had a 6502 microprocessor, 8K of RAM,
no motherboard ROM beyond the screen text ROM,
a motherboard power supply, and a single slot into
which a cassette interface board plugged. The
Apple wassold only as a circuit eard, but enclosures
and keyboards were available.

Of central importance to the first Apple was the
6502 microprocessor, which was then brand new.
The 6502 was simple, powerful, and available for
$20.00 over the counter to all comers. This accessi-
bility made it an inviting MPU for an independent
designer like Wozniak. Steve was a pioneer in build-
ing hardware around the 6502 and in programming
the 6502. His BASIC interpreter was probably the
first BASIC written for the 6502. This program was
written directly in machine code, as were the system
monitor and Wozniak’s other early programs for the
Apple.

appendix H

Historical Notes

In fall of 1976, Wozniak completed the design of
the Apple II. This new computer far surpassed its
predecessor in sophistication with HIRES and
LORES graphics capability, 48K of RAM, BASIC
and system monitor in ROM, built in cassette 1/0,
and eight peripheral expansion slots with mother-
board decoded slot control signals. The Apple II, no
doubt, borrowed many features of hardware and
program structure from the 1975 Apple, but most
people would not recognize the older computer as
an Apple.

While developing his Apple designs, Wozniak was
not a lone talent working in solitude at his cerebral
pastime. He was a member of the Homebrew Com-
puter Club, the club to end all clubs, from whose
membership rolls have come several microcom-
puter industry leaders. His friends were very inter-
ested in Steve's Apple and made substantial con-
tributions to the Apple. Steve gives Allen Baum
much of the eredit for the peripheral slot structure.
In his "Apple I1: System Description,”* he mentions
Baum for originating the Apple II debug software,

*BYTE Magazine, May 1977

Appendix H-2

Doug Kraul for helpful suggestions on I/0 struc-
ture, and Randy Wiggington and Chris Espinosa for
testing Apple BASIC.

The contributions of Steve Jobs to the Apple II
were of a different nature. Jobs was not very inter-
ested in designing computers, but he was very inter-
ested in selling the Apple. It was Jobs who thought
big, who thought the Apple could be sold, and who
pushed Wozniak in his development of a computer
which was getting better and better. It was Jobs
who talked big to people who counted: to Rod Holt
who came over from Atari to help with electronic
engineering tasks such as power supply design, to
suppliers who were giving them components at dis-
count prices with 30 days credit, to Mike Markkula
who gave the new company business leadership and
a quarter of a million green backs in seed money.

The Apple computer company officially came into
existence in January of 1977. Company leaders
included Markkula, Jobs, Wozniak, Holt, and Mike

Scott who came over from National Semiconductor
to be company president. Wozniak has a recollection
of Scott answering phone calls to Apple while dub-
bing cassette tapes on a string of tape recorders. The
company shipped its first Apple II in June of 1977
and had paid off all its debts by December of the
same year. Growth of Apple II sales has increased
ever since.

The spectacular success of the Apple II seems to
have resulted from a fortunate combination of tim-
ing and talented individuals. Appearances suggest
that the most crétical talents were those of Wozniak,
Jobs, and Markkula. At this writing, Jobs and
Markkula still hold top management positions with
the company. Wozniak has separated himself from
Apple's executive processes and does his own thing.
Apple attempts gamely to infuse the magic of the
Apple II into newer products, while we wait and
hope for their eventual success.

appendix |

A Technical Conversation

The first draft of Understanding the Apple Il was
submitted to Quality Software in March 1983. Since
this was an investigative work, there were many
questions in the author’s mind about points of the
design of the Apple II: why things were done the
way they were and why other things had not been
done. Because of luck and the generosity of Steve
Wozniak, the author received the answers to a
number of his questions from Mr. Woz, himself.

My conversation with Steve occurred on the even-
ingof April 17,1983, after the Applefest Convention
in Anaheim. Although he was tired and wanted only
to get home to his family, Steve submitted himself to
aride to the airport in the author’s 1972 Nova, a car
which sometimes reaches its destination without
malfunctioning. During the ride, we talked of
nothing but the design of the Apple II computer,
which, it turns out, is something Steve loves to talk
about and had not seriously talked about in years. I
would like to share with the reader a paraphrased
synopsis of the comments he made about the design
of the Apple II. Please be cautioned that these com-
ments are as reliable as the memory of the author,

with Steve Wozniak

who does not take notes and drive in LA traffic at the
same time. The conversation is definitely not Steve’s
exact words, or the author’s, for that matter.

S. Did Apple design the analog card in the disk
drive or did Shugart?

W. Rod Holt designed the analog card. We took a
Shugart SA400 drive and designed the inter-
face on our own. Motorola had just come out
with a new read interface chip for floppy disks,
and we used it in the design. We saw how the
head could be positioned through program con-
trol. The whole interface was originated at
Apple.

S. The DEVICE SELECT' signal to a peripheral
slot goes away before PHASE 2 falls on the
6502. Was that a design oversight?

W. I gave consideration to distributing PHASE 2
instead of PHASE 0 throughout the mother-
board, but PHASE (0 was much easier to work
with. I felt that PHASE 0 probably clocked the
data to the 6502, but I no longer think that is

Appendix |-2

true. We could have changed the timing, but felt
that we could control the situation since Apple
would be designing all the peripheral cards. We
had no idea that many companies would be
designing peripherals for the Apple.

S. I think the long bleed off time of the data on the
floating data bus will make the DEVICE
SELECT' a valid transfer bus management
signal in any design.

W. Yes, that’s what makes some peripherals work,
but some designs have had problems. You must
be aware of the situation when designing periph-
erals for the Apple. There are no other areas
where Apple timing doesn’'t meet component
specifications.

S. There are a couple of other areas. One is the text
ROM. Apple timing doesn’t give the 2513 char-
acter generator 450 nanoseconds to put out the
text patterns.

W. That doesn’t sound right. We were very careful
in thatarea, but I don’t remember the details. It
may be that Apple uses 350 nanosecond parts.
You should call Peter Baum at Apple. He will be
very interested.*

. Is that Allen Baum’s brother?

W. Yes. Allen contributed greatly to the Apple. He
did most of the work in devising the peripheral
slot structure.

S. Did anyone else work on the motherboard
design?

W. Except for the peripheral slots, I designed ever-
thing. The I/O STROBE’ to the slots was one
good thing we did with the slots. We just had
that signal sitting there and decided to use it for
expansion ROM. That made it possible for cards
like modems to come with their own driving
firmware. That was very important in the
cassette based Apple and it gave us a big boost.
Do you know that by addition of two chips
I could have made Apple screen memory
contiguous?

S. You should have done it. Two chips would have
been a small price to pay to make the graphics
easier to program.

wn

*] did call Peter Baum and he was very interested. He agreed
that it sounded like the Apple timing did not meet the 450
nanosecond specification of a standard 2513 or 2316B ROM. Of
course, with the AppleIle in production, a timing abnormality in
the old Apple II is not a particularly lively issue in Cupertino.

w.

W.

S.

W.

n

W.

S.

W.

S.

W.

Advanced programming techniques have been
developed to overcome that. It takes a little
work, but graphics displays can be updated just
as fast as if the memory were contiguous. We
never dreamed how many people would be writ-
ing assembly language programs to manipulate
the graphics. Our expectation was that most
programs not written by Apple would be writ-
ten in BASIC.

. Inmy book, I call the ROM on the disk controller

with the sequencing program a logic state
sequencer instead of a state machine. Was it you
that called it a state machine?

Yes, that's my title. I guess it could be called a
sequencer.

I went to great lengths to explain the sequencer
program in my book. I made up mnemonics for
the sequencer commands and printed a pro-
gram listing.

I have a lot of material on that subject which you
could have used. There’s a person named Gibson
who wrote an assembler for the sequencer
which actually assists in writing programs for
it. He sent me a copy of it.

I read that you had a frustrating problem with
reflections on conductors of the motherboard. Is
that the reason for the resistors connected to the
RAM address lines?

Yes, that was a big problem.

It was a big problem with me. The RAM data
sheets don’t recommend it and I wasn’t sure of
their purpose.

Exactly. We had to figure out what was going on
for ourselves. Rod Holt was trying to analyze it
with an oscilloscope, but I experimented with
resistors to make the problem go away. Some-
one did a theoretical analysis later and found
that the resistors I'd used were almost perfect.

Why didn’t RA6 have termination resistors
until the RAM configuration plugs were taken
out of the Apple?

Because RA6 did not have as long a conductor
when the configuration plugs were there.

Onthe 16K RAM card, the RAM address inputs
are tied to the unused inputs of ICs. Is that to
eliminate reflections?

I’'m not sure, but it sounds right. Something else
to consider is that leaving pinsopenon an IC can
cause the IC to draw more power. That may be

I3 Understanding the Apple |

E.'IJ

the reason for the connections on the RAM card.
Incidentally, one difference between the Apple
Ile and the older Apples is in the way the RAM
card handles resets. The reset did not cause the
old RAM card to be automatically disabled; the
reset handling program had todisablethe RAM
card if it was going to get disabled. In the Ile,
the reset automatically disables the built-in
RAM card.*

In my book, I show how you can bank switch
motherboard RAM from a peripheral card in
the old Apple.

. I don’t think there’s much application for it. I

think Apple made a mistake in bank switching
the auxiliary RAM in the IIe.

I like the idea of having two applications resi-
dent in RAM simultaneously with instantane-
ous switching between them. It's like having
Apple A and Apple B with selection between
them.

That sounds pretty good. One problem that I
have with the auxiliary RAM slot of the Ile is
that it won't easily support 256K RAM chips.
You run into problems because only the multi-
plexed RAM address bus for 64K RAM chips is
available at the auxiliary slot.

I'd never thought of that. Large auxiliary bank
switched memory units might be easier to
design for the peripheral slots than the auxil-
iary slot.

. I'll tell you about a timing problem that will

interest you. My first design for the Apple II
used a display method in which the 6502 was
stopped for 40 microseconds. The Synertek data
sheet said you could stop it for 40 microseconds,
but I was having problems. The 6502s would
work for a while, but the Apple would eventu-
ally stop working. I always had to have a new
6502 in my pocket in case it happened.

. You mean the 6502 operated for 25 cycles, then

the video display operated for 40 cycles?

. That’s right. When I designed the Apple II,

dynamic RAM was just becoming available that
could be accessed at two Megahertz. When itdid
become available, I changed the design of the

**The Apple ITe has an area of RAM, referred to by Apple as the
bank switched RAM, which behaves almost identically to the
16K RAM card in older Apples. Another difference, besides the
one Steve pointed out, is that the old RAM card did not react to
the INHIBIT' line of the peripheral slots. Pulling the INHIBIT'
line low in the I1e inhibits the bank switched RAM, giving firm-
ware cards and the like priority over the bank switched RAM.

w

W.

Applell to take advantage of it. I've told Syner-
tek about the problem but they haven't changed
their specification. New 6502s can be stopped
for 40 microseconds, but they deteriorate. They
are dynamic devices that store data in internal
capacitive elements. As the 6502 wears in, its
capacitive elements become less efficient.

. I'm very glad you brought this up. Deseriptions

in my book are very vague about how long you
could stop the 6502 during DMA. The data
sheets are inconsistent. Synertek says 40 micro-
seconds, Rockwell says 10 microseconds, and
MOS Technology doesn’t say at all.

Rockwell changed theirs to 10 microseconds?
That’s great.

Doyou think 10 mieroseconds is a good number?

I'd stick with five or six. That’s what Microsoft
uses on their Z80 Softcard. It refreshes the 6502
every few cycles to keep it active. The 6502 is
still used for things likedisk I/O, even when the
Z80 card is activated.

The R/W' line on the Apple II does not disable
ROM. If a program writes to a ROM address,
the ROM fights with the 8T28 bus driver for
control of the data bus.

Yes, that's right. That probably could have been
done differently.

. You could have connected R/W' to the third chip

select input to ROM.

That’s an interesting idea, but there may be
reasons why it won’t work. I'd have to study the
timing and schematics.

You said 'in your speech that Mike Scott
assembled the old red reference manual and
Chris Espinosa wrote the more recent one.

. Yes. Chrisstarted working with us when he was

still in high school. He got in trouble at home for
staying up late working with us. He did a ter-
rific job on the reference manual and he was just
a college student. I was very glad to see Apple
list his name as the author inside the cover. He
deserves a lot of eredit.

. Programming is a very slow process for me. I'm

amazed at your ability to effortlessly knock out
a program like Integer BASIC.

You've got that entirely wrong. It takes me
forever to write involved programs, too. I just
work very long hours for days on end when I'm
on a project. Writing Integer BASIC was not
easy for me.

Appendix -4

S.

Ww.

It's too bad your BASIC doesn’t do floating point
arithmetic.

I've often regretted not changing it to floating
point. The problem was that I had reached the
limits of the program structure and it would
have been difficult to expand it without a major
rewrite.

In your speech, you talked about Randy working
with you on the disk controller. Is that Randy

Wiggington?

2w =

S.

Yes, he made considerable contributions.
Who- first wrote the DOS?

I wrote the parts that communicated directly
with the controller, and Randy wrote the rest.

You came up with those phase control tables for
stepping the head.

W. That’s right, I did all of that stuff.

Arrival at the PSA terminal ends our conversation.
Have a nice flight, Steve, and take care.

appendix J

Baseplate and

Motherboard Removal

Separation of Baseplate from White Case Removal of Motherboard from Baseplate

1.

Unplug the Apple and remove all peripheral
cards. Disconnect the video cable and any extra-
neous wires.

. Move the Apple to a convenient work area. Place

it face down on a soft surface which won’t mar

‘the case.
. Remove the ten serews pictured in Figure J.
. Place one hand underneath the Apple and one

hand on top. Carefully turn the computer right
side up while holding the baseplate against the
case.

. Remove the keyboard plug from its socket on the

motherboard and separate the baseplate from
the white case.

. Reassembly is the reverse of disassembly.

1.

2.

5.

Disconnect the speaker and power supply plugs
from the motherboard.

In older Apples, there is a nut on a screw pro-
truding through the center of the motherboard.
Remove the nut using a nutdriver or socket and
driver.

On newer Apples, there is a metal reinforcing
bar in the back between the motherboard and
the baseplate. It is held in by two or four screws.
Remove the retaining screws and slide the rein-
forcing bar out.

. There are a number of white plastic retainers

protruding through the motherboard. Pinch the
clips on each retainer together in turn and
gradually work the motherboard off.
Reassembly is the reverse of disassembly.

Appendix J-2

BOTTOM VIEW OF APPLE Il COMPUTER

(@ © ® e)
-y e

Figure J Remove the 10 Screws Pictured fo Separate the Baseplate from the White Case.

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4

Figure 2.5
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8*
Figure 3.9*
Figure 3.10a

Figure 3.10b
Figure 3.11

Figure 3.12
Figure 3.13
Figure 3.14

Figure 3.15

Figure 3.16
Figure 4.1
Figure 4.2*
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

appendix K

List of Figures and Tables

TEXT and LORES Graphics.

How the Game I/O Plug Should Be Designed.
A Hypothetical Four-Line Bus.

Basic Microcomputer Building Blocks.
Communication on the Bus System.

The Apple II Bus Structure Showing Disk,
Cassette, and Serial I/0.

Secondary Address and Data Connections
Extend the Address Bus and Data Bus.
Functional Flow: The Timing Generator and
the Video Scanner.

Idealized Timing Diagram for the Timing
Generator.

Timing Diagram for the Timing Generator,
Showing Propagation Delay.

Propagation Delay Hierarchy.

Distribution of Timing Generator Qutputs.
The 6502 Machine Cycle Slightly Lags the
PHASE 0 Clockpulse.

Exaggerated View of a Television Scan. The
Apple Scans 262 Times Horizontally for Each
Vertical Scan.

Schematic Diagram: The Timing Generator.
Schematic Diagram: The Video Scanner.
Assembler Listing: A Screen Splitting
Program.

BASIC Listing: A Split Screen Example.
Circuit to Generate a 6502 Interrupt 416 Cycles
Before the Start of the Sereen Display.
Circuit to Separate a Vertical Sync Pulse from
the Television Sync Signal at Pin 19 of Slot 7.
Circuit that Duplicates the Vertical Section of
the Video Scanner.

Assembler Listing: Syneronizing the Video
Scan Simulator,

A Programmable Interrupter. It Generates an
Interrupt Before Any One of 256 Selected
Horizontal Lines.

A Programmable Video Interrupter Card.
6502 Pin Assignments.

Schematic: 6502 Connections in the Apple II.
6502 Clockpulse Relationships.

Some Worst Case 6502 Specifications.
Experimental 6502 Timing Relationships.
Reading the Disk Input Port Using Device
Select’.

Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13

Figure 5.1

Figure 5.2*
Figure 5.3
Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15*
Figure 5.16

Figure 5.17
Figure 5.18
Figure 5.19
Figure 6.1*
Figure 6.2

Figure 6.3*
Figure 6.4

Figure 6.5
Figure 6.6a

Figure 6.6b

Cycle Stealing DMA.

Schematic: D MAnual Controller.

A Sereen Mode Controller.

Schematic: An NMI Based Single Stepper.
The Author's Front Panel.

Assembler Listing: NMI Stepper Routines.
Design Concept for a Hardware Breakpoint
Generator.

RAM Timing Signals from the Timing
(Generator,

Schematie: Apple I RAM.

The Functions of the Address Multiplexer.
128-Byte Video Memory Segments Consist of
Three 40-Byte Sections, Each Mapped Into a
Different Part of the Video Sereen.
TEXT/LORES Displayed Memory Map.
TEXT/LORES Video Scanning Map.
HIRES Memory Areas (Page 1).

HIRES Displayed Memory Map.

HIRES Video Scanning Map.

Schematic: The Address Multiplexor.

CAS’ Signal Example.

Timing Example: A 6502 Read Cycle to
Address $1000.

Timing Example: A 6502 Write Cycle to
Address $1000.

Timing Example: A 6502 Read Cycle to
Address $C010.

Schematic: The 16K RAM Card.

Schematic; Bank Switching Motherboard
RAM.

Screen Memory Scanning.

Integer BASIC Listing: Underline Program.
Assembler Listing: Underline Program.
Schematic: ROM in the Apple I1.

Timing Example: ROM Read, Address $F000.
Schematic: The Firmware Card.

Timing Example: A Read From Address
$F000, Firmward Card Enabled.
Construction of a Socket Adaptor, EPROM to
ROM.

An Added Switch to Control the F8 ROM on
the Firmware Card.

This Circuit Syncronizes Switching to Prevent
Possible Program Crashing.

Appendix K-2

Figure 6.7
Figure 6.8

Figure 7.1
Figure 7.2*

Figure 7.3

Figure 7.4
Figure 7.5*
Figure 7.6
Figure 7.7*
Figure 7.8*

Figure 7.9*
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14

Figure 7.15
Figure 7.16
Figure 7.17

Figure 7.18

Figure 7.19
Figure 7.20
Figure 8.1

Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5

Figure 8.6*
Figure 8.7*

Figure 8.8
Figure 8.9

Figure 8.10
Figure 8.11
Figure 8.12
Figure 8.13
Figure 9.1
Figure 9.2
Figure 9.3

Figure 9.4
Figure 9.5

Figure 9.6

Figure 9.7
Figure 9.8*%

Figure 9.9

Figure 9.10

Circuit to Allow Independent Selection of the
F8 ROM.

Method for Isolating the F8 Chip Selects from
Other ROM Chip Selects.

Schematic: Address Decode.

Schematic: Generation of Address Decoded
Signals.

Address Decoding in the Apple is an Exercise
in Division by Eight.

Timing Example: 6502 Access to $C080.
Schematic: Serial I/0 Devices.

Cassette Input Wave Shaping.

Schematic: The Apple II Keyboard.
Schematic: The Apple 11 Plus Keyboard and
Encoder Board.

Peripheral Slot Connections.

Some Revision-7 Additions.

Assembler Listing: A Paddle Read Program.
A Modified Game I/O Plug.

Wiring a Paddle Set Plug.

This Game I/0 Extender Can Support Two
Sets of Paddles and Two Joysticks
Simultaneously.

Game 1/0 Extender Configurations.
Schematic: Game I/0 Extender.

The CTRL-RESET Modification, for Older
Keyboards.

Installation of SHIFT Key Mod, for Older
Keyboards.

Enabling Lower Case, Apple II Plus.

Two Volume Control Methods.

The MPU, Video Scanner, RAM, and Video
Generator All Play a Part in Creating the
Video Display.

The Apple II Video Signal.

Video Generator Functional Flow Diagram.
Apple Text Patterns.

Blanking During Television Scanning Causes
the Black Margin Around the Apple Display.
Schematie: Video Generation.

Schematic: Revision-7 and RF1 Version
Changes to Video Generation.

Video Output Examples.

The Output of the Screen Splitting Program
(Figure 3.10).

HIRES Interference at Pattern Borders.
LORES Patterns at B10, Pin 5.

LORES Colors.

Switching from GRAPHICS to TEXT in
MIXED Mode.

Functional Diagram of the Disk Interface.
Data Transfer in Disk I/0.

Simplified Functional Diagram of Disk 11
Drive.

A Stepping Motor.

The Write Field is the Vector Sum of the
WRITE and ERASE Fields.

When Reading, the Lack of a Read Pulse at a
Regular Interval Represents a ZERO.

Block Diagram of the Disk II Controller.
Schematic: The Disk II Controller (Address
References Assume Slot 6).

BASIC Listing: Program to List State
Sequencer ROM.

The DOS 3.2 Logic State Sequencer.

Figure 9.11
Figure 9.12

Figure 9.13

Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17
Figure 9.18

Figure 9.19
Figure 9.20
Figure 9.21

Figure 9.22
Figure 10.1

Figure 10.2
Figure 10.3
Figure D.1

Figure D.2

Figure E.1
Figure E.2

Figure J

Table 3.1
Table 4.1
Table 4.2
Table 4.3

Table 4.4

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 7.1
Table 7.2
Table 8.1
Table 8.2
Table 8.3

Table 9.1
Table 9.2

Table 9.3
Table 9.4
Table 9.5
Table C.1
Table C.2

Table E
Table F
Table G

The DOS 3.3 Logic State Sequencer.

Timing Example: Sequencer Control While
Changing the READ/WRITE or
SHIFT/LOAD Switches.

Timing Example: Switching to Write After
Checking Write Protect.

Flowchart of the Write Sequence.

Diskette Formatting.

Simplified Flowchart of the Read Sequence.
Decision Points for Reading ZEROS.

Read Performance of the Logic State
Sequencer.

Jim Aalto’s Finite State Automaton Diagram.
Flowchart of RWTS Routine.

A Single Switch on the Front of the Drive
Allows the User to Select Normal, Forced
Write Protect, or Bypass Write Protect.

A Drive With the Write Protect Switch
Installed.

Temperature Measurements Inside an Apple I1
Plus.

A Power Supply With the Bottom Off.

Some People Just Shouldn’t Handle ICs.
BASIC Listing: Program that Produces Figure
b.8.

BASIC Listing: Program that Produces Figure
5.9.

A D-Type Flip Flop.

The Circuit Equivalent of the 6502 AND
Instruction.

Remove the 10 Serews Pictured to Separate the
Baseplate from the White Case.

Durations and Frequencies of Timing Signals.
6502 Instructions.

6502 Instruction Cross Reference.

Operation of Soft Switches from D MAnual
Controller.

Selection of 16K RAM Card or Ile Bank
Switched RAM from D MAnual Controller.
MPU/Scanner Equivalent Address Bits.
Screen Memory Usage Summary.

The Video Scanner Row Address Assignments.
16K Ram Card Address Bus Commands.

16K Dynamic RAM Chips.

Address Decoded Signals.

Relation of ASCII to Keypress.
Eurapple/NTSC Differences.

Size/Distance Ratios on the Apple Sereen.
The Division of Screen Text Patterns in a 2048
x 8 ROM.

Disk II Controller Commands.

Functions of the $C08C,X/$C08D,X and
$CO8E/$CO8F Switch.

Logic State Sequencer Command.

Syncing the READ Sequence to Data.

Data Valid Periods in Sequence Clocks.

6502 Timing Comparisons.

6502 Instruction Execution Periods in Machine
Cycles.

Basic Logic Gates.

Number System Equivalent Representations.
Apple IT Revision Numbers,

*This schematic can be found in the Schematic Diagram section,
as well as in the text. '

For ease of reference, most of the schematic dia-
grams which appear in the various chapters of the
book are grouped together here. This includes the
schematics of the hardware manufactured by Apple
Computer, Inc. The schematics in this section are
identified in Appendix K with an asterisk next to
the figure number.

Numbers in parentheses next to signal terms in
the schematics are figure references showing the
number of the figure where a signal is generated or
to which asignal is sent. Small circles with numbers
in them on peripheral card schematics represent
pins on the card’s edge connector.

The schematics contained in Understanding the

Schematic Diagrams

Apple II are layouts created by the author in an
attempt to make the information contained there
more understandable to the reader. The primary
sources of detail for these drawings were the sche-
matics contained in the Apple I Reference Manual,
and the The DOS Manual. Schematics of the firm-
ware card, the 16K RAM card, the Apple II Plus
keyboard, the read/write head assembly, and some
undocumented Revision 7 changes are the result of
investigations of the actual hardware by the author.
Some changes were made to the schematics to
reflect revisional information which is contained in
The Apple II Circuit Deseription by Winston Gayler,
(Howard W. Sams & Co., Inc. 1983).

2 Understanding the Apple II

(8¢ @1nby) Jo)p1eues Bujwy ey)

,
-—1 SV
£0 ONING 4
| 4HS
THIN BIBIE L
o e ow o W fe—m (=
\
£0 INIHNO =
s o 1 o led v led wv o le—J
SI00W L4HS 20
m._. N9 @ M_I
el mn__ﬁw T s OND o
4 giSe/ o T
Leo0piE00bhy+Dow GI8Z 19 aife
) X I IW.ED 0
Py - a £l N .g
@ [T @ P g
]/ 3
ne (s)=—ts P
£l
e XV
@ﬂ) vl i Idls

§
!
5

2
&
b=

Schematics 3

74LS04
VPE Bﬂg
(3.8
LDPS' g
! r 2l C vechS
6| CK bic| LAY
L 011
3 = ik 748161 22— »va
1 -
PRESETTABLE
R ; Pt COUNTER Qi —»v3
2
PO 14
1 00 -V2
5“”‘; PR 8
I CET CEP_CLR GNDF—
— 10JT T1 e
50Hz A SOFT 5-11 5V
iN REV-1 15
A 16
AND LATER g [7C Vee
6 :: %] L Vi
: P2 74%%61] LAY
[_—'-4 P1 pRESETTABLE 13
= 5 COUNTER WIf—=VC
21 & Qo ;"——-VB
I [cer cep cLr GND =il
3 7 1 ==
A SOFT 5-11
_115 5V
\ 6 I}31(: voohed
5 asp! > VA
SOFT 5-11—q P2 .
Hpr 7aS161 q2p2 - HPE'
[g Sy
L1, COUNTER™ a1 ! > H5
T 2
[= 9 P> ao} ™4 - Hi
PR 8
CET CEP CLR _GND
10 f? 1 =
| SOFT 5-11
1 15 _6-15\1'
| TC C 1
| 9 4en Ve 2
8o 03— H3
|
2P 743%151 2P —=h2
Al 4-BIT
= PRESETTABLE ¢113 -
3lpp COUNTER "
= 2>CK ODL—-H[)
T [CET CEP CLR mmﬁ—_]_
10 &7 Q1 =

12
iy
74L500

» SOFT 5-11 TOALL
SCHEMATICS

2 b

74L800

The Video Scanner (Figure 3.9)

VERTICAL
Ve 0 PRESET
V4 1
V3 1
N
2w @ 1
Y
Vi u 1
Vo 1
Ve 0
Y
Vi @ 1
VA 0
HPE’ 1
H5 0 I
HORIZONTAL
i 0 PRESET"
H3 0
H2 0
H1 0
HO 0
A28 REPLACES
PRESET A2-11 AND A2-8
VALUES TO MAKE SOFT 5
,—*—\
5V
R28
1K
T0 ALL
SOFT 5-8 TO ALL SCHEMATICS
SCHEMATICS

4 Understanding the Apple Il

e 90?4L532
A 10 TWO 8T28s REPLACED
NC NC > BY ONE 8304 IN
ADDRESS BUS —=5 A RFI REVISION
AND RAW' e b 4 e 3
SYNC _ PHS2 _ VCC PHST
il 5t o Mlow . DATA BUS
'Q DO ‘:? = [0
i 11 A2 118
e,
5 14 10
Al < Al 2 4
7. 16 1 s » ' o
A2 1 A2
suI 0, 2], H7/H8 3 ’
- 6502 D2 fe— |
A 1 Ad MPU
9 10 14
X AS 13
D3 - pe—» 3
A6 1 12 15 A6
509
16 6
AT < A7 % .
D4 = b 4
A8 5 4 17 A
0
A9 3ot~ {rg %
e 2% 6
10 05 j= - t—n-[5
ATD 9 19 {10
e
At 1 22 fan _
15 27 10
O D6 - r—[f
A 3 2 22 A2 |
10
A3 3 Groee—B a1
1) 2& 1U
B3I o7 fe—— =0
Al4 5 A14
15
A5 13 Gl 25 Jpss
50 PHSO RDY NMI' IRQ’ RESET’ VSS VSS SO ?:’
741504 37 2 6 EI 404 1 211 3341 RAOT
2
FEPO = (7778 —
3] KEYBOARD
38, ofU8 CONNECTOR % % g
DMA’ O_T‘;)L A POWER-UP
RESET 3 5 2| 4 6
| Y meser n
IRQ*
NMI
RDY
S
322313 42 2 33 A2/ 2033 4132133 232333 43233 A4202133 2 4131
1] 9o 1 1 gl of 1 10al of 1 aq1 ' RELE EECK IELE IEEER
SLOT SLOT SLOT SLOT SLOT SLOT SLOT SLOT
0 1 2 3 4) 6 7

6502 Connections in the Apple Il (Figure 42)

) (zs einBid) WvY 1| erddy
3
= £ o (8€) ®¢
: ;
MidE
[0)] e
c SINJWNIISSY Nid ON9 by cESIWL
WVH JINVNAQ %91 @8 s HIMOd
nx < HOLYHINTD wyy) M
030IA 01 TV 4 i
As N9 g~ vIva WYY 0l) ow
Q3HOLV ovH
>{ua SVafg o-01a oo (01'5)
M/H nogb— v $5340ay
£ VI AdbAAdd mﬂ a3x3dInnNw
7]-SvY OVH e >J — L ove
g M““ gvH = p gl 8
LWH F— - €0 -
9 e Ay F 0a ; 27 ww o T] E_ma 11 ¥l 0 ¥
L 0L m ik} ! E [Sl
1 (AR " " 5 e -« 00
H-——pZ €l na 2l W Vi W v
sne o PO [' (€/2) ﬁy _
viva Eam__m._ :a_nw._ - S : G T
| < 70 < 1 L : +H
14 0 2 F [7 - ¥i
Gl
g0~— oz g €10] B ; -
\ s 3905 o ¥ %fg M
@y T T (01S) XNW 6 v E
318YN3 04VO8ADI —— $S3IHAQY WO4 I w0
X000 1y S 193135 WvY 6 7 e
S 3 3 _ mQHv_n__ mn_w.: =
L 4 Hor v1a o _.mmm
i o oy
2
~ 0
s0=——;v2 ol L P a_ _E 5 —p
sng POfpT o ! B
v1va 15281 88
8 g - 1] -G
90——]%2 & £ 970 S 1ol - -
3 R
| 835
10—z g 7# : -0
b [D 2y -
9 m- = H19
AS __:? .4 _,; A 994 NS 1 WH sl p
VLv0 ﬁ, 8 _ 16 1405 [[[/
04VOIAIN = B¢
NWM.MW_ AS J mol (] MoJ J Mol
OV SY9) Sy
HOX3TdILINW YiVO Niv (01°6) (ovs) (0§
OHVOBAIN/WYH WyY WYH LIk

6 Understanding the Apple I

(S1'S aInbi4) pI0D VA X9 8y)

— Md

= 31i6M-36d
“ITVRT TITEA -
N EFTE I
+0
¥l
sl_bd_J¢ w0 bo}—fe
3 Sl J £l
e £0
035VHd
£) 1y
—()o
) v ke 2
G5Y N0 — 4150 T
Wl 1L 6Y
£-68 WOt —={ 259 L
\ 103735 8l By 01) B
0 10 10 v i}
e h.w,_ 1
vy G 90(EF)agyf 0 e MaLW
B
| b QHVORBHION S¥ifs . g0 G5 LW
7S W9
AS- moos S _ @0 (7)o vna a7 el PO
b Wyiol M B EO()eff0 81 E¥jw— § BV
YIJANTdIa A+ g [(BN IN NIVINQ €l 9099 S
Nid 91 _I5 o 20(Lry=d20 vl b 2V
e lren ela E) A T m b
™ 14 10(8)s 10 W £
I R 0a 0a 00 ov Al
e e Bu B O L bl _z SINE Y8 YE e 6 8
AS— ACi+ 5vE T 00 10 5- G+ MU .59 58210 OV 71290680 ON9
w o
pf P 9y v.m,\,>u!|x_\
=1.5v2 !] AS
1 Sl v
IC s T L 3 F S oz
A4 i W C3HH3ISNVHL 10 90 50 €0 10 00
sna a NOISNYdX3 ov o 0¥ dIHD hivH) hod 2
iivo L 113 sy 2 B O W o @ @) e
il A+ N9 w_ : L
ol - _M_Il nye fuie fnle fule fuie z.w nie fnle
|| own—* ¥ 905557 00_10] [00_1d] [oC 00_10] [00_10 00 10] [00 1d
P n ﬂ NH\ N 6 e | Lo | | ||] A v || v
' ﬂw_ N Yt aur || aw || o || o || O || O || O || O
AG N0 o | 4 28 29 20 W t] 19 10
i 5
9 {0 4y Oy
17 ({
1117 X

Schematics 7

PERIPHERAL SLOTS
A

e ~
5V
ANY PERIPHERAL SLOT CAN
INHIBIT MOTHERBOARD ROM
RADT BY PULLING PIN 32 LOW
7 2 B R OB B2 B |2 |
ADDRESS BUS INHIBIT' DATA BUS
1 5V
hg Jm
Ts2 VeC
191210
21p9 orlz
2|, 2108
A ROM pHE
1 A7 00 15
24p6 & i
3as Fo mp
A4 1
5 D2
A3 10
6 A Di "
)
e
81h0
CSI' CS3'
_J1_2 Tzn Y21
I 3
5V
le
At 1] Vee 7 __F8 THERE ARE SIX ROM
A i —" ENABLE' SIGNALS, ONE
A12 2| o K | FOR EACH ROM SOCKE
Al e vs pll—E8
o T 8le3 pt—"
A15 5 74{:‘}5%38 Y3 ;}12_0_.8
741508 oecoper vz pi—20 1/0 STROBE'
5 14 C8
38) _EZ E2 ne > FRRILERAL SLOTS
: T 15 CO__ 1/0 DECODE ENABLE'
PHASE 1 3 VOP—”SEE FIGURE 7.2 (7.9)
1

ROM in the Apple Il (Figure 6.1)

8 Understanding the Apple I

(€9 einbyy) pi0D e1oMmulil4 oY)

LT

@

LS TP il

: al (]
I ol
60S L e o oa

\; () ey
o, - \—
61 .
@ I =1 o~
vl 9 u]4d Ve ——- v !
84 € (a3sN 10N v-28)
SO or <Nl z S [(Dov WSWLe
sa(s 8 ol = T aavo S
iy N y Sk R 3 4YMWYI4
ralSh, £ /v_ m " va 80 s
eV
S 6 M £i[e o =
za(z) 1< _Q = A Wod W TR CLEY 13534
La(sy _— 10 mm_vm..N v 8
e N Ly 8 oF (2)ov
006 5 N sl 6|%
S A’
[Au . 5_ ~QYYO0GHIHLOW
AS 378YN3 WOl Eémﬁxs_j
H2STbL LY
M
_J £Y
AS ‘:IAG FAU‘ﬁOA £ @ 1Y
um ga |1 84
AS 60STH. s o : Aol_\oA 7 —) 2y
%
" ar (e Py ®ur
LIGIHNI 950 5 30 G _
. 9 4 8 oL S
6070 .mL 605772 m s L ‘ * = (89 1 3sVHd

8€LSTP. ¥E

AS 1no INI
NI LNI

mwh
AS

Schematics

e

 14LS08
AS 6
4| H }—|
A4 4 A5
B8 B yrjol—FO0FFF e pom enaBLE")
A3 3c velol_FOOFTFF o pom enaBLE'
Mz:‘g IR SLL i V-V T (P
M 1l s yafolt EWOETFE gy poy enagLe ROM ENABLE’
| DECODER e OBOFFE g poy evaae
o e oo AAB TR
W“'T;ﬁg v2lo B DO0-DTFF g oM eneBLE’)
[v fp 4 CBOO-CFFF 10 STROBE’ TO PIN 20 OF ALL
= 5 PERIPHERAL SLOTS (710)
! Y0 0000-C7FF
USER 1 %01
USER 1 FROM JUMPER
PIN 39 OF ALL—O O- i
PERIPHERAL SLOTS RS
(0 B8 B2 vp—% 0seecr 7))
A0 e v6 oS 0 seLect 6
A9 g g P 0 skLEcT 5
A8 o 74838 11 CXK o sriecr 4 3(7.9) |70 SELECT’
DECODER 12 C3XX
v3pleCXX 10 seLect 3
U] ol CXX 0 seLcT 2
_L__BGND v CX% 0 seLect 1
1= o 15 COXX N
AT -
PHASE 0 o 4[5 CONTROL # DEVICE SELECT’
38y [E 6 & y7 0% iMER TRIGGER (75) ol COFX_pevice seLecT 7)
A e vé |2 CO8X_seRiaL IN (75)] v6loL—C%X_pevice SELECT 6
%5 2ls ma vapl cousmoses A—2p w2 sl CX DRvicE SELECT'S
1
M1 Jgég}'}?n va p'2CBX_speakeR (75) AL J;égnﬁ valo O _pevice seLecT 4 i
v2 b3 992X_casserTe out (75) valo2C8X_pevice seLec 3
v1 b1 -COX_ESET KEYBOARD STROBE (77) v2lo SO pevice seLect 2
v 16)vee Yo jp2- G0 g BOKEORD gy el vi o———:‘; Eg DEVICE SELECT" 1
s 25 O - '
GND vs GND YOlo=—""—DEVICE SELECT' 0 /
5 ;i
— L
18]
VeC £ aop—COUCO canpHics/TexT (86)
3 5 C052/C053
A3 IC vl NOMIX/MIX (8.6) SOF]' SW”—CHES
K 28 gy 02— pgrmge 2 510
A Ua ;;ESES& " a3 CO/COT) oges/mires (86)
AD
CrcH - 04 |2 COS8/C059 a4 o soN
@ 13]paTa Q5|0 COSACOSB v orr/oN
N o __COSC/COD 1 e o (75)
SOFT 5115415 AN
39) oo O7f2COECOF s oerson

Generation of Address Decoded Signals (Figure 7.2)

(5’ @nby4) sedneq O/l Ibues

10 Understanding the Apple |I

9HA
INILLIS TT00V4 NO ONIONI4IQ
SONOD3ISOHDIN 00EE OL 2 SI LW 35Nd
ASEE HA
_ o
0 (0 b3IAIL SY INVS) S,__ 7
8 € 43 £ 43091k .
|||||||||||||||||||||||||||||| N
— 9T
T 20 (0 HINIL SY INVS) i [
§ 2 HINIL 2 43091 |— = 0
11 — IiH
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII "_amwc..“_”.
1Y %
D (0 ¥3NIL S¥ INVS) [er -
o e | 3991 124
|||||||||||||||||||||||||||| Eumﬂ
i L v = = HINLL
AT el X202
= T
2.
&M omanog_ L)
I
I
HIIVIS H 4 o0
a5 ngvoll 1
1) 1
MR AEY (EERETTI
w_ﬁ e - . 0 BINL e
T WON SHINIL TV 01 ol ol 4 wu
—=l0 =" i J,I@ dd “..__ mﬁs& ASKE = DJAXEY = HA 00| 10d| 210d £10d
E|...=H”] 2_ 08 00 3n3ssw) .— e MOSIS 051
= 13534 £IH aNg 90A
0¥ —pf v ¥l T 2 Th_ S
ok UNIGH ol _|L__. N
o Ag = 4] i T 91
o8 E sl
- 8
was O 095 o2 g X0
uz:m.n Ano _mmmb..__z ¥a S ENV b 473500
0 N |-
10 -=—H1N0 W £ 71084 P 09500 ¥ (z2)
S & INV - 8/¥509
20 3 £ % ONY = 6/8500
o a [T ¥
9 L : 03103NNDD
J.IA‘ len) 135 3100Vd N 4O
X300 NIILSAOT HLIM NMOHS
1S 13%00S 0/1 INVD

wr

Schematics 14

(£ L @nbi4) piooghe) || eiddy eyl

47100°

aasw g M|¢5T|Jm

_ mﬂfﬂ 00vL 00%L 0ovL

. 7
g 1 ” % . | 3ONN08
T 4 2 I__| ”“ uwﬁ v xua.ﬁ.ﬂ_\/\rwlﬁ
j 7| Gese) Y i3s3 Io —
UNZZ 9] G55 W02z 9| wamiL (60) Tvaday
azH elv £H ..%__m NG
7] L %9019
2 ikl Wi n0fe—— ol 1v3d3u
] 1
-) 7 HOLV112S0
dNHIMOd | = 1¥3d34 2
| ; 3
" wgENz 0HINOD |5 n F (62)BuIN0) Tm
¥y 0¥ i
®L2W)
HAI34 ONY
AawoL 1o
- r
11G 1508 ¢ BN o 0IA : _ |
= i 17
. - o S S A N i E
o i i 6A g
== S — - -] = 1 —_
o g q\oA\m —36] % > L U
(g BAISE 3
XNW YIYQ Loy . - R || oA 4 4 ke
Eéﬁﬁ by 9 F/ ! e m e
- g < d! 0
04YORAIN oA - Ll il
SR = = E—] N e "
ETRILA £ 13 oL H ov mrn.m W wmr @e 1&; i i
SA +— - -t
> n B I (T N._,]OA! a9 ke e | E.
v_.rnmm tmwd. 'ﬂw .mw__u -Wu r
~W ———Hr——o<H—wq® ol L
14 983 MAF.W, T
e - ¥ (E— loA_\|1 18 2\
OX 2l gy Ve =p0 ™ 3wt om0 3 ¥
\ . i O fw_w " ™
" KRS
Al-e— 99A A
5 “__mu_ o g 9 f_- M*x /mx cp,x 2l
g == 1 M|) i1 Jono
47 w__._—..\—.
- 1T s mu_ . WOY H300IN3 QYVO0GAIN
S] 1 BOLVIIONI o 718YN3 Ov/SWW - 8N
| HIMOd 1ndLno

Q4v0843HLON

m
BNt qyy0aAIN

7

12 Understanding the Apple I

U5 AY-5-3600
KEYBOARD ENCODER ROM
X0 X1 X2 X3 X4 X5 X6 XTI X8
O] 39] 8] 3] 6]] 3] B 2
7) (14) 13) () (2) [4] [s][e] [e
+el - n..__‘CF b SPC & _.-
s
B4 9 i =1
—— 4 e 4. Iij
4!-._‘_ 5‘-._, ﬁi-.__ ?-.__ D,__
1
01"-._ 1o 24 34 @
o 5 g SR LI i gl
. G,
* -—
L o 8 8 Py 4
5. - i v R
o f0 142 I S8 2
() Vi
5 T AR i @) 23 v
o &) "
§48. Va2 KB 6 oo o %
; S8 e
ppe T ¥ a0 g& @ a1,
R TS U Y ® 2l
9553.._ E'E: G*-:J'-g: ctdd ;‘1-.. e 19
$ 4 " W i
4-~WJE. FF@L x.i'_?__z‘g,_‘_ :ﬁ 18 i
T ol o) 7| 548 .y],
3 g
L. SHIFL. (40) L %5
O [17] 8 SHIFT
R SHIFL (1)
o ©
7400
_ CONTROL . (27) 3 1_]13 vz Yo'—ZcontmoL
@ S RESET (13) ona
T CONTROL O—(22)—=KEYBOARD

PLUG 1 PINS
(KEYBOARD/ENCODER BDARD)

[] Jack 2 PiNs (NUMERIC PAD)

vce

GND

VGG

B7

DOWN

A
16 PIN DIP
JUMPER T0
MOTHERBOARD
5V
POWER T]
30 INDICATOR 1 +5V
Lcs [‘li&. Lo
1 = 1uF
& TpF (3) D TPB
=
C4 % =
o [15 1V
U4 7404 L
18 i DC,JO 13 = Ki
N 9 DO B 1 i
% Lt Dol
s2
b o
7 NC NG
NC HH—NC
NC NC
1 7400 NC NC
pf—{ | 1 P A G
RESET FROM 3 RESET

CONNECTOR
5
NG
BOKHz__ 3]s
Rt
50K
A ko
o
L _ilsg
Trsee] BOUNCE
c2
.DZE'ILF:I'_

LATCHED
KEYBOARD
DATA TD
RAM/
KEYBOARD
DATA MUX
(5.2)

ANY REPEAT (25) TIMER _ 16 2K
KEY % RESET r;al
R10 GND L7
4.7K c8 1 kM
|1 wF

The Apple Il Plus Keyboard and Encoder Board (Figure 7.8)

Schematics 413

= RIW g
I 741532
PHASE 1
-«Q~ MPU
1
3 a7
2l8n) PHASE 0
S RDY NMI' IRQ' RES'
PHASE 0 2 A6 R4 R4D
1 (3.8) 77,78
L504 5v 3] KEYBOARD
CONNECTOR
13 1 e
] Rvve" J
POWER-UP
i 1129 w0 Yai
2foun RDY NMI' IRQ" RESET
(' 1Blaiw
1)
—16a4
—Llap 48] -—
- —ddar
—Ran s
11]ha’ o DATA BUS
ADDRESS T s EIGHT o
US I PERIPHERAL D
Ad SLOTS
A5
o =
- 50 . jp
AD ﬁﬂ—».izv 5V
o =
PHASE 0 —
TIMING PHASE 1 1.
GENE;!QTION i‘ 1Kn
@8 OLOR REF
(SL0T7 ONLY) usent (32 00 H12§
DEVICE SELECT" il ADDRESS
1/0 sTRoBE’ f8l—F1214) DECODE
1/0 SELECT' (7.2)
VIDEO (SLOTS 1-7 ONLY)
SYNC v
GE"%? Q,T 10w {!"?LEJuT > ONLY) ‘
RAO1T
2 oma 1K
MA OUT 2 7 18 ROM
28 ENTERRUPT IN INHIBIT o
NTERRUPT OUT
w/'aEvu
72, l WA, REV 1 & LATER
XX C4

DMA PRIORITY CHAIN NC
INTERRUPT PRIORITY CHAIN NC

-——=VIDEQ SYNC (8.5, 8.7)

Pp=—1am(38)
. [REV7 & LATER
GRAPHICS TIME « 3 RAS
=—{5ees JUMPERS

e KEULDR REF (3.8)
REV 1 & LATER

COCX
H2-11
72

Peripheral Slot Connections (Figure 7.9)

Understanding the Apple |

1/4 10
T4L5194

Video Generation (Figure 8.6)

COLOR
TONE
A5 2 3 sV
1K 4TpF 550 pF COLOR BURST
J_ 06 E?u TEXT
L1 L
HS ¥ 2N3904 C050/1
HBLTOCI2-M 2TuH A
}——RAM ADDR. MUX T COLOR v
15.10) BURST
- L Gam c
o 6 VIDED BLANK 1uF
:saz
FROM SYNG TOSLOT 7.
(39) | ——=PIN 19.(7.9),
VBLV2VIVD REV 1 & LATER
VC: (HA+HS)
A8
8 SYNC \5“\,\,_'
A7 VIDED
1.5K g ouT
PICTURE SIGNAL
VIDED BLANKING
DLO-7 FROM RAM LATCH GRAPHICS TIME + 1 RAS' e
HO-5. VA-VS FROM VIDEO SCANNER -
14M, 7M. 7M', LPDS', LD194 FROM TIMING 39 5208
TEXT, MiX. HIRES FROM ADORESS DECODE VC DL7 HO
72 HIRES TIME (39) 1/2LS74
HIRES - TO RAM ADDR. SOFT INVERTER
MUX(510) 511
(7.2) TEXT cu:nn
(39)v2
(39) w—-s-l
{72) MIX
o RAS'
{a8)
38 @
GRAPHICS SHIFT it (5 GRAPHICS TIME i
|
L5194 OPERATION i
07— 5150 |ACTION |I
TIL I 14m K 174 114 174
sad A Lol L2 : A PR
s TN S A | LOAD 5 |
H|H] LOAD THIS,
DL4 P
r LS
(3.9) SOFT &-11 L
3.8) TM— o
Foa b it Pl
1C OCTTADA | ag Loags #
4 1 w4 | LS2T \ -~ 5
A | AR - e Bk L e
€ 1 7A - PICTURE
1 LD194 (38) _ s Fr
14M (3.8} e
S A A 2
] 12
K] 03 K 03
" swe—3afoz gy oz - D2 HIRES
5214 00, pememm——————
oL Alor LS104 gpf
[e e 15 1 HIRES
L =00 psren O > =—103 pE{ AvED ?
. N
(3.9) SOFT 56—t 271 A zp-e
= 12V -5V
38) M 14M LDPS -5V
Ty TEXTSHIFT g 7| s s e L
: .
O Jy g 1% .‘J‘l!m s -
G g9) 82> 0o WL prrrey
A3 14 7
: 74165 58 | yert i e el
52 SHIFT TEXT W o L
D REG g {LATCHED) 16 8
c NORMAL /INVERSE R B il
B L g U
: SERIAL ou7]ous] Text [b=
) T [L [WveRT F U a1
T W]FiASH L6 18
A | L | NOAM |
H [H [NOAM | e

Schematics

15

.2
TEXT G050/1

COLOR BURST
o J_ 06 TEXT
u £050/1
H5 HBLTOCI2:14 27,H T (12
}——> RAM ADDR. MUX 47K
(5.10) - 14
] OR -
BURST =
GATE
FROM
(39) REVT: AFI AEV:
VBLVZVIVO: VBLVZVIVO'
VC-(Hd + H5) VC*(H4+ HS + H3)
O . S
SYNC 2 k
ANN— 1 RFI
'REV
SYNCTOSLOT7, A7 }
PIN 19 (7.9) 1.5
5
(39) H4 4
rev7 | oo e 6 Jmot -] o
39) H5
L A PP = - e
1
(3 i PICTURE
[g Ha a e i SIGNAL
B :m:'(;.. ol _b, ol E.' Pot 4
(39) H5 Lso2
c16 VIDEO
a7pF out
23168 ROM USED FOR TEXT (3.9) =
GENERATION (REV 7 & LATER) SOFT 58 -
v =Y R
v
N M L RFI REVISION
1 9
K1 CKZ LD GLR
A0 A3 74166
(39) Al — L T e 133 TEXT
: 12 .] 1 o pCTURE
A2 A5 LEFT DOT OF 5 x 7 TEX - G SIGNAL
1 74586
A3 2316B - y F
M ROM pondtl E
2 o1 1
Al 71E LATCHED
i OR AL GHTDOTOFSx7TEXT 4 [& | T
(52 ¢ 1,7 oof2 ~ 3 18
A8 2716 FLASH P I Y
ag EPROM L3R
A10 1
12
1/4A10
> 74L5194
EXT
FLASHER

Revision-7 and RFI Version Changes to Video Generation (Figure 8.7)

16 Understanding the Apple ||

A7

A8

F|G

17 €3
—=NC LS323
18

DATA

REGISTER

DEVICE 1"
stiber(A—q

n(2—3o

A1(3)
A2(4)
A3(5)

A LATCH

ADDRESS- (8]
ABLE oo —COET I8] phs3 |y,

14

RESET(31

INT IN
INT OUT(23

DMA
I%]
M
ut

D
0

o
L

o SLOT EDGE CONNECTOR
|:] 20 PIN DRIVE CONNECTOR

VCC
outl®
™ DRIvE
™ olhy
CLR (1SEC) N
-
R4
up
Wloeser le & Mo
(.1 SEC) THZ

1

S1
%‘m 0
7l6ja T
2 [OTO0 T
20lyec
COEC/D SHIFT/LOAD 8l m
COEE/F READ/WRITE 4 |, S09P6 o Je
Logic 02
17)p° SEQUENCER
. 5
ry9 Sragl 12l n ROM g1p!
122
S ok GLAVEE i
- Moo
READ A3 LS174 HEX FF AZLS132 =
‘ 1uSEC 3 7 it 04
14 0 15 i » os}'2
4 . 5 18 = 06 13
- D AB o7 14
3.1 1o 18 a7
WRITE J_—E (18] Sawae
oo REQUEST]
1505
DRIVE ON
COEA/B DRIVE 1/2 A2 L§$132
113 o
HEAD STEPPER
Q7 05]4 CoE0/1 ks MOTOR PHASE
£ g5 CoE2/3 = P DRIVE ON
7418259 PHS1 5 -
aBiT 0AS_ COE4/S -

ENABLE 2

o A2LS132 puapiEr

The Disk Il Controller (Address References Assume Slot 6) (Figure 9.8)

FO1 and FO2 refer to the foldouts.

Aalto, Jim 9-34
active-when-high E-3
active-when-low E-3, 1-4 to 1-5
address bus 1-3, 2-1 to 2-13, FO1
and address decoding 2-6 to 2-12, 7-1 to 7-8
and DMA 2-9,4-5,4-13 to 4-14
and MPU 4-2to4-5,4-7Tto4-9
and peripheral slots 7-17 to 7-20
and RAM address multiplexor 2-9 to 2-11, 5-1 to 5-9, 5-21
and ROM 6-2 to 6-4
and serial I/O 2-6 to 2-12, 7-2 to 7-10
and 6502 instructions 4-20 to 4-23
address decoding 2-6 to 2-12, 7-1 to 7-8, FO1
and R/W’' 7-8
and 6502 1-3, 4-6
list of functions 7-5
address fields, DOS 9-3, 94, 9-26 to 9-28, 9-39 to 9-42
(also see DOS data formats)
AND gate E-1to E-3, gl-1
AND instruction E-1to E-56
ANIMATRIX 8-30
annunciator 1-8, 2-12, 7-2 to 7-3, 7-6, 7-10, FO1
Apple Computer, Inc. vi, 3-9, 4-1, 5-26, 5-28, 6-2, 6-4, 6-6, 6-8,
6-13, 7-20, 7-34, 9-3, 9-4, 9-9, 9-11, 9-17, 9-34, 9-41, 10-3,
10-5, 10-7, B-1, G-1 to G-3, H-1 to H-2, I-1 to I-3
AppleI1
history H-1to H-2,1-1to I-4
overview 1-2to 1-10
Apple II Cireuit Deseription G-1, Schematies-1
Apple II Plus 1-4, 6-6, G-2
keyboard 7-13, 7-15 to 7-18
Apple IT Reference Manual v, 1-4, 3-9, 3-18, 4-11, 4-12,
5-9, 5-11, 6-1, 6-4, 6-5, 7-12, 7-13, 7-15, 7-22, 7-24, A-
G-1, G-2, Schematics-1
Apple II Reference Manual Addendum 3-9, 7-21
Apple II Reference Manual for Ile Only 14, E-4
AppleIle v, 1-7,4-26, 7-13,10-5, -2 to I-3
Applesoft Basic 1-4, 4-12, 4-20 to 4-21, 6-6, 6-8, G-2, gl-1
Applesoft Tutorial v
Applesoft II BASIC Programming Reference Manual v
Application Notes (see Hardware, Software Applications)
ASCII v, 1-6, 1-7, 7-17 to 7-18, 8-30 to 8-32, gl-1
aspect ratio 8-28
assembler 4-11 to 4-12
assembly language vi, 4-11 o0 4-12, gl-1
Atari, Inc. 4-1, H-2
audio (see Speaker)
Autostart ROM 6-6
and Apple Il Plus 6-6, G-2

4-15,
1, E-4,

Index

and Apple II reliability 10-3
and disk boot 4-15, 9-1, 9-11
and interrupts 4-15to 4-18
and I/O links 7-22
and monitor modification 6-16 to 6-17
and RESET" 4-15, 6-16 to 6-17, 9-11
and 16K RAM card 5-31
on firmware card 6-11, 6-18 to 6-21
(also see monitor)

AX signal 3-3 to 3-10, 5-2, 5-6, 5-23 to 5-25

bandwidth 8-6, 8-33 to 8-34
bank switching
motherboard RAM 5-34 to 5-35, I-2 to I-3
motherboard ROM 6-1, 7-19 to 7-20
RAM card bank 1/bank 2 5-26 to 5-30
(also see INHIBIT')
baseplate 1-2
removal J-1
BASIC vi, 1-1 to 1-2, 6-5 to 6-6, gl-1, I-2 to I-4
and disk [/O 9-34, 9-37
and paddle programming 7-25
and Page 0/Page1 4-5
and 6502 instruction details 4-20 to 4-21
in ROM 1-1to 1-4, 2-6, 6-1, 6-5 to 6-6
programming 4-12
(also see Applesoft BASIC; Integer BASIC)
Baum, Alan 7-8, H-1, I-2
Baum, Peter [-2
Beneath Apple DOS 9-3, 9-37
bidirectional bus drivers 4-2 to 4-3, 4-5, G-3
and DMA 4-13
and write cycle 5-24 to 5-25, 7-9
(also see MPU; transceiver)
binary information 1-3, F-1to F-3
binary number system vi, F-1 to F-3, gl-2
Bishop, Bob 5-36
bit 1-3, F-1, gl-2
blanking 3-10 to 3-12, 8-3 to 8-5, 8-28
(also see HBL; VBL; video signals)
Boole, George E-4
Boolean algebra E-4 to E-5
Bootstrap ROM (also see ROM) 9-1, 9-10 to 9-12, gl-2
BREAK
flag 4-4,4-18
handler 4-17 to 4-18
instruction 4-17 to 4-19
vector 4-18
breakpoint
hardware 4-29 to 4-32
software 4-17, 6-16

2 Understanding the Apple I

bus 2-1to 2-3, gl-2, FO1

address (see address bus)

Apple 2-3 (see peripheral slots)

data (see data bus)

drivers 2-1to 2-3, 4-2 to 4-3, 4-5, g1-2

fights 6-2 to 6-4, 6-8, 6-11, I-3

multiplexed RAM address (see RAM)

peripheral 2-3 (see peripheral slots)

RAM 23

ROM 2-3

secondary buses 2-9 to 2-12
byte 1-3, gl-2
BYTE FLAG 9-26, 9-29 to 9-34, gl-2
BYTE Magazine 5-32, 6-5
card cage 1-4, gl-2

(also see peripheral slots)
CAS’" 3-3 to 3-10, 5-2 to 5-6, 5-20 to 5-35
cassette [/O 1-8, 7-10 to 7-12, FO1

and address decoding 7-2 to 7-6

and bus structure 2-6 to 2-8

and D MAnual Controller 4-27

read/write routines 6-16

schematics 7-6, 7-10
cathode ray tube (CRT) gl-2 (also see video)
character sets 8-9, 8-30 to 8-32
chip select, ROM 6-1 to 6-3, 6-13, 6-21
chrominance signal v, 8-5 to 8-6, 8-33 to 8-34
cireuit symbols 2-2 to 2-3, E-1 to E-5
clockpulse 1-2 to 1-3, 3-2 to 3-8, 4-2, 4-6 to 4-10, E-3
clockpulse jitter 1-2, 3-18, 9-24 (also see long cycle)
cold start reset 4-15
collector-OR (see wire-OR)
COLOR BURST 3-9, 8-3 to 8-6, 8-8 to 8-13
Color Burst Killer 8-11 to 8-13, 8-29, G-2 to G-3
COLOR DELAY’ 83-5to 3-7
color graphies 1-5 to 1-6, 8-6 to 8-7, 8-18 to 8-25
COLOR REFERENCE 3-3 to 3-9, 8-5, 8-15, 8-18 to 8-25
color signals 8-5 to 8-7, 8-15, 8-18 to 8-25, 8-33 to 8-34
color subcarrier 8-33 to 8-34
colors 1-6, 8-6 to 8-7, 8-18 to 8-25
COLUMN address 2-11, 3-9, 5-1 to 5-6, 5-23 to 5-24
COLUMN limited RAM access 5-32
command decoder 9-2, 9-10 to 9-14

(also see disk controller)
Commodore 4-1
complement gl-2
complementary colors gl-2, 8-15, 8-18 to 8-19
compilers 4-12, gl-2
composite video 8-3, 8-6, gl-2 (also see video)
COUT1 7-21to 7-22
CP/M (Control Program for Microprocessors) 4-13, 5-26
CSW (Character output SWitch) 7-21 to 7-23
cursor 8-31 to 8-32
cursor moves 1-7, 6-6, 6-11, 6-16
eycle stealing 4-13 to 4-14, 4-24

data bus 1-3, 2-1 to 2-13, FO1
and DMA 29, 4-13
and MPU 2-4 to 2-10, 4-2 to 4-5, 4-7 to 4-10
and peripheral slots 7-17 to 7-20
and ROM 6-2 to 6-4, 6-6 to 6-8
and serial inputs 2-7 to 2-12, 7-2 to 7-10
and 6502 instructions 4-20 to 4-23
driver (see bidirectional bus driver)
management 2-3, 4-7 to 4-10
management gates 7-3
RAM/keyboard connection 2-11 to 2-13, 5-3 to 5-5, 7-2
(also see timing diagrams: RAM SELECT")

data fields, DOS 9-3 to 9-4, 9-26 to 9-28, 9-39 to 9-42
debounce 4-24 to 4-25, 6-18, 7-13 to 7-17
debug 4-12, 4-17, gl-2
decimal number system F-1, gl-2
DEVICE SELECT' 4-8 to 4-10, 7-2 to 7-9, 7-19 to 7-21
Digital Research 4-13, B-1
DIP (Dual In line Package) 1-8, gl-3
disassembler 4-11, gl-2
disk controller 9-10 to 9-34
and bus structure 2-7 to 2-9
Bootstrap ROM 9-1, 9-10 to 9-12
command decoder 9-11 to 9-14
data register 9-17 to 9-24, 9-29 to 9-31
drive select 9-13
head positioning commands 9-13
logic state sequencer (see logic state sequencer)
power-up reset 9-13
read pulse processing 9-15 to 9-16, 9-29 to 9-35
READ/WRITE 9-13 to 9-14
SHIFT/LOAD 9-14
WRITE PROTECT signal 9-8,9-12, 9-17
WRITE REQUEST’ 9-7, 9-8, 9-13 to 9-14
WRITE signal 9-7, 9-22 to 9-24
disk drive 9-5 to 9-11
analog card 9-3, 9-6, 9-17, I-1
apparent momentum 9-13
enabling 9-5, 9-13
erase head 9-6 to 9-8
motor speed up time 9-38
power supply 9-5, 9-38
read interface chip 9-9 to 9-11
read pick up signal 9-9
read pulse 9-9 to 9-11
read/write head 9-5 to 9-7
reliability and repair 10-2, 10-5
stepper motor 9-2 to 9-7
stepper motor response time 9-7, 9-38 to 9-39
write protect switch 9-8 to 9-9
write protect switch bypass installation 9-43 to 9-45
writing to disk 9-7 to 9-8
disk I/O 2-7 to 2-9, 9-1 to 9-45
bypassing write protection 9-43 to 9-45
controller (see disk controller)
data formats (see DOS data formats)
data paths 9-1to 9-5
DOS (see DOS)
drive (see disk drive)
hard sector 9-3
head positioning 9-5 to 9-7, 9-11, 9-13, 9-38 to 9-39
programming 9-11 to 9-15, 9-17 to 9-24, 9-29, 9-34 to 9-42
read process 9-4 to 9-5
RWTS (see RWTS)
soft sector 9-3 to 9-4
write process 9-5
write protection 9-6, 9-8 to 9-9, 9-12, 9-17 to 9-22
display, video (see video; screen)
DMA (Direct Memory Access) 1-5, 2-9, 4-13 to 4-15, gl-3
and MPU 1-5, 29, 4-2 to 4-5, 4-12 to 4-14
and maximum PHASE 0 hold off 4-13 to 4-14
and READY 4-14
cycle stealing 4-13, 4-24 to 4-26
direct bus access 1-5, 2-9, 4-14
D MAnual Controller 4-24 to 4-27
DMA IN/OUT signals 7-19, 7-21
DMA’signal 2-9, 4-2 to 4-5, 4-12 to 4-14, 7-19, 7-20
from video scanner 4-1, 8-1 to 8-2
priority chain 4-14to4-15,4-25t04-27, 5-31, 6-8 to 6-10, 7-19,
7-21
simultaneous DMA 2-11, 4-13
(also see video scanning)

Index 3

Dokay Computer Products 5-32
DOS 9-1t09-7, 14
and firmware card 5-29, 6-8 to 6-10
and I/0 links 7-22 to 7-23
and RAM card 5-28 to 5-30
TOOL KIT 8-30 to 8-32
3 93,926
3.2 9-26 to 9-34
3.3 9-26 to 9-42
DOS data formats 9-24 to 9-27, 9-34
address field 9-3, 9-4, 9-27 to 9-28
bootstrap incompatibility 9-26, 9-34
checksum 9-26, 9-42
data field 9-3, 9-27 to 9-28
data field misalignment 9-40 to 9-41, 9-42
field identifiers 9-26 to 9-28, 9-34
read syncing leaders 9-24, 9-27 to 9-28, 9-30
restrietions 9-26 to 9-27
sector 9-3 to 94
sector interleaving 9-39 to 9-42
track 9-3,9-7
track to track synchronization 9-40
write tables 9-26, 9-27
(also see RWTS programming examples)
dynamic RAM 1-4, 5-1 to 54, gl-3 (also see RAM)
EPROM 6-13 to 6-17
adaptor 4-29, 6-13 to 6-15
and NMI STEPPER 4-29
and Revision 7 G-2
configuring firmware card for 4-29, 6-9, 6-11, 6-21
creation for system monitor 6-16 to 6-17
manufacturers of 6-14
products related to 6-13 to 6-14
programming screen character sets 8-30 to 8-32
Espinosa, Chris H-2, 1-3
Eurapple jumpers 1-5, 3-12, 3-14, 8-12 to 8-14, G-2
Eurocolor 1-5, 8-14
exclusive-OR gate gl-3, E-2
expansion ROM 6-1 to 6-2 (also see seventh ROM)

fan, cooling 10-3 to 10-4
FCC regulations 8-3, G-1, G-3
figures (see appendix K)
firmware 1-1 to 1-4, 2-6, 6-4 to 6-6, 9-11
(also see Applesoft; Autostart; BASIC; Integer; monitor; ROM)
firmware peripheral card 1-8, 6-6 to 6-8, G-2, I-2
and DMA Controller 4-26 to 4-27
and DMA priority chain 4-15, 4-26, 5-31, 6-10
jumpers 6-11, 6-18 to 6-21
modifications 6-18 to 6-21
timing 6-11 to 6-12
flashing text 1-6, 8-7 to 8-8, 8-12 to 8-13, 8-17, 8-30 to 8-32
flip-flop 9-24, E-3, gl-3
floating bus 4-8 to 4-10, 5-25 to 5-26, 5-36, 7-8, [-2
(also see timing diagrams)
floating point routines 6-5 to 6-6
floppy disks 9-3, 9-24
Fourth Dimension 9-45
frequencies, Apple 3-3 to3-4, 3-18
front panel 4-29
Fujitsu 5-32
F8 ROM 4-15, 6-5, 6-16
and firmware card 6-11, 6-18 to 6-21
and 16K RAM card 5-31
(also see monitor; ROM)

game [/0 socket 1-8, 7-2 to 7-4, 7-9 to 7-11
and SHIFT key mod 7-36 to 7-37
extending 1-8 to 1-9, 7-28 to 7-33

gates (logic) 2-6, E-1 to E-5, gl-3

Gayler, Winston G-1, Schematics-1
General Instrument 6-1, 7-15, 8-16
GETLN 7-21to 7-22
GRAPHICS mode 1-5 to 1-7, 8-7 to 8-9
(also see LORES; HIRES)
GRAPHICS/TEXT soft switch 1-7, 7-2 to 7-6

hacker 6-6, gl-3
Hardware Applications gl-3
Bank switching the motherboard RAM 5-34
D MAnual Controller 4-24 to 4-27
Detecting television SYNC 3-19 to 3-26
Eliminating colored shadows from text 8-29
EPROM in the Apple 6-13 to 6-15
Extending the game I/0 socket 7-28 to 7-32
Installing volume control on Speaker 7-39 to 7-40
Installing WRITE PROTECT switch on Disk II drive 9-43
to 9-45
Making the shift key modification 7-36 to 7-38
Modifying the firmware card for independent selection of the
F8 ROM 6-18 to 6-21
Modifying the keyboard so control and RESET must be
pressed to cause a RESET 7-34 to 7-36
Modifying the system monitor 6-16 to 6-17
Multiple RAM card configurations 5-42
NMI’ based single stepper 4-28 to 4-32
Programming screen character sets in EPROM 8-30 to 8-32
Upgrading Apples to 48K RAM 5-32 to 5-33
Using paddles and joysticks not designed for the Apple 7-33
HBL (Horizontal BLanking) 8-3 to 8-5, 8-9 to 8-13
and memory scanning 5-9 to 5-20, 5-36 to 5-41
head positioning (see disk [/0)
Hertz (Hz) 1-2, gl-3
hexadecimal number system vi, F-2 to F-3, gl-3
high frequency rejection filter g-3
high level language 1-2,4-10 to 4-12, gl-3
HIRES graphics 1-5 to 1-7, 8-18 to 8-22
character sets 8-30 to 8-32
colors 1-6, 8-6 to 8-7, 8-18 to 8-22
delayed video 1-6, 8-18 to 8-22
distance ratios 8-28
generation 8-8, 8-12, 8-15, 8-18 to 8-19
interference 8-20 to 8-22
memory scanning 5-12 to 5-21, 5-36 to 5-38
resolution 1-6, 8-19
(also see LORES; video)
Holt, Rod 9-21, H-2, I-1, [-2
Homebrew Computer Club H-1
horizontal blanking (see HBL)
horizontal counter 3-11, 3-14 to 3-15
horizontal PERIOD 8-9 to 8-14
horizontal retrace 3-11, 5-13, 8-4, 8-10
horizontal scan 3-10 to 3-12, 8-4 to 8-5, 8-10
horizontal sync 3-10, 5-11, 5-15 to 5-18, 8-3 to 8-5, 8-9 to 8-13
HRCG (HIRES Character Generator) 8-30

1/0 (Input/Output) 1-4 to 1-9, 2-6 to 2-12, Chapters 7-9
and address decoding 2-6 to 2-12, 7-1 to 7-8
and bus structure 2-6 to 2-12
and firmware 6-5, 7-21 to 7-23
cassette 7-2 to 7-12
disk 9-1 to 9-45
game socket T7-2to 7-11
keyboard 7-12 to 7-18
links (CSW and KSW) 7-21 to 7-23
port 1-8, 2-7, 7-9, gl-4
peripheral slots 7-19 to 7-23
serial [/O 2-12, 7-2 to 7-12
speaker 7-1to7-12
timing 7-8to7-9
video 3-10 to 3-16, 8-1 to 8-34

4 Understanding the Apple |I

I/O SELECT’ 6-4, 7-2 to 7-9, 7-19 to 7-21
and disk controller 9-10 to 9-12
I/O STROBE' 6-2 to 6-4, 7-2 to 7-9, 7-19 to 7-21, I-2
protocol 6-4
(also see seventh ROM)
IC (see integrated circuits)
impedance 2-1 to 2-3, gl-3, E-3
indirect addressing 4-5
INHIBIT" 6-2 to 6-4, 6-9 to 6-12, 7-19 to 7-20
input buffer, GETLN 6-5, 7-21
Input/Output (see I/0)
Integer BASIC 1-4, 4-12, 5-38, 6-5, 6-8, I-3 to I-4, G-2, gl-4
integrated circuits 1-2, 1-8, gl-4, E-3
location FO2
troubleshooting 10-3 to 10-10
2316/9316 ROM 6-1 to 6-3, 6-6 to 6-8
2513 text ROM 89, 8-12, 8-16 t0 8-17, I-2
2716 EPROM 6-13 to 6-15
3470 floppy read interface 9-9 to 9-11
3600 keyboard encoder 7-15to 7-17
4116 RAM 5-1 to 5-3, 5-32 to 5-33
568 quad timer 7-10 to 7-11
5740 keyboard encoder 7-13 to 7-15
6309 PROM 9-22 to 9-23
6602 MPU 4-1 to 4-10, 4-22, C-1 to C-7
7415138 decoder 6-2 to 6-3, 6-9, 7-4
74LS148 priority encoder 4-24 to 4-25
7418251 multiplexor 6-4, 7-11 to 7-12
74L874 dual D flip-flop E-3to E-5
741 opamp 7-10 to 7-12
8T28 quad transceiver 4-3, 4-5, 6-2, 6-4
8T97 hex tri-state driver 4-3, 4-5
8304 octal transceiver 4-3, 4-5, 6-2, 6-4
Intel 4-14, 6-13
interlacing
frequency 8-6, 8-34
television scan 3-12, 8-5, gl-4
interpreter 4-12, 6-5, gl-4
interrupts, 6502 4-3 to 4-4, 4-15 to 4-19
acknowledge 3-19to 3-24, 4-16
BREAK 4-17 to 4-19
handlers 4-16to4-19
INTERRUPT IN/OUT 7-19, 7-21
IRQ' 4-3to4-4, 4-16 to 4-19, 7-19, 7-20
NMI STEPPER 4-28 to 4-32
NMI' 4-3 to 4-4, 4-16 to 4-19, 7-19 to 7-20
polling 4-17
priority among interrupts 4-19
priority chain 4-17, 7-19, 7-21
RESET' 4-3 to 4-4, 4-15 to 4-16, 4-19
stacked interrupts 4-17
vectors 4-15to 4-18
video sean interrupting 3-19 to 3-24
(also see IRQ"; NMI'; RESET’)
inverse text 1-6, 8-7 to 8-8, 8-12 to 8-13, 8-17, 8-30 to 8-32
INVERT TEXT signal 8-12 to 8-13, 8-16 to 8-17
IRQ’ (Interrupt ReQuest) 4-3 to 4-4, 4-16 to 4-19, 7-19, 7-21
handler 4-16 to 4-19
hard vector 4-16 to 4-18
soft vector 4-17

Jameco Electronies 5-32, 7-33
JDR Microdevices 5-32
Jobs, Steve vi, H-1 to H-2
John Bell Engineering 6-13, 6-14
joystick 1-8, 7-9 to 7-11, gl-4 (also see paddles; timers)
jumpers FO2
Eurapple 1-5, 3-12, 3-14, 8-12 to 8-14
firmware card 6-9, 6-11, 6-18 to 6-21
keyboard 7-16, 7-17, 7-37 to 7-38

RAM card 5-27,5-31
TEXT ROM 8-13

USER1 7-6, 7-8, 7-19, 7-20
Tand8 7-19,7-21, 7-22, G-3

Kane, Gerry 4-13
keyboard 1-7, 2-11, 7-12 to 7-18, FO1
alphabetic shifting 1-7, 7-16 to 7-17, 7-36 to 7-38
and address decode T7-2 to 7-6
Apple IT Plus 7-18, 7-15 to 7-18, G-2
ASCII 1-7,7-17 to 7-18
CTRL required for RESET 7-15 to 7-17, 7-34
encoder board 7-15 to 7-16
encoder ROM 7-13 to 7-17
input buffer 6-5, 7-21
keybounce mask 7-13 to 7-17
numeric keypad 7-15 to 7-16
parity bit 7-13
RAM/keyboard multiplexor 2-11, 5-4, 7-2, FO1
repeat oscillator 7-13 to 7-17
SHIFT key mod 7-36 to 7-38
special function keys 1-7, 7-17 to 7-18
STROBE 7-13to7-17
strobe flip-flop 7-14 to 7-15
KEYIN 1-7,7-21
Kraul, Doug H-2
KSW (Keyboard input SWitch) 7-21 to 7-23

Language card (see RAM card)
Language system 5-26 to 5-28, 6-6
LDPS" 3-3 to 3-10, 8-14 to 8-16
LD194 3-3 to 3-10, 8-14 to 8-16
Lechner, Pieter 9-3, 9-37
LOGIC DATABOOK E-3
logic equations (Boolean algebra) E-4 to E-5
logic levels 1-3 to 1-5, 1-8, E-1
logic state sequencer 9-12, 9-15 to 9-25, 9-29 to 9-35, [-2
commands 9-15
decoding the contents 9-16 to 9-19
listings 9-20, 9-21
P6 PROM 9-12, 9-14 to 9-17
read pulse input 9-12, 9-15 to 9-16, 9-32
READ sequence 9-5, 9-20, 9-21, 9-26, 9-29 to 9-35
sequencing flip-flops 9-12, 9-14 to 9-15
WRITE PROTECT sequence 9-17, 9-20, 9-21
WRITE sequence 9-15, 9-17 to 9-25
logic symbols E-1 to E-5
long eycle 3-2 to 3-6
and disk I/Q0 9-24
and timing loops 3-18
and 6502 communication 4-6
detection 3-21 to 3-23
reason for 3-10, 3-12
LORES graphics 1-5 to 1-7, 8-22 to 8-25
circular patterns 8-23 to 8-25
colors 1-6, 8-6 to 8-7, 8-23 to 8-25
distance ratios 8-28
generation 8-8, 8-12, 8-15, 8-22 to 8-25
memory scanning 5-7 to 5-13, 5-36 to 5-38
resolution 1-6
(also see HIRES; video)
LORES TIME 8-12,8-26
LORES/HIRES Soft switch 1-7, 7-2 to 7-6
LSTTL 1-8, 3-15, 5-42, 7-11, gl-4 (also see TTL)
luminance signal 8-5 to 8-6, 8-33 to 8-34
machine cycles 3-3 to 3-9, 4-6 to 4-10, gl-4
(also see long cycle)
machine language 1-2, 4-10 to 4-12, F-2, gl-4
maintenance and care 10-1 to 10-10
Markkula, Mike vi, 9-3, H-2
Mazur, Jeffrey 6-13,9-3

Index 5

memory 1-3 to 14, 2-6
cell 2-9,5-2, gl4
display areas 1-5to 1-7
location 2-9, 5-2
pages 4-5, gl-b
scanning 1-5, 2-11, 3-10, 5-6 to 5-20, 5-36 to 5-41, 8-1 to 8-2
scanning maps 5-10 to 5-19, 5-37
6502 usage 1-3, 4-5 to 4-6
(also see RAM; ROM; DMA)
memory mapped I/O 4-6, gl-4 (also see address decoding)
memory mapped video 8-1 to 8-2, gl-4
Microcomputing 8-30
microprocessing unit (see MPU)
Microproducts 6-13, 6-14
Microsoft 4-14, 4-26, 6-5, B-1, I-3
microsecond 3-4, gl-4
millisecond (msee.) gl-4
Mini-Assembler 4-11 to 4-12, 6-5 to 6-6
MIXED mode 1-7, 8-11
scanning 5-5, 5-13, 5-19
switching 5-5, 8-11 to 8-14, 8-25 to 8-27
meodulation 1-5, 8-3, 8-33, gl-4 (also see RF modulator)
monitor, system 1-4, 4-15, 6-5 to 6-6,
Autostart 4-15, 6-6, 7-22
in ROM 1-4, 2-6, 6-5
listing 6-5
old monitor 4-15, 6-5, 7-21
monitor, video 8-3, 8-6, 8-17, 8-19 to 8-20
Monitor ROM (old) 6-5
and firmware card 6-11, 6-18 to 6-21
and I/0 links 7-21
and interrupts 4-15 to 4-18
and RESET' 4-15
(also see Autostart ROM)
Moore, Robin 8-30
MOS integrated circuit 1-8, 6-1, gl-5
MOS Technology 4-1, 4-7 to 4-8, 4-13, 5-5, 6-1, C-1, C-7, I-3
most significant bit (MSB) 2-7, 2-11, 9-14, gl-5
(also see BYTE FLAG)
motherboard 1-2, gl-4
I/0 1-8,7-1to7-12
part numbers G-1to G-2
removal J-1
revisions G-1to G-3
(also see revision)
Motorola 4-6, 4-14, 6-13, 9-9, I-1
Mountain Computer 6-14
MPU (Microprocessing Unit) 1-2 to 1-3, 2-5 to 2-6, gl-4
MPU, 6502 4-1 to 4-32, C-1 to C-8, FO1
advantages/disadvantages 4-11
and Applel H-1
and bus structure 2-5 to 2-13, FO1
and DMA 4-13 to 4-15
and peripheral slots 1-4 to 1-5, 4-3, 4-5, 7-19 to 7-20
clock pulses 3-5 to 3-9, 4-2, 4-6 to 4-10
connections 4-2 to 4-5, 7-19, FO1
data sheet C-1toC-8
instruction details 4-20 to 4-23, C-8
internal registers 4-10 to 4-11
interrupts 4-4, 4-15 to 4-19
machine cycle 3-3 to 3-9, 4-6 to 4-10
manufacturers 4-1, C-1
maximum clock holdoff 4-13 to 4-14, I-3, C-7
memory usage 1-3, 4-5 to 4-6
programming 4-10 to 4-12, F-2 to F-3
related signals 4-2 to 4-4
stack 4-5, gl-6
timing 4-6 to 4-10, C-1t0 C-8, I-1 to -2
(also see DMA; interrupts; timing diagrams)

multiplexed RAM address (RA0-RA6) 2-9 to 2-11, 5-5 to 5-7,
5-21, FO1
and RAM card 5-28, 5-31, 542, [-3
reflections on 5-22, 5-31, -2 to I-3
termination resistors 5-21, 5-22, I-2
multiplexing gl-5
PICTURE signal 8-7, 8-8, 8-12
RAM address 2-9 to 2-11, 5-6
RAM/keyboard data 2-11, 54
serial inputs 2-12, 7-2

NAND gate E-2, E-3,gl-5
nanoseconds (nsec.) 3-4, gl-5
National Semiconductor 7-13, B-1, E-3, H-2
NEC 5-32
NMI’ (Non-Maskable Interrupt) 4-3 to 4-4, 4-16 to 4-19, 7-19,
7-21
handler 4-16 to 4-19
hard vector 4-16
NMI STEPPER 4-28 to 4-32
soft vector 4-17, 4-29
NMOS integrated circuits 6-1
Nintendo . B-1
NOMIX/MIX soft switch 1-7, 7-2 to 7-6
NOR gate gl-5, E-2
normal text 1-6, 8-7 to 8-8, 8-12 to 8-13, 8-17, 8-30 to 8-32
NTSC television 8-3 to 8-6, 8-14
number systems vi, F-1to F-3
numeric keypad 7-15, 7-16

object program 4-11 to 4-12, gl-5
octal number system F-2, gl-b
Ohio Scientific 4-1
op code 4-10 to 4-11, 4-20 to 4-28, gl-5
open collector 4-5, 7-11
operand 4-10 to 4-11, gl-5
OR gate E-3 to E-b, gl-5
Osborne, Adam 4-13
Oshorne 4 & 8 Bit Microprocessor Handbook 4-13
output enable 2-2to2-3, E-2 to E-3
(also see tri-state; data bus management)

paddles 1-8, 7-9 to 7-11
and game socket extender 7-28 to 7-32
calibration 7-33
non standard 7-33
programming 7-24 to 7-27
quad timer 1-8,7-2to 7-11, FO1
pages, display 1-7, gl-5
pages, memory 4-5, gl-5 (also see memory scanning)
Page 1/Page 2 soft switch 1-7, 7-2 to 7-6
parallel data transfer 1-8, gl-6
PEEK 4-20to 4-21
peripheral card check 10-6
peripheral card failures 10-8
peripheral slots 1-4 to 1-5, 7-17 to 7-23, FO1
and address decoded signals 7-2 to 7-9, 7-19 to 7-21
and bus structure 1-4 to 1-5, 2-3, 7-17 to 7-20, F01
and I/0 links 7-21 to 7-23
connections 4-3, 7-2, 7-19 to 7-21, FO1
reliability 10-2
phase relationships, color 3-9, 8-15, 8-18 to 8-25
PHASE 0 3-3to 3-9, 4-2 to 4-10
(also see timing diagrams)
PHASE 1, Apple 3-2 to 3-9, 4-7, 7-3
PHASE 1, 6502 4-2 to 4-3, 4-6 to 4-7, 5-24 to 5-25
PHASE 2 4-2 to 4-3, 4-6 to 4-10
(also see timing diagrams)
phases, stepper motor 9-5 to 9-7, 9-12 to 9-13
PICTURE signal 8-3, 8-6 to 8-8, 8-12, 8-15

6 Understanding the Apple ||

PICTURE signal multiplexor 8-7, 8-8, 8-12
POKE 4-20 to 4-21
positive logic 1-4, E-1, gl-56
potentiometer (pot) 1-8, 7-11, 7-33, 7-39
power supply 1-2, 1-9, gl-5
reliability 10-2 to 10-3
to disk drive 9-5, 9-6
to peripheral slots 7-19, 7-20
troubleshooting/failures 10-6 to 10-7, 10-9
power-up byte 4-15
power-up reset 2-6, 4-3, 7-14, 7-15, 7-19, G-2
on disk controller 7-15, 9-12, 9-13
PREAD 17-24 to 725
primary I/0 device 6-5, 7-21 to 7-23
prime (') notation 1-4, E-3
printer reliability 10-2
priority chains 7-19, 7-21
DMA 4-14 to 4-15, 4-25 to 4-27, 5-31, 6-8 to 6-10
interrupt 4-17
processor status register 4-10 to 4-11, 4-16 to 4-18, gl-6
program counter 4-10 to 4-11, 4-16 to 4-18, gl-6
programming 4-10 to 4-13
(also see memory scanning maps; software applications)
PROM (see EPROM)
propagation delay 3-4, gl-6
CAS' 520
disk controller clock 9-14, 9-22, 9-23
in timing generator 3-4 to 3-7
PHASE 0to RAM data valid 5-20
picture flip-flop 8-17, 8-25
RAS' to RAM data valid 5-5
(also see timing diagrams)
pull-down resistor 7-9 to 7-11
pull-up resistor 4-5, 4-26, 7-11
pushbutton inputs 1-8, 7-2 to 7-5, 7-9 to 7-11
and game I/0 extension 7-28 to 7-33
and SHIFT key mod 7-36 to 7-37
P5 PROM (see Bootstrap ROM)
P6 PROM (see logic state sequencer)

quad timer 1-8, 7-2 TO 7-11, 7-24 TO 7-27, FO1
fixed timer reference 7-33
(also see paddles; timers)

Quality Software 9-3

Quest Electronies 5-33

R/W' 2-3 t02-13, 4-2 to 4-3
and address bus 2-3, 4-2, 4-3
and address decoding 7-8
and RAM 5-3, 5-4, 5-24 to 5-25
and ROM 6-2, [-3
and write cycle 5-24 to 5-25, 7-8 to 7-9
R.H. Electronics 10-3
radio frequency (RF) 1-5, 8-3, 8-33 to 8-34
Radio Shack 10-6
RAM (read/write memory) 1-3 to 1-4, 5-1 to 5-42, gl-6, FO1
and Apple bus strueture 2-2 to 2-13
bank switching the motherboard RAM 5-34 to 5-35
chip organization 2-12 to2-13, 5-3, 5-4, FO1
chip suppliers 5-32 to 5-33
connections 5-3 to 5-5, FO1
data latch 2-11, 5-3 to 5-5, FO1
diagnostic program 10-8
dynamic RAM chip 5-1 to 54, 5-32 to 5-33
latched data (DLO-DLT7) 5-4, 8-8, 8-12, FO1
manufacturers 5-33
R/W' 5-3 to 5-4, 5-24 to 5-25
RAM bus 2-3
RAM/keyboard data multiplexor 2-11, 5-3, 5-4, FO1
read eycle 5-22 to 5-24

reading video data from program 5-36 to 5-41
refreshing of 1-4, 5-2, 5-19 to 5-20
scanning (see memory scanning)
timing 5-22 to 5-26
troubleshooting 10-8, 10-9
write cyele 5-24 to 5-25
4K RAM chip 5-1, 5-19, 5-32, G-2
RAM address multiplexor 5-2, 5-5 to 5-22, FO1
address assignments 5-6, 5-7, 5-19 to 5-20
and bus structure 2-9 to 2-11, FO1
hardware 5-6, 5-20 to 5-22
HIRES scanning 5-12 to 5-21, 5-36 to 5-38
MIXED mode scanning 5-5, 5-13, 5-19
offset generation 5-6 to 5-9
RAM SELECT" 5-5, 5-6, 5-21
RAO to RA6 (see multiplexed RAM address)
TEXT/LORES scanning 5-7 to 5-13, 5-36 to 5-38
UNUSED 8 5-7to 5-19, 5-37
RAM card, 16K 5-26 to 5-31, I-2, I-3
advantages, disadvantages 6-6
and D MAnual Controller 4-27
and DOS 5-28 to 5-29
multiple RAM cards 5-31, 5-42, 6-11
random access memory 1-3, 6-1, gl-6 (also see RAM; ROM)
RAS’ 3-3 to 3-10, 5-2 to 5-6, 5-23 to 5-32
and MIXED mode switching 8-11 to 8-14, 8-26
RAS' only refresh 5-2 to 5-3
RAS'CAS’ refresh 5-2 to 5-3
raster 3-10, gl-6
RDKEY 8-17
read cycle 2-3 to 2-5, 5-22 to 5-26, 7-8 to 7-9
read pulse (see disk topies)
READ sequence (see logic state sequencer)
read-modify-write instructions 4-20 to 4-23
read/write control (see R/W')
read/write memory (see RAM)
READY 4-3,4-4,4-14
refreshing RAM 1-4, 5-2, 5-19 to 5-20
reliability, Apple 10-1 to 104
relocatable program 4-11, gl-6
repair, Apple 10-4 to 10-10
RESET" 2-6, 4-3, 44, 4-15 to 4-16
and Autostart ROM 4-15, 6-16 to 6-17, 9-11
and disk controller 9-12, 9-13
and peripheral slots 1-4, 7-19, 7-20
and RAM card 5-27 to 5-31
and 6502 4-3,4-4, 4-15
handler 4-5
hard vector 4-15
and Monitor ROM 4-15
power-up (see power-up reset)
priority 4-19
soft (RAM) vector 4-15 to 4-16
revisions, motherboard G-1 to G-3
Revision 1 7-15, 8-5, 8-9 to 8-12, 8-14, 8-19, 8-29
Revision T 5-22, 7-21, 8-5, 8-11, 8-16, 8-30
RFI Revision 4-5, 8-11, 8-15
(also see schematics)
RF leakage 8-3, G-1,G-3
RF modulator 1-5, 8-3, 8-33
Rockwell International 4-1, 4-7 to 4-8, 4-14, C-1 to C-7, I-3
ROM (Read Only Memory) 1-3 to 1-4, 6-1 to 6-21, FO1
and BASIC 1-1 to 1-4, 2-6, 6-1, 6-5 to 6-6
and bus fights 6-2 to 6-4
and bus structure 2-3 to 2-13, FO1
and I/O SELECT" 7-21
and monitor 1-4, 2-6, 6-5
and R/W 6-2,1-3
and 6502 memory usage 4-5to4-6
Bootstrap (P5) 9-1, 9-10 to 9-12

Index

chip selects 6-1, 6-3, 6-13, 6-21
connections 6-2 to 6-4, FO1
firmware 1-1 to 1-4, 2-6, 6-4 to 6-6, 9-11
inhibiting 6-2 to 6-4, 7-20
on RAM card 5-31
ROM bus 2-3
seventh ROM 6-2 to 6-4, 7-21
write cyele (just kidding)
2316/9316 ROM 6-1 to 6-3, 6-6 to 6-8
2716 EPROM 6-13 to 6-15
6309 PROM 9-22 to 9-23
(also see Autostart ROM; Firmware card; F8 ROM; Monitor
ROM)
ROM ENABLE’
firmware card 6-9 to 6-11
I/0 SELECT" 7-21
I/0 STROBE' 6-2 to 6-4, 7-21
motherboard 6-2, 6-3, 7-2, 7-3
RWTS 94
data formats 9-24 to 9-28
flowchart 9-36
RWTS, programming examples from 9-34 to 9-42
checksum 9-26, 9-42
write protect check 9-17 to 9-22
Write Table 9-26, 9-27

scan counter (see video scanner)
schematic diagrams (see Schematic Diagrams section)
Scott, Mike vi, I-3
screen display 1-5to 1-7
mapping 8-1to 82
memory display areas 1-5
memory maps 5-10 to 5-19, 5-37
modes 1-5 to 1-7
pages 1-5to1-7
soft switches 1-7, 7-2 to 7-6
(also see memory; video)
secondary buses 2-9 to 2-12, FO1
serial data transfer 1-8, gl-6
serial I/O 1-8, 2-12, 7-2 to 7-12, FO1 (also see 1/0)
serial input multiplexor 2-7 to 2-12, 7-2 to 7-12, FO1
serrations 8-3 to 8-5, 8-11, G-2, G-3
SET OVERFLOW' 44
seventh ROM (expansion ROM) 6-2 to 6-4, 7-21
(also see I/O STROBE’)
SHIFT key modification 7-31, 7-36 to 7-38, 10-5
short circuit 10-6 to 10-7
Shugart 9-3,9-17, I-1
Siemens 9-45
SIMULREAD 7-25to 7-26
simultaneous DMA 2-11, 4-13
Soft CTRL Systems 6-14
soft reset 4-15 to 4-16, 10-3
RAM card 5-30
soft switches
disk controller 9-11 to 9-14
screen mode 1-7, 7-2 to 7-6
SOFT5 3-14, 3-15, G-3
SOFTALK 5-36, 6-13, 9-3
Software Applications
Apple timing loops 3-18
Aspect ratio in Apple Display 8-28
Modifying the system monitor 6-16 to 6-17
Programming the game paddles T7-24 to 7-27
Reading video data from a program 5-36 to 5-41
Switching sereen modes in timed loops 3-16 to 3-17
6502 addressing details 4-20 to 4-23
software interrupt 4-15 (also see BREAK)
Solid State Sales 5-33
source program 4-11 to 4-12, gl-6

speaker 1-8, 7-1to 7-6, 7-10, 7-12
installing volume control 7-39 to 7-40
programming 4-20, 7-1 to 7-2, 7-12
special funetion keys 1-7, 7-13 to 7-18
stack, 6502 4-5, 4-15 to 4-18
stack pointer 4-5, 4-10 to 4-11, 4-15
stacked interrupts 4-17
state machine (see logic state sequencer)
status register, 6502 4-10 to 4-11, 4-16 to 4-18
STEP utility 6-6, 6-16, 6-18
stepper motor 9-2 to 9-7
strobe gl-6
CAS' 3-3 to 3-10, 5-2 to 5-6, 5-20 to 5-35
C040 STROBE’ 1-8, 2-12, 7-2 to 7-3, FO1
I/O STROBE’ 6-2 to 6-4, 7-2 to 7-9, 7-19 to 7-21
keyboard STROBE 7-13 to 7-17
keyboard strobe flip-flop 7-14 to 7-15
RAS' 3-3 to 3-10, 5-2 to 5-6, 5-23 to 5-32
SWEET 16 6-5, 6-6
switch bounce 6-18, 7-13
SYNC, video 8-3, 8-9 to 8-13
SYNC, 6502 4-4, 4-32
Synertek 4-1, 4-7 to 4-8, 4-14, 5-5, 6-1, C-1, C-7, I-3
Symertek Programming Manual 4-20

tables (see Appendix K)
television
aspect ratio 8-28
color killer 8-29
frequency interlace 8-6, 8-34
frequency response 8-6, 8-19 to 8-20, 8-33 to 8-34
input 1-5, 8-3
processing 8-3 to 8-7, 8-33 to 8-34
scan interlace 3-12, 8-5, gl-4
scanning 3-10, 3-11, 8-3 to 8-5, 8-10, 8-14
sync 3-10, 8-3 to 8-6
(also see video)
temperature, operating 10-3 to 10-4
Texas Instruments 6-13
TEXT mode 1-5to 1-7, 8-16 to 8-17
ASCII 1-6, 8-9, 8-30 to 8-32
characters 8-9
eliminating colored shadows 8-29
memory scanning 5-7 to 5-13, 5-36 to 5-38

norm/inv/flash 1-6, 8-7 to 8-8, 8-12 to 8-13, 8-17, 8-30 to 8-32

size ratio 8-28
video generation 8-8, 8-12, 8-15 to 8-17
time constant 7-4, 7-33
timers
disk controller 9-12, 9-13
fixed timing reference 7-33
paddles 1-8, 7-2 to 7-11, 7-24 to 7-27, FO1
power-up reset 7-14, 7-15
text flasher 8-12, 8-13, 8-17
timing diagrams and deseriptions
CAS' gating 5-22
disk controller command decoder switching 9-22 to 9-23
disk read pulse generation 9-9 to 9-10
DMA 4-13to4-14
firmware card 6-11 to 6-12
HIRES interference patterns 8-20 to 8-22
/O 7-8to 79
LORES phase relationships 8-23 to 8-25
MIXED mode switching 8-25 to 8-27
RAM read eycle 5-22 to 5-24
RAM timing signals 5-2
RAM write cycle 5-24 to 5-25
read cyele with no data response 5-25 to 5-26
READ sequence performance 9-32 to 9-33
ROM 6-6 to 6-8
timing generator signals 3-4 to 3-10

8 Understanding the Apple I

video output 8-15 to 8-25 video data
WRITE sequence initialization 9-22 to 9-23 and peripheral cards 3-23 to 3-26, 5-5
6502 4-6to4-10,C-1toC-8 distribution 2-12, 5-5, FO1
timing generator 3-1 to 3-15, FO1 reading from program 5-36 to 5-41
and video scanner 3-2 (also see RAM latched data)
hardware 3-12 to 3-15, FO2 video generator 8-1 to 8-34, FO1
overview 3-2 to 3-3 and Eurapple scanning 8-12 to 8-14
propagation delay 3-4 to 3-7 and long cycle 8-16
repair 10-9 color burst killer 8-11 to 8-13, 8-29, G-2 to G-3
signal descriptions 3-6 to 3-10 delayed HIRES 1-6, 8-18 to 8-22
signal distribution 3-8 GRAPHICS shifter 8-7, 8-18, 8-23
signal frequencies 3-3 to 3-4 HIRES generation 8-18to 8-19
timing diagrams 3-4 to 3-6 HIRES interference 8-20 to 8-22
(also see long cycle; timing diagrams) LORES cyclical patterns 8-23 to 8-25
timing loop 8-16 to 3-18, 4-27, 9-24, 9-27 LORES generation 8-22 to 8-25
toggle outputs 2-7, 2-12, 7-2 to 7-4, 7-10, 7-12 MIXED mode switching 5-5, 8-11 to 8-14, 8-25 to 8-27
TRACE utility 6-6, 6-16, 6-18 mode configuration 8-18, 8-22 to 8-23

norm/inv/flash 8-7 to 8-8, 8-17, 8-30 to 8-32

trademarks B-1 PICTURE signal generation 87

transceiver (_tr_ansn_litterf receiv.er) 2-2 to 2-3, 4-3, 4-6 PICTURE signal multiplexor 8-7
(also see bidirectional bus driver) revisions 8-5, 8-9 to 8-12, 8-14, 8-16, 8-19, 8-29
tri-state bus drivers 2-1to 2-3, 4-2to 4-5 TEXT generation 8-7 to 8-9, 8-16 to 8-17
tri-state logic 2-1 to 2-3, gl-7, E-3 TEXT ROM 8-7 to 8-9, 8-16 to 8-17, 8-30 to 8-32, I-2
troubleshooting 10-6 to 10-10, gl-7 TEXT shifter 8-7
truth tables E-1to E-4 timing diagram 8-16
TTL (Transistor Transistor Logic) 1-8, gl-7, E-3 timing signals 8-14 to 8-15
LSTTL 1-8, 3-15, 5-42, 7-11, gl-4 video scanner gating 8-7 to 8-14
STTL 3-15, 542 video scanner 1-5, 2-11, 3-10 to 3-15, FO1
TTL Data Book 5-20 ?ene% Eu;agoplqd 3-12, 3-1‘:‘-) 8-l§ ;0 8-14
: 2 : ac video generator 3-
two state logiec 1-3, 1-8, 2-1 hardware 3-12. 3.14, FO2
UNDERLINE program 5-38 to 5-41 signal distribution 2-12, FO1
UNUSED 8 5-8, 5-10, 5-14, 5-19, 5-36 to 5-38 (also see video generator)
upgrading to 48K RAM 5-32 to 5-34 video signals
USER1 7-6, 7-8, 7-19, 7-20 chrominanceR S%—5 to 8-6, 8-33 to 8-34
VBL (Vertical BLanking) 8-4 to 85, 8-9 to 8-14 COLOR BURRT 5.9, 8-3 to 56, 8-8 to B-13
and memory scanning 5-11, 5-13, 5-18, 5-19, 5-36 to 5-41 COLOR REFERENCE = 3-3 to 3-9, 8-5, 8-15, 8-18 to 8-25
vectors, interrupt 4-15 to 4-18 HBL 83 to 85, 8-9 to 8-13
S HIRES TIME 8-12, 8-26
vertical counter 3-11 to 3-15 luminance 85 to 8-6. 8-33 to 8-34
vertical retrace 8-12, 5-13, 8-5, 8-10 PICTURE signal 8-3, 8-6 to 8-8, 812, 8-15
vertical scan 3-10 to 3-12, 84 to 8-5, 8-10 SYNC 8-3,89to8-13
vertical sync 3-10 to 3-12, 5-11, 5-18, 8-3 to 8-5, 8-9 to 8-14 VBL 84 to 8-5, 89 to 814
video VIDEO output 8-2 to 8-6, 8-8, 8-12
and EURAPPLE 1-5,3-12, 3-14, 8-12 to 8-14 VIDEO BLANKING 8-3 to 8-5, 8-9 to 8-13, 8-21 to 8-22,
and FCC 83, G-1,G-3 8-26
and NTSC 8-3 to 8-6, 8-14 voltage gl-7 .
and RF modulator 1-5, 8-3, 8-33 (also see logic levels; power supply)
aspect ratio 8-28 volume control installation 7-39 to 7-40
black reference 8-3
blanking 3-10 to 3-12, 8-3 to 8-5, 8-28 Waller, Eric 10-10
color burst killing 8-11 to 8-13, 8-29, G-2 to G-3 Wiggington, Randy 9-17, H-2, I-4
co}or Sigin—ziss 8-5 to 8-7, 8-15, 8%-18 to 8-25, 8-33 to 8-34 Wilbur, Roger 10-10
colors , 8-6 to 8-7, 8-18 to 8-25 - i .
composite video 8-3, 8-6, gl-2 “w"ga{ﬁif’:':le%'ﬂ';()]” st
display (see screen display) Worth. Don 9-3. 9-31
generation (see video generator) orth, Lon 5
HIRES graphics (see HIRES) Wozniak, Steve vi, 4-14, 5-12, 6-b, 7-8, 9-17, 9-26, H-1 to H-2,
horizontal PERIOD 89 to 8-14 Jltol4
LORES graphics (see LORES) write cycle 2-3 to 2-5, 5-24 to 5-25, 7-8 to 7-9
mapping (see screen mapping) write protect switch 9-6, 9-8 to 9-9
MIXED mode (see MIXED) installing on disk drive 9-43 to 9-45
modes 1-5 to 1-7 (see also disk I/0)
monitor 8-3, 8-6, 8-17, 8-19 to 8-20 ;
programming 1-5 to 1-6, 8-1 to 8-2 X-register 4-10to 4-11
retrace 3-11 to 3-12, 8-4 to 8-5, 8-10 Y-register 4-10to 4-11
scanning (see memory scanning, television scanning)
soft switches 1-7, 7-2 to 7-6 zero page addressing mode 4-5
syncing serrations 8-3 to 8-5, 8-11, G-2, G-3 Zilog 4-14, B-1
TEXT mode (sce TEXT) Z80 MPU 4.1, 4-18, 526, 18
unwanted spike 8-4, 8-5, 8-11 780 softeard 4-14, 4-26. I-3

(also see HIRES; LORES; MIXED; screen; television;
TEXT) 6502 MPU (see MPU)

The Apple Il Bus Structure

ROM ROM
0o D8

ROM HGM ROM
:

RAM s

Wlﬂlﬂﬂﬂlﬂlﬁlﬁlm
llllllh I

ADD-
e l
- -Illilllllll
o e BN NN l
— AOA2
— ROM ENABLE' DO-F8 PADDLE 0 —
— 1/0 STROBE PADDLE1 — 1o SERIAL] D7 —=
— 1/0 SELECT PERIPHERAL SLOT CONTROL PADDLE 2 —| JUAD auToNo I\
— DEVICE SELECT PADDLE 3 — BTN 3
— |app- | KEY BOARD ENABLE' CASSETTE IN

RESS | — KEY BOARD STROBE RESET'
DECODE [5cREEN CONTROL
— SERIAL INPUT CONTROL

— CASSETTE OUTPUT
— SPEAKER OUTPUT I /\0DRESS BUS I /DORESS BUS EXTENSION
— ANNUNCIATOR 0-3 OUTPUTS
[COMO STROBE' OUTPUT I 0A7A BUS I 0ATA BUS EXTENSION
— TIMER TRIGGER

I V1060 SCAN

TIMIN
GENEF?ATOH — TIMING TO ALL BLOCKS

Motherboard Component Locations

L

ROM

RAM

ADDRESS DECODE

PERIPERAL SLOTS

DATA MUX

SERIAL 110

TIMING GENERATOR

2%

il

VILEY oLANNER

RAM ADDRESS MUX

VIDEO GENERATOR

POWER-UP RESET

RAM DATA LATCH

KEYBU&RD

POWER

RAM JUMPERS
AND E2 REMOVED
IN REV-7.

D
G
JUMPERS 7-11
ON REV-7 AND LATER
B
A
01, 02 2N4258

14M OSCILLATOR — e

LSO8 LS138 819

23168

8797 8197

JUMPEHLSBSII.II.D

23168 23168 23168

!DIII-IIDII

ar?a ET?ﬁ LSB8 558 LS251

LS138 LS8 LS25%8

23168 23168

JUMPER LS139

[T

JUMPER LS20

4116

4116

—
L]

183 5195 4116

4116 4116

4116 4116 4116 4116 4116

4116 4116 4116

4116 4116 4116 4116 4116

4116 4116 JLS13 LS153 LS8 LS2BG

4116 4116

LS¥1 LS161 LS®! LSHI

41164116 LSIH LS257 LS51 LS32

=~
ﬂll

5175 S86 555

74166

Il%l

LS184 LST4 LS257 LS257 LS4

2513!23163

VIDED

04 MPSA13 SPEAKER AMP

(03 2N3904 VIDEODRIVER

- USER 1

—— TWO 8128s REPLACED BY
ONE 8304 IN RFI REV

| 062N3904 COLOR BURST

16

14--

15

=

= pd

I.ll..SPKR

LS®4 LS74 LS8 LsSm LS02 LS02

5257 LS151 LS

I.S?*I L

555

L5502

KILLER

JUMPERS 12-16 ARE 50H
JUMPERS (REV-1 AND LATER)

- §— 05 2N3904 POWER-UP RESET

